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BOUNDS FOR THE CEBYSEV FUNCTIONAL OF A CONVEX
AND A BOUNDED FUNCTION

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Upper and lower bounds for the Cebysev functional of a convex
and a bounded function are given. Some applications for quadrature rules and
probability density functionsare also provided.

1. INTRODUCTION

For two Lebesgue functions f, g : [a,b] — R, consider the Cebysev functional

b b b
1) Clhg) =5 [ fOa@ad- = [ 10de = [ g

In 1971, F.V. Atkinson [I] showed that if f, g are twice differentiable and convex
on [a,b] and

(1.2) /:(t—a;b)g(t)dtzo,

then C (f,g) is nonnegative.

This result is, in fact, implied by that of A. Lupag [3] who proved that for any
two convex functions f,g : [a,b] — R the lower bound for the Cebysev functional
is:

(13) c<f,g>>(b12a)3/ab (t—a;b)f(t)dﬁ/ab <t_“;b>g<t>dt,

with true equality holding when at least one of f or g is a linear function on [a, b].

As pointed out in [4, p. 262], if the functions f, g are convex and one is symmetric,
then C (f,g) > 0.

For other results for convex integrands, see [4, p. 256] and [, p. 262] where
further references are given.

In this note we provide some bounds for the Cebysev functional in the case of a
convex function g and a bounded function f. Some applications are given as well.

2. THE RESULTS

For an integrable function f : [a,b] — R, define the (y — 2) —moment by
b
Mas (1) i= [ (627 F 0.
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For a convex function g : [a,b] — R for which the derivatives g’ (b) and ¢/, (a) are
finite, define

O T v

where f is integrable on [a, b].
The following result holds:

b

Theorem 1. If f : [a,b] — R is a Lebesgue measurable function such that there
exists the constants m, M € R with

(2.1) m< f(@t) <M forae tEe€]la,bl,

and g : [a,b] — R is a convex function on [a,b] with the lateral derivatives g', (a)
and g’ (b) finite, then,
1

(2.2) gm(—a)[g" (b) =g} ()] =T'(f.9)

<C(f.9)
< M (b-a)[o ()~ g} (@)] T (f.9).

Proof. We use Sonin’s identity [4, p. 246]:

b b
23 Clfo)=p /<f<t>v><g<t>bf /g<s>ds>dt,

a a

for any v € R, and the following inequality for convex functions obtained by S.S.
Dragomir in [2]:
b

(24) 9(8)ds =g 1) € grrms [0 =1 4" ()~ (1=, (0]

b—a J,

for any ¢ € [a,b]. The constant % is sharp.
Now, by Sonin’s identity for v = M, we have

b b
25)  Clho) =5y [ 1 F) (bi [ ots)as- g<t>) at.
From we get
b
(26) (bi [ otsrds—g <t>> (M~ 1 (1)

< ﬁ [g’_ () (b—1)* (M — f(t)) — g} (a) (t —a)* (M — f(t))}

for a.e. t € [a,b].
Integrating (2.6)) over ¢ on [a, b] and using the representation (2.5, we get

1 b / 2 / 2
(2.7) C(fag)SM[M/a [9—(b)(b_t) —g_,_(a)(t—a)}dt

b b
g (b)/ (b—t)? f(t)dt + g, (a)/ (ta)2f(t)dt].
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Since

[l oo-0 g @ -] a= LS 0 @) - g @)

then (2.7)) provides the second part of (2.2]).
Again, by Sonin’s identity,

I I
Cro) = 5= [ m=r®) (b_/ g(s)ds—g<t>> dt.
Utilising and the fact that m — f (¢t) <0 for a.e. t € [a,b], we obtain,

C(f.9)

1 b ) .
> s L (60 O s )~ o @ = 0)]

1 b
- m/ (0= gL 4) = (t = ) ¢, (@)| &t =26~ )T (f,9)
2 (b — a) a
giving the first part of . ]
The following particular result holds.

Corollary 1. Let f : [a,b] — R be a Lebesque measurable essentially bounded
function on [a,b], i.e., f € Loo [a,b] and || f||,, = esssupyepay |f (1) its norm. If
g : [a,b] = R is a convex function on [a,b] with the lateral derivatives g, (a) and
g (b) finite, then we have the inequality:

(28) C U0 +T(1.9) < 5 Il (b= a) [o (4) g (@)].

3. APPLICATIONS FOR THE TRAPEZOID RULE
The following result is a perturbed version of the trapezoid rule.

Proposition 1. Let h : [a,b] — R be a differentiable function with the property
that the derivative h' : (a,b) — R is convex on (a,b). If h! (a), b’ (b) are finite,
then

h(a) + h (b) 1t (b—a)®> K/ (a)+h" (b)
(3.1) 5 fb_a/ah(t)dtf o 5
1
< S a) [0 ()~ W (@)
Proof. Consider the functions f, g : [a,b] — R defined by
b
JW=t- g = ().

For these functions, a simple calculation shows that
(b—a)® Y (a)+h"(b)

F(f’g): 12 9 s

since,
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/ab(t—a)2 (t—a;b) dt = (bz;)4.

1
£l =5 (b—a).
Utilising the elementary identity

1lxpﬂgwwwﬁ:h@;mm_ﬁal%@m

and

Clearly, also,

b—a
and the fact that, for f, g as defined previously

o=y [ (- ) @

“b-a @

a direct application of Corollary [I| reveals the desired inequality (3.1]). N

A second result in the same spirit may be stated as:

Proposition 2. Let h : [a,b] — R be a twice differentiable function with the prop-
erty that the second derivative " : (a,b) — R is convex on (a,b). If b/’ (a), b (D)
are finite, then

b —a
(3.2) h(“)‘;h(b)_bia/ h(t)dt+b12 W (B) = I (a)]
7$ 0" (b) — B (@)] (b— o)

1
< g5 b—a) [ )~ B )]
Proof. Consider the functions f, ¢ : [a,b] — R defined by

1
F(t) =5 (= a)(t =) g () = W (1)
A simple calculation shows that,
1
D(fig) = =55 0= [ (0) — 12 (@),
since,

b —a)P®
%/ (tfb)Q(tfa)(tfb)dt:f(bélo)

and
b —a)P®
%/ (tfa)Q(tfa)(t—b)dt:f(bélo) .

It can also be seen that,

17l = 5 6 a)*.

Utilising the elementary identity

b b a
bia/a B(ta)(tb)]h”(t)dtbia/a h(t)dtfw
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and the fact that, for f, g as defined previously,

b —a
C(f,g)zbia/a E(t—a)(t—b)}h”(t)dt+bl2 -

a direct application of Corollary |1 reveals the desired inequality (3.1]). B

[ (b) = b’ (a)],

Remark 1. Similar results may be stated if one considers quadrature rules for
which the remainder R (f) can be expressed in Peano kernel form, i.e.,

b
R(f) = / K (1) £ (1) dt

where K (t) is a kernel for which the supremum norm can be easily computed and
the n — th derivative of the function f is assumed to be convex on (a,b). The
exploration of these bounds is left to the interested reader.

4. APPLICATIONS FOR PROBABILITY DENSITY FUNCTIONS

Let f : [a,b] — [0,00) be a density function, this means that f is integrable on
[a,b] and f; f(t)dt =1 and let

F(z):= /wf(t)dt, x € [a,b]
be its distribution function. We alsoadenote the expectation of f by E (f), where
= [ o
provided that the integral exists and is ﬁ:ﬂte7 and the mean deviation Mp (f), by
Mo (= [ H- BT

Theorem 2. Let f : [a,b] — [0,00) be a density function with the property that
there exists m, M > 0 such that

m< f(t) <M forae tEeE]la,b

then
E __a+b 2
(4.1) %m (b—a)* < Mp (f) + ﬁMz,%b (f) = ( (fb)_ — )
< %M (b—a)’.

Proof. We apply Theorem [l|for g : [a,b] = R, g (t) = |t — E (f)|. Since
go()=1, ¢\ (a) =1,

then
_ v e-a)’ b’
F(fag)(ba)Q/a [ 9 ]f(t)dt
— 1 ’ a+b 2 1 )
(b—a)Q/a [( 2 > 4(b—a)]f(t)dt
= ! M. a+b(f)+1
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On the other hand,

C(f.9) —/ [t— E(f)] £ (1 dt——/ t— B (f)]dt —/f

1 (b= E(N))* + (E) —a)

:b—a D(f)_(b_a)2 2

e D<f)—<b_1a>2 E<f)—a§b) +i<b—a>2]
_ 1 (BE()-=2)" 1

_b—a D(f)_w—z.

Making use of the inequality (2.2)) we deduce the desired result (4.1). I

If one is interested in providing bounds for the absolute moment around the

midpoint aTer,
b
Map (f)i= [ [t ‘ F)d,
then on applying Theorem |1| for g (t) = |t — “TH’| , we have the following

Theorem 3. Let f : [a,b] — [0,00) be as in Theorem[d Then

(@2 gmb- @ S Mg () + My e () < gM (b )

a—|—b

Remark 2. Similar results may be stated if one considers higher moments

b
M, (f) == / A fydt, p>1,

for which g (t) = |t —~[" in Theorem will procure the corresponding bounds in
terms of m and M with the property that 0 < m < f(t) < M for a.e. t € [a,}].
The details are omitted.
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