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AN INEQUALITY FOR THE RATIOS OF THE ARITHMETIC
MEANS OF FUNCTIONS WITH A POSITIVE PARAMETER

NASSER TOWGHI AND FENG QI

Abstract. In the article, an integral inequality for the ratios of the arithmetic

means of functions with a positive parameter are obtained, and an open prob-

lem, posed by B.-N. Guo and F. Qi in “An algebraic inequality, II, RGMIA

Research Report Collection 4 (2001), no. 1, Article 8 (Available online at

http://rgmia.vu.edu.au/v4n1.html)”, is resolved partially.
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1. Introduction

In the papers [2, 3], using the Cauchy’s mean-value theorem and an inequality

between the logarithmic mean and one-parameter mean, Dr. F. Qi and Professor

B.-N. Guo proved that, if b > a > 0 and δ > 0 be real numbers, then, for any given
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positive number r > 0, we have

b

b + δ
<

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

=

(
1

b−a

∫ b

a
xr dx

1
b+δ−a

∫ b+δ

a
xr dx

)1/r

<
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
. (1)

The lower and upper bounds in (1) are the best possible.

Note that, in [2], a rich literature related to inequality (1) and its history and

background are listed.

Meanwhile, they posed an open problem in [2] as follows: Let b > a > 0 and

δ > 0 be real numbers, f(x) a positive integrable function, then, for any given

positive parameter r > 0, we have

supx∈[a,b] f(x)
supx∈[a,b+δ] f(x)

<

(
1

b−a

∫ b

a
fr(x) dx

1
b+δ−a

∫ b+δ

a
fr(x) dx

)1/r

< exp

(
1

b− a

∫ b

a

ln f(x) dx− 1
b + δ − a

∫ b+δ

a

ln f(x) dx

)
. (2)

The lower and upper bounds in (2) are the best possible.

It is well-known that the arithmetic mean of function f(t) on the closed interval

[r, s] is defined as

φ(r, s) =


1

s−r

∫ s

r
f(t) dt, r 6= s;

f(r), r = s.
(3)

In this paper, we will resolve the above conjecture partially and obtain the

following

Theorem 1. Let f(x) 6≡ 0 be a nonnegative integrable function on the closed

interval [a, b + δ], where b > a and δ > 0. Then, for any positive parameter r > 0,

we have

supx∈[a,b] f(x)
supx∈[a,b+δ] f(x)

≤

(
1

b−a

∫ b

a
fr(x) dx

1
b+δ−a

∫ b+δ

a
fr(x) dx

)1/r

. (4)

Theorem 2. There exists a positive function f(x) defined on the closed interval

[0, 3] such that fr(x) and ln f(x) being integrable on [0, 3], and(
1
2

∫ 2

0
fr(x) dx

1
3

∫ 3

0
fr(x) dx

)1/r

> exp

(∫ 2

0
ln f(x) dx

2
−
∫ 3

0
ln f(x) dx

3

)
, r > 0. (5)
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Remark 1. It is natural to ask that, what conditions does the function f satisfy,

the right hand side of inequality (2) holds? If f is continous, monotonic, or convex,

does it hold?

2. Lemma

To prove Theorem 1, the following lemma is necessary.

Lemma 1. Let r > 0 be a positive real number, let ai, 1 ≤ i ≤ n, be a nonnegative

sequence and ∞ > α ≥ max1≤i≤n{ai} > 0 a constant. Define

Fn(r) =
∑n

i=1 ar
i∑n

i=1 ar
i + nαr

, r > 0. (6)

Then 0 ≤ Fn(r) ≤ 1
2 , and the functions Fn(r), [Fn(r)]1/r and [2Fn(r)]1/r are

decreasing.

Proof. It is trivial to see that 0 ≤ Fn(r) ≤ 1
2 .

Direct differentiation gives us

dFn(r)
dr

=
nαr

∑n
i=1 ar

i ln
(

ai

α

)
(
∑n

i=1 ar
i + nαr)2

< 0,

therefore, Fn(r) is a decreasing function of r.

The function a1/t is a strictly increasing function of t on the closed interval [0, 1]

for 0 < a < 1. Let r < s, then

[Fn(r)]1/r ≥ [Fn(s)]1/r > [Fn(s)]1/s,

[2Fn(r)]1/r ≥ [2Fn(s)]1/r ≥ [2Fn(s)]1/s.

Thus, the functions [Fn(r)]1/r and [2Fn(r)]1/r are decreasing. �

3. Proofs of Theorems

In this section, we will prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Assume that f is integrable in the sense of Riemann. Taking

a partition P1 = (x0, x1, . . . , xn) of the closed interval [a, b] with xi = a+ i(b−a)
n for

0 ≤ i ≤ n and a partition P2 = (x0, x1, . . . , xn, xn+1, . . . , x2n) of the closed interval

[a, b + δ] with xj = b + (j−n)δ
n for n + 1 ≤ j ≤ 2n, by definition of Riemann integral

(see [1]), we have∫ b

a

fr(x) dx = lim
n→∞

b− a

n

n∑
i=1

fr(xi), (7)
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a

fr(x) dx = lim
n→∞

(
b− a

n

n∑
i=1

fr(xi) +
δ

n

2n∑
j=n+1

fr(xj)

)
. (8)

Let α = supx∈[a,b+δ] f(x) and ai = f(xi) for 1 ≤ i ≤ n. From formulae (7) and

(8) and using the notations of Lemma 1, it follows that(∫ b

a
fr(x) dx

b− a

/∫ b+δ

a
fr(x) dx

b + δ − a

)1/r

=

 lim
n→∞

1
n

∑n
i=1 fr(xi)

lim
n→∞

[
b−a

n(b+δ−a)

∑n
i=1 fr(xi) + δ

n(b+δ−a)

∑2n
j=n+1 fr(xj)

]
1/r

=

(
lim

n→∞

1
n

∑n
i=1 fr(xi)

b−a
n(b+δ−a)

∑n
i=1 fr(xi) + δ

n(b+δ−a)

∑2n
j=n+1 fr(xj)

)1/r

=

(
lim

n→∞

∑n
i=1 fr(xi)

b−a
b+δ−a

∑n
i=1 fr(xi) + δ

b+δ−a

∑2n
j=n+1 fr(xj)

)1/r

≥

(
lim

n→∞

∑n
i=1 fr(xi)∑n

i=1 fr(xi) +
∑2n

j=n+1 fr(xj)

)1/r

≥
(

lim
n→∞

∑n
i=1 fr(xi)∑n

i=1 fr(xi) + nαr

)1/r

=
(

lim
n→∞

∑n
i=1 ar

i∑n
i=1 ar

i + nαr

)1/r

= lim
n→∞

( ∑n
i=1 ar

i∑n
i=1 ar

i + nαr

)1/r

= lim
n→∞

[Fn(r)]1/r (by definition of Fn(r))

≥ lim
n→∞

lim
r→∞

[Fn(r)]1/r (since [Fn(r)]1/r is strictly decreasing)

= lim
n→∞

max1≤i≤n{ai}
α

(by the L’Hospital rule)

=
supx∈[a,b] f(x)

supx∈[a,b+δ] f(x)
.

The proof of Theorem 1 is complete. �

Proof of Theorem 2. Define

f(x) =


ε, x ∈ [0, 1);

1, x ∈ [1, 2);

εβ , x ∈ [2, 3];

(9)
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where ε > 0 and β is a given constant. A calculation shows that(
1
2

∫ 2

0
fr(x) dx

1
3

∫ 3

0
fr(x) dx

)1/r

=
(

3(1 + εr)
2[1 + εr + εβr]

)1/r

,

exp

(∫ 2

0
ln f(x) dx

2
−
∫ 3

0
ln f(x) dx

3

)
= ε

1−2β
6 ,

dhε(r)
dr

,
d
dr

(
1 + εr

1 + εr + εβr

)
=

ε(1+β)r ln ε

[1 + εr + εβr]2
, gε(r).

If 0 < ε < 1, the function gε(r) < 0, and hε(r) is decreasing with r > 0, then

hε(r) > limr→∞ hε(r) = 1. If ε > 1, the function gε(r) > 0, and hε(r) is increasing

with r > 0, then hε(r) > limr→0 hε(r) = 2
3 . Therefore, for 0 < ε < 1 and β < 1

2 , or

for ε > 1 and β > 1
2 , we have(

3(1 + εr)
2[1 + εr + εβr]

)1/r

> 1 > ε
1−2β

6 , r > 0.

The proof of Theorem 2 is complete. �
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