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INTEGRAL INEQUALITIES ON INFINITE INTERVALS

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Inequalities concerning the distance between a function and some
integrals on infinite intervals are given.

1. INTRODUCTION

Let —oo < a < b < 400 and w € L (a,b) a Lebesgue integrable function on (a, b)
with ff w (s)ds # 0.

The following identity holding for locally absolutely continuous functions f :
(a,b) — R, where (a, b) is finite or infinite, is known in the literature as the weighted
Montgomery identity:

LY f@) - ——r

b [ b
fbwl(s)ds/ (/t w(s)ds)f’(s)ds
for any x € (a,b).

For a simple proof of this fact we refer to the monograph [2, p. 376] where
further similar results are provided.

For generalisations to the case of n—time differentiable functions we refer to [3].

In [1] a different representation for the left hand side of (1.1) has been provided

1

1.2) f(zx) — /——
12) o) f;w(s)ds

b
/ w(t) f (1) dt

:W/abw(t)(x—t) (/()lf’[(l—)\)x+)\t]d)\)dt

a
for any x € (a,b).
Ifa=0,b=o00, w(t)=e", then from (1.1) we obtain the identity:

(1.3) f(:c)—/om e‘tf(t)dt:/ox (1-c) f (t)dt—/ooe‘tf’ (t) dt

for any = € [0,00), provided the involved integrals exist for f locally absolutely
continuous on [0, 00) .
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Taking the modulus in (1.3), we get

N
< [a-enr ol [Tty olde- 1.

for z € [0, 00).
One can obtain various upper bounds for I. For instance,

(1.5)  I(z)<ess sup |f’ (t)|/ (1—e*)dt+ess sup |f’ (t)|/ e tdt
te(0,z] 0 t€[x,00) T
= (e 4z—1) ||f,||[o,oo),oo +e " Hf/H[m,oo)
< (26_$+£C—1) Hf/”[(),oo),ooa YIS [0,00),

provided f’ € L0, 00).
The inequalities between the first and last term in (1.5) have been pointed out

in [2, p. 377].
Also,
(1.6) I@) < sup (L—e ) [flgaat sup e [ 00
tel0,x] te[x,00)

(X =e) 11 Noa11 + € N g 0001
max {1 —e ¥, e "} ||f'||[o,oo),1

1+ |1 — 277
— 5 llpscy1s @ €[0,00),
2 (0,00)

IN

provided f' € L]0, 00).

If one uses Holder type inequalities, then one may deduce other bounds for I (x)
in terms of the p—norms of f/, p > 1.

Now, if we use (1.2) for a =0, b = oo and w (t) = e~ *, then we may state

(1.7) f(x)—/Oooe_tf(t)dt:/oooe_t(x—t) (/Olf’[(l—/\)m—l—)\t]d/\) dt

for any « € (0,00), provided that the involved integrals exist.
Taking the modulus on (1.7) we have

w8 - [Cetroa
< /Oooe—t o — 1] (/01 |f’[(1—)\)az+>\t]|d)\) dt = J (x)

for z € [0, 00).
On making use of similar arguments outlined above, we may produce various
bounds for J (x) in terms of the p—norms [|f'[|,,. If [ f’] is convex on (0,00), then

F 1A =Nz + M| < (L =N)[f @)+ A1 @)
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for any z,y € [0,00) and A € [0,1]. Then

/ et (IS ~ N dz+|f’ AdA

() S/o e |z —t [|f (:c)|/0 (1 )dx + |f (t)|/0 ]
=3 [t Ol 1 @) [t
= % [”f/”[o,oo),oo +1f (x)l}/o et o —t|dt

1
= 5 (17 gy oe + 177 @] (267 2= 1),

for any x € [0,00), which is an improvement on the result

(1.9) \f@c)— / e-tf<t>dt]s(2e—f+w—1>||f’||[o,oo>,oo, 23>0

that has been obtained in [2, p. 377].

We note that for + — co the bound (1.9) is tending to oo as well, showing that
for large € (0,00), [ e~ f (t)dt is far from f (z) even if f’ € Ly (0,00).

It is natural to enquire how we can modify the expression under the integral
such that its absolute distance from f (z) will remain finite for any x € [0, c0).

The aim of this paper is to provide some inequalities for which the absolute value
of the difference between a function and an integral transform of it remain finite
for any z in an infinite interval.

2. THE RESULTS

The following result holds.

Theorem 1. Let f : R — R be a locally absolutely continuous function on R. Then
for any x € R we have the inequalities

(2.1) 'f(m) /000 {f(x”);f(“”)] e”dv‘

1 x o0
<3|[_eir@ias [T ol
I et + 1 Nipeye] S € Loo (R)
<3 2 oo 1 ers] S € Ly (®),
1 1 _ 1.
1 / p> :/[’ » . 1’
L1f g if f'€L(R),
1l e if 1€ Lo (R);
< ﬁ”flu]&p if f'elyR), p>1, %‘5‘%:1;
%Hf/H]R,l if €L (R).
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Proof. Define the function p : R? — R,

exp (t — x) if —co<t<z<oo,
(2.2) p(t,z) =
—exp(z—1t) if —oco<a<t<oo,

then we have

(2.3) /OO p(x,t) £ (t) dt:/m et () dt+/oo e (t) dt

=7 (1) ' —/_w e T (t) dt
- [em_tf(t) b +/<X> e (1) dt]

- | (1)t f () / RESTIOY

— 00 x

=2f (z) — [/_;et_wf(t)dt+/:oe””_tf(t)dt}.

On the other hand, by changing the variable ¢ — x = u, we have

T 0
/ etf"”f(t)dt:/ e“f(x+u)du

and by v = —u, we deduce
0 0
/ e“f(x—l—u)du:/ e f(xr—v)d(—v)

:/ e ' f(xz—v)dv.
0
Also, if we choose v =t — x in the second integral, we have
o0 oo
/ ex_tf(t)dt:/ e ’f(x+v)dv
T 0

and thus, by (2.3), we get the following identity that is of interest in itself as well

(2.4) f(a:)—/ooo {f(z‘“);f(“”)] e~ = ;/Zp(a;,t)f’(t)dt

for any =z € R.
Now, if we take the modulus in (2.4), we deduce

‘f(x)_/oo" [f(x—v)+f(x+v)}e_vdv‘

2
<y | [ e @tas [Ter ol

and the first inequality in (2.1) is proven.
Now, if f' € Ly (R), then obviously

YA L Ty

— 00

_ /
S T~
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and

/ U O1d < 5oy / Tt = |11 sormyoe

x

If ffeL,(R),p>1and % + % = 1, then, by Hoélder’s inequality, we have

[eoms ([ cora)' ([ rora)

1
=T ||fl||(7oo,z],p
qa

and, similarly,
. 1
[ e U Ol < = 1
T qa

getting the second part of the second inequality in (2.1).

Also, since
/ e ()] dt < sup eu/ L OFdt =15 o011
. —oco<t<zx >
/ e 1f (Ot < 11F 0011
and

1N —oorag1 1 g0y = 1 N1 s
then the last part of the second inequality in (2.1) is also proven.
Now, since

1
5 Hle(foo,a:],oo + ||le[z,oo),oo:| < maX{”f/H(foo,x],oo ’ Hf/”[:v,oo),oo}

= [1/'llg,c0

the first part of the third inequality in (2.1) is proved.
Using the elementary inequality

1 1 1
O‘+ﬂ§2%(ap+ﬂp);’ p>1, ];"—gzla Q,/BZO,
we deduce that
||f/H(7oo,x],p + ||f/||[a:,oo),p <2 (HfIproo,m],p + ||f/|‘?z,oo),p)

1
=27 |[f'llg,
and the second part of the third inequality is also proven.
The proof is completed. |

Q=
=

The following result may be stated as well.

Theorem 2. Let f: R — R be a locally absolutely continuous function on R such
that there exist the constants v,I' € R such that

(2.5) y< f'(t)<T forae teR,
then
(2.6 ‘f(x)/ooo Hlemu )] d‘ <ir-v.

for any x € R.



6 N.S. BARNETT AND S.S. DRAGOMIR

Proof. From the proof of Theorem 1, we know that

27) f(z)/o"" {f(:vv)+f(x+v)}eydv

2
:% U;et—ff’(t)dt—/:Oef—tf’(t)dt].

Utilising (2.5) we have, for a fixed x € R, that
el T < el TTf(t) < Te'™" for ae. t € (—o0,]

and
—Te" < —f' (t)e" P < —ye" ! for ae. t€ [x,00),
which gives, by integration,

'ye*$/ eldt < / eI (t) dt < I‘e*x/ eldt

and
o0 o0 (o ]
—I‘el/ e tdt < —/ e (1) dt < —'ye”“'/ e tdt
x xr x
ie.,
yg/ T (t)dt <T
and

- [ et mdes -,
which, by addition, provide the desired inequality (2.6). B
Remark 1. The inequality (2.6) is better than the inequality

f(x)_/om [f(x—v)+f(ﬂf+v)]evdv

. ST

which has been obtained in (2.1). This follows by the fact that, if (2.5) holds true,
then — || f'llg,oo <7 and T < |[f'|lp o » where ||| o = esssup;eg |/ (£)]-

The case of convex functions is incorporated in the following theorem.

Theorem 3. Let f : R — R be a convex function on R and f (x), f' (x) the
lateral derivatives in x, x € R, then

(2.8)  f(x)— /ODQ [f(x —v) ;f(x+v)] e Vdv < % L2 () = [ (2)] <0

for any x € R.

Proof. Since f is convex, hence f'(t) < f’ (z) for a.e. ¢t € (—o0,x] and [’ (t) >
[ (z) for a.e. t € [x,00). This implies that,

(2.9) /x eTTF () dt < /w e (x)dt = f (x)

— 00 — 00
and

(2.10) ~[Cerrwas- [T et @d= g @)

x

for any = € R.
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Adding (2.9) to (2.10) and utilising the representation (2.7), we deduce the
desired inequality (2.8). 1

Remark 2. If f is convex on R, then we have the inequality:
oo J—
(2.11) / {f(x ”>;f(x+”)] e Vdv > f ()
0

for each x € R. This inequality may be proved on using the definition of convezity
as well. Namely, since

fle—v)+flz+v)
2

/O°° {f(x—v);f(xﬂf)

> f(z),
then

] e dv > f(z) /OOO e Ydv = f(2),

which is exactly (2.11).
Note that in general (2.8) is a better result than (2.11) since, for instance, if one
considers the convex function f (t) := |t — x|, t € R, then 5 [f_ (z) — f} (z)] = —1.
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