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A PERTURBED TRAPEZOID INEQUALITY IN TERMS OF THE
THIRD DERIVATIVE AND APPLICATIONS

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Some error estimates in terms of the p—norms of the third deriva-
tive for the remainder in a perturbed trapezoid formula are given. Applications
to composite quadrature formulae, for the expectation of a random variable
and for Hermite-Hadamard divergence in Information Theory are pointed out.

1. INTRODUCTION

In [4], by the use of Griiss’ integral inequality, the authors have obtained the
following perturbed trapezoid inequality.
Theorem 1. Let f : [a,b] — R be a twice differentiable function on (a,b) and
asume that

v:= inf f"(z)> —o00and T := sup f"(z)< .
ve(ab) velab)

Then we have the inequality

b —a
e [Tt @ )+ E ) - )
3

-y,

Using a finer argument based on a pre-Griiss inequality, Cerone and Dragomir
[2, p. 121] improved the above result as follows.

(1.1)

<

Theorem 2. Let f have the properties of Theorem 1. Then

(1.2)

’ —a —a)?
bia/af(:lc)dasfb2 [f(a)+f(b)}+%[f’(b)ff’(a)}
1

< ——(b-aPT-7).
< SEb-a’ =)

The main aim of the present work is to obtain some bounds for the left part
of (1.2) in terms of the p—norms of f”/ assuming that the function f is twice
differentiable on (a,b) and that the second derivative is absolutely continuous on
(a,b).

A number of applications are also pointed out.
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2 N.S. BARNETT AND S.S. DRAGOMIR

2. A PERTURBED TRAPEZOID FORMULA
The following representation lemma holds.

Lemma 1. Let f : [a,b] — R be such that the second derivative is absolutely
continuous on [a,b]. Then we have the equality:

2
(2.1) / Fyar - LOEIO o) L= ) g

ol [ </< B wda) (- 5 s
Proof. Integrating by pats, we have
-[[ (/( t+8>f”’(u)dU>(t—8)dtds
Y Lo h
- [ Vﬁ (o e ) —<f’<t>—f/<s>><t—s>]dtds
1[ / b / "6 (¢ )P duds + / / (s dtds]
Lo

By symmetry,

b b b b
J::/ / £ () (t—s)thds:/ / £ (5) (t — 5)? deds,
and using Korkine’s identity or direct computation, we have
/ / ) (t — s)dtds
b
= Ql(b—a)/ f’(t)tdt—/ f’(t)dt-/ tdt].

Then, I = J — K.
Since

/bf”(t) (/b(t—s)2ds> dt
V F dt+/ab(t—a)3f”(t)dt]
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1
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= 3 [—f’ (a)(b—a)’ +3

5 f(t) (=1’
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b
—f(a)(b—a)2+2/ (b—t)f(t)dt]

+f' (B) (b—a)’ =3 | f (1) (t - a)®

1

= [[f’ (b) ~ £ (a)] (b—a)* +3

b
3[f<b><ba>22/ (ta)f(t)dtH

and

b b
%jL Q) 40

then

. b
1= [f'(b)—f’(a)](b—a)d—2[f(a)+f(b)](b—a)2+4(b—a)/ oxs

wl

Dividing by 4 (b — a) we deduce the desired equality (2.1). I

The following perturbed version of the trapezoid inequality holds.
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Theorem 3. Let f : [a,b] — R be such that the second derivative is absolutely
continuous on [a,b]. Then we have

b _ 2
par - LOETO gy Oy o
1 b b t— 3 111 dtd . 111 L b .
16(b—a) fa fa | S| Hf ||[t,s],oo 3 Zf f € Lo [av ] )
2+1 1" "
< S S t—s|" " 5 dtds 1 € Lyla,b
< e [ PR g dtds i€ Lyo,d],
p > 1 ; + E 1;
80— a)f f (t—s ||f/'/|\ts]1dtd5
160 ||f”/H [a,b], ’Lf fm € Loo [aab];
3+
S q2(b7a) - ||f///H a b ,Lf‘ f/// c Lp [a, b] ,
4(3¢+1)(4g+1)(g+1) 9
p>1, % + % =1
(b=a)® || prmr
=

u)|ldu‘7 if 121 and ||h|(. 4,00 = €ss sup |h(u)|.
T u€le,d]
(u€ld,c])

where ||hll .4,

Proof. Denote

R(f:a,b): b_a// (/< t;rs)f’”(u)du>(ts)dtds.

As
t
t+s t+3
[ty ron] = [t
S
_ (t—S) "
= g e
t t+s
[ (o-2)
s 2
t t+sl|? v
"
<N Npe,s1. u———| du
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t_S q ]. 1
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and
t
t+s t+s
/ <u2) £ ydu| < sup u— 2
s u€lt,s|

(u€lt,s])
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then we can state that

/: <ut;5)f"'(u)du

(t—s)? " : " .
s ||[t,s],oo if f" € Lo la,b];

(2.3)

»Q\»—A

< - , i e Lylal],
2(q+1)‘? ' -
[t—s| p>1’5+621;
S ||fWH[t,s],1'
Taking the modulus of R (f;a,b) we get, by (2.3),
IR(f,a b)|
t
t
< / / [t — s / ( —|—s> " (u) du| dtds
LIPS0 = S 1S g 00 dtds if "€ Lo a,b];
1 .
! L [P [P Py dtds iEF € Ly lab]

< -
~ 4(b-a) 2(q+1)
p>1 s+ 1=1;

b b 2
] 1f"" Iz, dids

which proves the first inequality in (2.2).
Now, consider the double integral

//\t—s| dtds—/ [/at(t—s)mds+/tb(s—t)mds]dt

_ / l(t _ a)TTL+1 + (b _ 7f)m—‘,—1‘| i 9 (b - a)m+2

m+1 (m+1)(m+2)

for all m > 0.
Using the above calculation for I,,,, we have:-

b b 3
//‘t*sl 177 5,00 s

< N / / t— 5 deds
(b-a)
= O e
b b 241 b b 241
[ [ 1= s 0 g dtds < 0y, [ [ el dtas
1
2q2 (b B a)4+q . ||f///||
(3¢+1)(4g+1) [a.b].p
and
b b 9
//(tfs) 1 g5, dtds < ||f"/||[ab]1// (t — ) dtds

— ( ) ”f/l/H (b,
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which give the last part of (2.2). 1I

3. APPLICATIONS TO COMPOSITE QUADRATURE FORMULAE

Consider the division I, :a =29 < x1 <29 < --- < 2,_1 <z, = b and define
hi = x;11 —x; (z =0,n— 1) and v (I,) := max{hi|i =0,n— 1} f

1 = 2 /
(3.1) =3 ZZ(:) )+ f (@) hi = o5 Z hi [f (@i1) = f' (24)]
is the perturbed trapezoid formula associated with the absolutely continuous func-

tion f : [a,b] — R, then we may state the following theorem.

Theorem 4. Let f : [a,b] — R be such that the second derivative is absolutely
continuous on [a,b]. Then, for a given division I, we have:

b
(32 [ H@rdt=Posin) + R (71
where Py, (f;I,,) is given in (3.1) and the remainder R, (f; I,,) satisfies the estimate:

n—1
160 1" la,b0,00 ;)h? if f" € Lo [a,b];

1
P n— q
33)  |Rn(fi1n) < d " ( h3q+1)
(3:3) B (f: 1n)l woraarnt W lass { 2
if f"€Lylab], p>1,

25 P 1" g 1.1 -

Proof. 1f we apply Theorem 3 to the intervals [z, z;41] (i =0,n — 1) we get

s z; Tit1 2 /
[ a1 )~ £ )

g i€ Lo [a,0]
160 o0 ) bl

[zi,@i11],00

IN

: 1oy i 7€ Lylad
1 0 Tit1],s p L
4(3¢+1)(4g+1)(g+1)s Forp o
p>1,5+g:1,

hf "
@ ”f ||[-'E'ia"ll"i+1]71
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Using the generalised triangle inequality, we obtain

(34)  |Rn (fi1n)]

. [/“ . W.hi+;€[f’(xi+1)_f/(xi)]]|
i=0 L

i

_ z1+1 f(x) —|—f(1‘ 1) h?
= Z/ t_%'hi+ﬁ[f/(l‘i+1)—f/($i)]
=0
n—1
16 'Zo h} [/ | . if f" € Lyla,b];
i=
) _
< q +3 if e L la, b,
B 4(3Q+1)(4II+1)(Q+1)% z; I/ ‘ [zi,2i41]p ! rla,0]
p>1, s +.=1

n—1
i z:o h’? ||f”l||[z,;,z,;+1],1 .
7=

As
n—1 n—1
DB Nassoisagioe < 1 liapo0 D B
1=0 =0

then by (3.4) we deduce the first inequality in (3.3).
Using Holder’s discrete inequality, we may write

n—1 341 Tit+1 :
S (/ |’"<>|”dt)

(5 (5 (e o))
() S ([ mora)

n—1 E
1
(zhfq+) T
=0

which proves the second inequality in (3.3).
Finally, we observe that

Zh‘r‘\lf’”ll[xz w1 S Zl\f’”

and the theorem is proved. I

M

el = OO 1" a1

In practical applications, it is useful to consider an equidistant partitioning

h—
Eyizi=a+1- a

, 1=0,...,n.
n
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In this case the perturbed trapezoid formula becomes:

(3.5) P.(f) : =b;lag[f<a+i.b;a>+f<a+(i+1).b;a)}

=0
_(b-a?
12n2

[f" () = f' (a)]-

Consequently, the following corollary holds.
Corollary 1. If f is as in Theorem 4, then we have

b
(3. [ @ =ro+ (),
where Py, (f) is given in (3.5) and the remainder Ry, (f) satisfies the estimate
(3.7) [ R (f)]

(b—a)’
1603

1" Moo & "€ Lo [a,B];

¢ (b—a)**

— I/
4(3g+1)(4g+1)(g+1)a n3
Zf fl// S Lp[a7b]a p > la

[a,b],p

IN

1
1y

(b—a)?
48n3

1" a1 -

Remark 1. [t is important to note that the perturbed trapezoid formula contains, in

addition to the classical trapezoid formula, the term — (ﬁ;;;?z [f'(b) — f' (a)], which
can be calculated simply when the derivatives of the end-points a and b are known.
As can be seen in formula (3.7), the order of the new formula is 3, while the order

of the classical trapezoid formula is only 2.

Remark 2. Atkinson [1] terms the quadrature rule (2.2) a connected trapezoidal
rule and obtains it using an asymptotic error estimate approach which does not
provide an expression for the error bound. He does, however, state that the corrected
trapezoidal rule is O (h4) compared with O (h2) for the trapezoidal rule.

4. APPLICATIONS FOR EXPECTATION

Let X be a random variable having the p.d.f., f : [a,b] — R and the cumulative
distribution function F : [a,b] — [0, 1], i.e.,

F(x):/mf(t)dt, x € [a,b].
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Theorem 5. With the above assumptions and if the p.d.f., f is differentiable on
[a,b] and [’ is absolutely continuous, then

b (b—a)
(4.1) R IOt
(b;f}%)4 ||f/l||[a,b]7oo if f"€ Lyla,bl;

QQ(b*a)BJr% " . 1"
T 1 Nap,p o "€ Lplab],
4(3¢+1)(4g+1)(g+1) 4
p>1, s 4o =1

IA

—a 3
o T

where E (X) is the expectation of X.

Proof. Applying Theorem 3 for F', we may write that

/bF<t>th(“”F@<ba>+(b“)2 £ (b)— £ (@)

(4.2) .

(b—a)* 7 . " .
160 ”f H[a,b],oo if f ELOO [avb]7

q2(b7a)3+% 1 ||f//||[a . if f// c Lp [a, b] ,
4(3¢+1)(4g+1)(g+1) P

IN

p>1, %Jr%:l;

—a)?
el VAl [

However, F'(a) =0, F (b) =1 and

/bF(t)dt:b—E(X),

and then by (4.2) we obtain the desired inequality (4.1). I

5. APPLICATIONS FOR HERMITE-HADAMARD DIVERGENCE

Assume that a set y and the o—finite measure p is given. Consider the set of all
probability densities on p to be Q := {p|p :x — R, p(z) >0, pr (x)dp (z) = 1}.

Csiszar f—divergence is defined as follows [3]

(5.1) Dy (p,q) == /p(ff)f Bg” dp(z), p,q €9,

where f is convex on (0, 00). It is assumed that f (u) is zero and strictly convex at
u=1.

By appropriately defining this convex function, various divergences such as:
Kullback-Leibler divergence, variation distance D,,, Hellinger discrimination Dy,
x*—divergence D, 2, a—divergence D, Bhattacharyya distance Dp, Harmonic dis-
tance Dy, Jeffreys distance D, triangular discrimination Da, etc. (see [5]).
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In [6], Shioya and Da-te introduced the generalised Lin-Wong f—divergence
Dy (p, %p + %q) and the Hermite-Hadamard (HH) divergence

a(=)

P f () dt
5.2 Db 0= [ p0) O ), paen
X plz)

and, by the use of the Hermite-Hadamard inequality for convex functions, proved
the following basic inequality

1 1 1
5.3 Dy (.30 + 31) < Dhuy 0:0) < 301 (),

provided that f is convex and normalised, i.e., f (1) = 0.
The following result holds.

Theorem 6. Let 0 <r <1< R<ooand f:[r,R] — R be a twice differentiable
function so that the second derivative f” : [r, R] — R is absolutely continuous on

[r,R]. If p,q € Q and r < % < R for a.e. x € x, then we have the inequality:

. 1 1
(5.4) 'DLH (p.q) — §Df (p.q) + ED('_W'(') (P, q)

_ 3
ﬁ/ S 7 g 1] 0 i (2)
X
8 @ —p@ 2B || e J
x X
< A(3B+1)(4B+1)(B+1) P /X (p(z)" TP If H[%J],a ()
ifa>1, L+ 5 =1,f"¢cLa[r,R];
z)—p(x))>
3 /X (el 1Pl atey 17,1 A ()
1" N 00 .
160 P (2,9 if "€ Loo[rR];
BN R .
= s lD‘ |2+71, (p,q) if f" €Ly, R],
438+1)4B+1)(B+1)7 K
1" N gy B
r 1
éD 2
48 X (p7q)a
where
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Proof. We use the inequality (2.2) in the following version

b —a
ra | foa- KT 2o ) - o

(5.5)

[ —af’ ”
160

(a,b], if f" € Ly la,bl;
20 1245
5 |b a| - ”fm”[ab]a if f”/GLa [a,b],
4(33+1)(48+1)(B+1)7 o

IN

B
1" Nay.1

for either a < bor b < a.

If we put in (5.5) a =1 and b= %, we get

oo (IO (1) G 1 (25) o)

|q (l‘) (.Z‘)| "
W 1f ||[<z(w> 1] 00

< 8%l (z) = p () > 0
> 1 24+ 1 [Lﬁ)JLa
4B+ 1) (AB+ 1) (B+1)7 [p(x))]7 b
(q(z) —p@)* | ..
e 1 g
lg@) —p @)
iy 1 o
3% |q(x) —p (2)*F7
< . . Hf///” —
4(384+1) 4B+ 1) (B+1)7 [p(2))*T7 [, R,
( (x) p(x))Q "
W”f ”[T’,R],l'

)
If we multiply (5.6) by p(x) > 0, integrate on x and take into consideration that

/Xp<:c>du<w>=/xq<x>dﬂ<x>=1,

then we get (5.4). I
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