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CERTAIN LOGARITHMICALLY N-ALTERNATING MONOTONIC
FUNCTIONS INVOLVING GAMMA AND q-GAMMA

FUNCTIONS

FENG QI

Abstract. In the paper, three basic properties of the logarithmically N -

alternating monotonic functions are established and the monotonicity results

of some functions involving the gamma and q-gamma functions, which are ob-

tained in [W. E. Clark and M. E. H. Ismail, Inequalities involving gamma and

psi functions, Anal. Appl. (Singap.) 1 (2003), no. 1, 129–140.], are generalized

to the logarithmically N -alternating monotonicity.

1. Introduction

Recall that the definition of completely monotonic functions is well-known, and

can be stated as follows.

Definition 1. A function f is called completely monotonic on an interval I if f

has derivatives of all orders on I and

0 ≤ (−1)kf (k)(x) <∞ (1)

for all k ≥ 0 on I.

The class of completely monotonic functions on I is denoted by C[I].

In 2004, the paper [15] explicitly introduces the following notion or terminology.
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2 F. QI

Definition 2. A positive function f is called logarithmically completely monotonic

on an interval I if f has derivatives of all orders on I and its logarithm ln f satisfies

0 ≤ (−1)k[ln f(x)](k) <∞ (2)

for all k ∈ N on I.

The set of logarithmically completely monotonic functions on an interval I is

denoted by L[I].

Among other things, it is proved in [14, 15, 22] that a logarithmically completely

monotonic function is always completely monotonic, that is, L[I] ⊂ C[I], but not

conversely. Motivated by the papers [15, 19], among other things, it is further re-

vealed in [3] that S\{0} ⊂ L[(0,∞)] ⊂ C[(0,∞)], where S denotes the set of Stieltjes

transforms. In [3, Theorem 1.1] and [8, 18] it is pointed out that logarithmically

completely monotonic functions on (0,∞) can be characterized as the infinitely di-

visible completely monotonic functions studied by Horn in [9, Theorem 4.4]. In [16],

among other things, a basic property of the logarithmically completely monotonic

functions is obtained: If h′(x) ∈ C[I] and f(x) ∈ L[h(I)], then f
(
h(x)

)
∈ L[I]. For

more information on the logarithmically completely monotonic functions defined

by Definition 2, please refer to [3, 8, 14, 17, 18, 19], especially [16, 22], and the

references therein.

The following definition can be found in [6, 11, 12, 22].

Definition 3. A function f is called N -alternating monotonic on an interval I

if there exists some nonnegative integer N such that inequality (1) holds for all

0 ≤ k ≤ N + 1 on I.

The class of N -alternating monotonic functions on an interval I will be denoted

by CN+1[I]. Note that functions in CN [I] are called “monotonic of order N” in

[11, 12]. Here, we adopt the terminology “N -alternating monotonic” coined in [6].

It is obvious that C∞[I] , limN→∞ CN [I] = C[I].

Further, by slightly modifying of corresponding classes of functions in [21, 22, 23]

and formally assigning of names, we pose the following definitions.
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Definition 4. A positive function f is said to be logarithmically N -alternating

monotonic on an interval I if there exists some nonnegative integer N such that

inequality (2) holds for all 1 ≤ k ≤ N + 1 on I.

Definition 5. For some nonnegative integer N , a function f is called N -alternating

monotonic to α-power on an interval I if either f ≥ 0 and fα ∈ CN+1[I] for α > 0

or f > 0 and fα ∈ CN+1[I] for α < 0. In particular, a positive function f is said to

be reciprocally N -alternating monotonic on I if 1/f ∈ CN+1[I].

Definition 6. For some nonnegative integerN , a function f is said to be completely

monotonic to α-power on an interval I if either f ≥ 0 and fα ∈ C[I] for α > 0

or f > 0 and fα ∈ C[I] for α < 0. In particular, a positive function f is called

reciprocally completely monotonic on I if 1/f ∈ C[I].

The sets of logarithmically N -alternating monotonic functions, N -alternating

monotonic functions to α-power and completely monotonic functions to α-power

on an interval I are respectively denoted by LN+1[I], Cα
N+1[I] and Cα[I]. It is easy

to see that L∞[I] , limN→∞ LN [I] = L[I], Cα
∞[I] , limN→∞ Cα

N+1[I] = Cα[I].

In [20, 21, 22, 23] the following classes of functions are also defined:

Dα
N [I] = {f(x) > 0 | [fα(x)]′ ∈ CN−1[I], N ≥ 1, α < 0}, (3)

KN [I] = {f(x) | f ′(x) ∈ CN−1[I], N ≥ 1}, (4)

Dα[I] = Dα
∞[I] = lim

N→∞
Dα

N [I], α < 0, (5)

K[I] = K∞[I] = lim
N→∞

KN [I], (6)

T
[
[0,∞)

]
=
{
f(x)

∣∣∣∣ f(x) =
∫ x

0

ϕ(t) d t <∞, f(0) = 0, ϕ(t) ∈ C[(0,∞)]
}
. (7)

These classes of functions have the following inclusion relations for N ∈ N∪{∞}:

Dα
1 [I] = L1[I] ⊂ C1[I] = C1

1 [I], α < 0, (8)

Cα
N [I] ⊂ Cnα

N [I], α > 0, n ∈ N, (9)

T
[
[0,∞)

]
6= K

[
[0,∞)

]
, (10)

Dα
N [I] ⊂ Dβ

N [I], α < β < 0, (11)

Dα
N [I] ⊂ Cβ

N [I], α < 0, β > 0, (12)
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D−α
N [I] ⊂ LN [I] ⊂ Cα

N [I], α > 0, (13)

S ⊂ D−1[(0,∞)] ⊂ L[(0,∞)] ⊂ C[(0,∞)], (14)

Cα
N+1[I] ⊂ Cα

N [I], α > 0, (15)

Dα
N+1[I] ⊂ Dα

N [I], α < 0, (16)

LN+1[I] ⊂ LN [I]. (17)

Many basic properties of the classes of functions mentioned above were reproved,

extended, collected, corrected and established in [22], among other things.

In Section 2 of this paper, we will prove the following results about the class

LN [I] of logarithmically N -alternating monotonic functions, analogies of them have

recently been found for the class L[I] in [15, 16].

Theorem 1. For N ∈ N∪{∞}, if h(x) ∈ KN [I] and f ∈ LN [h(I)], then f
(
h(x)

)
∈

LN [I].

Theorem 2. Let N ∈ N ∪ {∞} and fi(x) ∈ LN [I] and αi ≥ 0 for 1 ≤ i ≤ n with

n ∈ N. Then
∏n

i=1[fi(x)]αi ∈ LN [I].

Theorem 3. Let N ∈ N and f(x) ∈ LN [I]. Then f(x)/f(x+ α) ∈ LN−1[J ] if and

only if α > 0, where J = I ∩ {x+ α ∈ I}.

Let r ≥ 2 be an integer. Canfield proved in [4] that the sequence
(
rm
m

)√
m/c1c

m
2

is increasing with m ≥ 1, where c1 =
√
r/2π(r − 1) , c2 = rr/(r − 1)r−1, and

the quantity c1c
m
2 /
√
m is the asymptotic value of

(
rm
m

)
. Motivated by Canfield’s

problem, Clark and Ismail obtained in [5] that the function

G(x) =
∏n

k=1 Γ(akx+ 1)
Γ(sx+ 1)(2πx)(n−1)/2

ssx+1/2∏n
k=1 a

akx+1/2
k

(18)

is decreasing in (0,∞), where ai > 0 for 1 ≤ i ≤ n, s =
∑n

k=1 ak, and Γ(x) denotes

the classical Euler gamma function defined by Γ(z) =
∫∞
0
tz−1e−t d t for Re z > 0.

The gamma function Γ(x), the psi or digamma function ψ(x) = [ln Γ(x)]′ =

Γ′(x)/Γ(x) and the polygamma functions ψ(i)(x) for i ∈ N are a class of the most

important special functions [1, 24, 25] and have much extensive applications in

many branches, for example, statistics, physics, engineering, and other mathemat-

ical sciences.
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As a generalization of monotonicity result for the function G(x), we shall show

in Section 2 the following

Theorem 4. Let ai > 0 for 1 ≤ i ≤ n ∈ N and s =
∑n

k=1 ak. If
∑n

i=1 a
k
i ≥ sk

holds for some k ∈ N, then G(x) ∈ Lk[(0,∞)], that is, the function G(x) defined

by (18) is logarithmically k-alternating monotonic in the interval (0,∞).

In [5] it is shown that the function

Fa,b(x) =
[Γ(x+ b)]m

xm/2Γ(mx+ a)
(19)

is decreasing for x ≥ max{0, b− 2, (b− 2a)/(2m− 3)}, where b > a > 0 and m ≥ 2

is a positive integer.

As a generalization of the monotonicity result for the function Fa,b(x), we shall

show in Section 2 the following

Theorem 5. Let a and b be positive numbers and

τ(a, b) = inf
u∈(0,1]

{
u−a − u1−a + 2ub−a

}
. (20)

Further, let m ≥ 2 and k ∈ N be positive integers and

λ(a, b, k,m) =
(k − 1) lnm+ ln 2− ln τ(a, b)

m− 1
. (21)

Then Fa,b(x) ∈ Lk

[(
λ(a, b, k,m),∞

)]
∩ Lk[(0,∞)]. In particular,

Fa,1(x) ∈



Lk

[[
(k − 1) lnm
m− 1

,∞
)]

for a >
1
2
,

Lk

[[
(k − 1) lnm+ ln 2 + ln[aa(1− a)1−a]

m− 1
,∞
)]

for 0 < a ≤ 1
2
;

(22)

and

Fa,b(x) ∈



Lk

[(
(k − 1) lnm+ ln 2

m− 1
,∞
)]

for 0 < b < 1,

Lk

 (k − 1) lnm+ ln 2− ln
[
1 + (1− b)

(
2bb
)1/(1−b)

]
m− 1

,∞


for b > 1.

(23)
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Recall the notation

(a; q)m =
m∏

k=1

(
1− aqk−1

)
(24)

for m ∈ N ∪ {∞} and that, when 0 < q < 1, the q-gamma function is defined [2, 7]

by

Γq(z) = (1− q)1−z
∞∏

i=0

1− qi+1

1− qz+i
. (25)

It is well known that q-gamma function is the q-analogue of the gamma function,

that is, limq→1− Γq(z) = Γ(z).

Let ak > 0 for 1 ≤ k ≤ n and s =
∑n

i=1 ak. Define

H(x) =
∏n

k=1 Γq(akx+ 1)
Γq(sx+ 1)[(q; q)∞]n−1

(26)

for x ∈ (0,∞). In [5] it was proved that the function H(x) decreases to 1 on (0,∞).

As a generalization of this result, the following logarithmically N -alternating

monotonic property for the function H(x) defined by (26) is obtained.

Theorem 6. Let ak > 0 for 1 ≤ k ≤ n and s =
∑n

i=1 ak. If
∑n

i=1 a
k
i ≥ sk holds

for some k ∈ N, then H(x) ∈ Lk[(0,∞)].

2. Proofs of theorems

Proof of Theorem 1. Since f ∈ LN [h(I)] is equivalent to −f ′/f ∈ CN−1[h(I)],

where C0[I] denote the class of positive functions on the interval I. From the condi-

tion h(x) ∈ KN [I] which means (−1)ih(i+1) ≥ 0 for 0 ≤ i ≤ N−1, KN [I] ⊂ KN−1[I]

which can be deduced readily from (4) and (15), and [22, Theorem A] which states

that if h ∈ KN [I] and f ∈ CN [h(I)] then f(h) ∈ CN [I] for N ∈ N ∪ {0,∞}, it

is easy to see that −f ′(h)/f(h) ∈ CN−1[I], that is, (−1)i[−f ′(h)/f(h)](i) ≥ 0 for

0 ≤ i ≤ N − 1. Therefore, directly calculating gives

(−1)k
[
ln f

(
h(x)

)](k) = (−1)k

[
f ′
(
h(x)

)
f
(
h(x)

) h′(x)](k−1)

= (−1)k
k−1∑
i=0

(
k − 1
i

)[
f ′
(
h(x)

)
f
(
h(x)

) ](i)h(k−i)(x)

=
k−1∑
i=0

(
k − 1
i

){
(−1)i

[
−
f ′
(
h(x)

)
f
(
h(x)

) ](i)}[(−1)k−i−1h(k−i)(x)
]

≥ 0

(27)
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for 0 ≤ k ≤ N . The proof is complete. �

Proof of Theorem 2. By standard arguments, it follows that

(−1)k

[
ln

n∏
i=1

(
fi(x)

)αi

](k)

=
n∑

i=1

αi

{
(−1)k[ln fi(x)](k)

}
≥ 0 (28)

for 1 ≤ k ≤ N , since fi(x) ∈ LN [I], that is, (−1)k[ln fi(x)](k) ≥ 0 hold for 1 ≤ k ≤

N and 1 ≤ i ≤ n, and αi ≥ 0 for 1 ≤ i ≤ n. The proof is complete. �

Proof of Theorem 3. From f(x) ∈ LN [I], it follows that (−1)k[ln f(x)](k) ≥ 0

for 1 ≤ k ≤ N . This is equivalent to [ln f(x)](2i) ≥ 0 for 1 ≤ 2i ≤ N and

[ln f(x)](2i−1) ≤ 0 for 1 ≤ 2i − 1 ≤ N , and then [ln f(x)](2i) is decreasing for 1 ≤

2i ≤ N − 1 and [ln f(x)](2i−1) is increasing for 1 ≤ 2i− 1 ≤ N − 1. Therefore, from

α > 0 it follows that {ln[f(x)/f(x+ α)]}(2i) = [ln f(x)](2i) − [ln f(x + α)](2i) ≥ 0

for 1 ≤ 2i ≤ N − 1 and {ln[f(x)/f(x+ α)]}(2i−1) ≤ 0 for 1 ≤ 2i− 1 ≤ N − 1, that

is, (−1)i{ln[f(x)/f(x+ α)]}(i) ≥ 0 for 1 ≤ i ≤ N − 1. The proof is complete. �

Proof of Theorem 4. Taking the logarithm of G(x), using the first Binet’s formula

for ln Γ(x)

ln Γ(x+ 1) =
(
x+

1
2

)
lnx− x+

ln(2π)
2

+
∫ ∞

0

[
1
2
− 1
t

+
1

et − 1

]
e−xt

t
d t (29)

which can be found in [24] and [25, p. 106], and differentiating successively gives

(−1)`[lnG(x)](`) =
∫ ∞

0

t`−1

[
1
2
− 1
t

+
1

et − 1

][ n∑
i=1

a`
ie
−aixt − s`e−sxt

]
d t (30)

for any nonnegative integer `.

Since the derivative δ′(t) of the function

δ(t) =
1
2
− 1
t

+
1

et − 1
(31)

is decreasing and positive in (0,∞), see [13], thus it is easy to obtain that δ(t) is

increasing and positive in (0,∞), see also [5]. Therefore, it is sufficient to prove

n∑
i=1

ak
i e
−aiu ≥ ske−su (32)

for all u = xt ≥ 0, which is equivalent to

n∑
i=1

ak
i exp

[(∑
j 6=i

aj

)
u

]
≥ sk. (33)
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It is obvious that inequality (33) holds if

n∑
i=1

ak
i ≥ sk =

(
n∑

i=1

ai

)k

, (34)

which can be rewritten as

n∑
i=1

(
ai∑n

j=1 aj

)k

≥ 1. (35)

Since ai

/∑n
j=1 aj < 1, then for all 1 ≤ p < k

n∑
i=1

(
ai∑n

j=1 aj

)p

>
n∑

i=1

(
ai∑n

j=1 aj

)k

≥ 1. (36)

This implies (−1)q[lnG(x)](q) ≥ 0 for all 1 ≤ q ≤ k. The proof is complete. �

Proof of Theorem 5. It is well known [1, 24, 25] that for x > 0 and r > 0

1
xr

=
1

Γ(r)

∫ ∞

0

tr−1e−xt d t. (37)

The psi and polygamma functions can be expressed [1, 24, 25] as

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
d t (38)

and

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t, k ∈ N. (39)

Taking the logarithm of F (x), differentiating with respect to x, utilizing formulas

(37), (38) and (39), and simplifying yields

[lnF (x)](k) = m

[
ψ(k−1)(x+ b)−mk−1ψ(k−1)(mx+ a) +

(−1)k(k − 1)!
2xk

]
= (−1)km

∫ ∞

0

tk−1

(
1
2
− mk−1e−[(m−1)x+a]t − e−bt

1− e−1

)
e−xt d t

(40)

for k ∈ N.

In order that (−1)k[lnF (x)](k) ≥ 0, it is sufficient to show

1
2
− mk−1e−[(m−1)x+a]t − e−bt

1− e−1
≥ 0 (41)
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for all t ≥ 0, which is equivalent to

x ≥ 1
m− 1

[
(k − 1) lnm− ln

1− e−t + 2e−bt

2e−at

]
=

1
m− 1

[
(k − 1) lnm+ ln 2− ln

1− u+ 2ub

ua

]
=

(k − 1) lnm+ ln 2 + a lnu− ln
(
1− u+ 2ub

)
m− 1

(42)

for all t ≥ 0 and 0 < u = e−t ≤ 1. The first conclusion follows.

If b = 1 and a > 1/2, the function a lnu− ln(1+u) ≤ − ln 2 is increasing in (0, 1];

if b = 1 and 0 < a ≤ 1/2, the function a lnu−ln(1+u) for u ∈ (0, 1] has a maximum

ln
[
aa(1−a)1−a

]
. By calculus, it is easy to show that the function ln

[
xx(1−x)1−x

]
is decreasing in x ∈ (0, 1/2], and then 0 > ln

[
aa(1−a)1−a

]
≥ − ln 2 for 0 < a ≤ 1/2.

This implies the second conclusion (22).

If b 6= 1, then inequality (42) is valid if

x ≥
(k − 1) lnm+ ln 2− ln

(
1− u+ 2ub

)
m− 1

(43)

for u ∈ (0, 1]. It is easy to obtain that the function 2ub − u has a unique critical

point which is a minimum point (2b)1/(1−b) in (0, 1] if b > 1, has an unique critical

point which is a maximum point (2b)1/(1−b) in (0, 1] if 0 < b ≤ 1/2, and is increasing

in (0, 1] if 1 > b > 1/2. Therefore, if 0 < b < 1 then ln
(
1− u+ 2ub

)
> 0, if b > 1

then ln
(
1− u+ 2ub

)
≥ ln

[
1+2(2b)b/(1−b)− (2b)1/(1−b)

]
in (0, 1]. This means that

(−1)k[lnF (x)](k) ≥ 0 holds if

x


>

(k − 1) lnm+ ln 2
m− 1

for 0 < b < 1,

≥
(k − 1) lnm+ ln 2− ln

[
1 + (1− b)

(
2bb
)1/(1−b)

]
m− 1

for b > 1.

(44)

The proof is complete. �

Proof of Theorem 6. Straightforward computation yields

[lnH(x)]′ = (ln q)
∞∑

i=1

[
n∑

j=1

ajq
i+ajx

1− qi+ajx
− sqi+sx

1− qi+sx

]

= (ln q)
∞∑

i=1

∞∑
j=1

[
n∑

k=1

akq
(j+akx)i − sq(j+sx)i

] (45)
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and

[lnH(x)](`) = (ln q)`
∞∑

i=1

i`−1
∞∑

j=1

[
n∑

k=1

a`
kq

(j+akx)i − s`q(j+sx)i

]
(46)

for ` ∈ N. Thus it suffices to show that
n∑

k=1

a`
kq

(j+akx)i ≥ s`q(j+sx)i (47)

which is equivalent to
n∑

k=1

a`
kq

akix ≥ s`qsix. (48)

Furthermore, it is clear that inequality (48) is equivalent to (32), which has already

been established in the proof of Theorem 4. The proof is complete. �
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