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SOME MONOTONICITY PROPERTIES OF THE q-GAMMA FUNCTION

PENG GAO

Abstract. We prove some properties of completely monotonic functions and apply them to obtain
new results on gamma and q-gamma functions.

1. Introduction

The q-gamma function is defined for positive real numbers x and q 6= 1 by

Γq(x) = (1− q)1−x
∞∏

n=0

1− qn+1

1− qn+x
, 0 < q < 1;

Γq(x) = (q − 1)1−xq
1
2
x(x−1)

∞∏
n=0

1− q−(n+1)

1− q−(n+x)
, q > 1.

We note here[11]

lim
q→1−

Γq(x) = Γ(x) =
∫ ∞

0
txe−tdt

t
,

the well-known Euler’s gamma function. From the definition, for x positive and 0 < q < 1,

Γ1/q(x) = q(x−1)(1−x/2)Γq(x),

we see that limq→1 Γq(x) = Γ(x). For historical remarks on gamma and q-gamma functions, we
refer the reader to [1], [2] and [11].

There exists an extensive and rich literature on inequalities for the gamma and q-gamma func-
tions. For the recent developments in this area, we refer the reader to the articles [1]-[3], [8], [15]
and the references therein. Many of these inequalities follow from the monotonicity properties of
functions which are closely related to Γ(resp. Γq) and its logarithmic derivative ψ(resp. ψq). Here
we recall that a function f(x) is said to be absolutely monotonic on (a, b) if it has derivatives of all
orders and f (k)(x) ≥ 0, x ∈ (a, b), k ∈ N. A function f(x) is said to be completely monotonic on
(a, b) if it has derivatives of all orders and (−1)kf (k)(x) ≥ 0, x ∈ (a, b), k ∈ N.

We note here that limq→1 ψq(x) = ψ(x)(see [12]) and that ψ′ and ψ′q are completely monotonic
functions on (0,∞)(see [3], [9]). Thus, one expects to deduce results on gamma and q-gamma
functions from properties of completely monotonic functions, by applying them to functions related
to ψ′ or ψ′q. It is our goal in this paper to obtain some results on gamma and q-gamma functions
via this approach. Our key tool is Lemma 2.2 below and we first illustrate here three examples
which only use the fact that ψ′(resp. ψ′q) is positive and decreasing on (0,∞). For instance, for
positive numbers a, x, y, Lemma 2.2 implies

ψ(a) + ψ(a+ x+ y) ≤ ψ(a+ x) + ψ(a+ y),

which is discussed in [4, p. 59]. Similarly, one checks easily that Γα(x) is convex on (0,∞) for
α ≥ 0. Hence it follows from Lemma 2.2 that for positive numbers x, y, z, α ≥ 0,

Γα(x+ y) + Γα(x+ z) ≤ Γα(x) + Γα(x+ y + z),

Date: August 1, 2005.
1991 Mathematics Subject Classification. Primary 33D05.
Key words and phrases. Completely monotonic function, q-gamma function.

1



2 PENG GAO

which is (4.3) in [5]. As another example, we note Alzer[3, Lemma 2.4] has shown that ψ(ex) is
strictly concave on R. It follows from this and Lemma 2.2 that for positive numbers x, y and real
numbers r, s with r + s 6= 0,

ψ(x) + ψ(y) ≤ ψ(E(r, s;x, y)) + ψ(E(−r,−s;x, y)) ≤ 2ψ(
√
xy),(1.1)

ψ(x) + ψ(y) ≤ ψ(G(r, s;x, y)) + ψ(G(−r,−s;x, y)) ≤ 2ψ(
√
xy).

Other than the cases of equalities, the above is Theorem 3.7 in [3]. We shall only need to use the
inequality ψ(x) +ψ(y) ≤ 2ψ(

√
xy) in our subsequent discussions, so we will omit the definitions of

E(r, s;x, y) and G(r, s;x, y) here and refer the reader to [3].

2. Lemmas

Lemma 2.1. ([1, Lemma 1]) If f ′(x) is completely monotonic on (0,∞), then exp(−f(x)) is also
completely monotonic on (0,∞).

Lemma 2.2. Let ai and bi (i = 1, . . . , n) be real numbers such that 0 < a1 ≤ · · · ≤ an, 0 < b1 ≤
· · · ≤ bn, and

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n. If the function f(x) is decreasing and convex on

(0,∞), then
n∑

i=1

f(bi) ≤
n∑

i=1

f(ai).

If
∑n

i=1 ai =
∑n

i=1 bi, then one only needs f(x) being convex for the above inequality to hold.

The above lemma is similar to Lemma 2 in [1], except here we only assume ai, bi’s to be positive
and f(x) defined on (0,∞). We leave the proof to the reader by pointing out that it follows from
the theory of majorization, for example, see the discussions in Chap. 1, §28− §30 of [6].

Lemma 2.3. (Hadamard’s inequality) Let f(x) be a convex function on [a, b], then

f(
a+ b

2
) ≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

Lemma 2.4. ([2, Lemma 2.1]) Let a > 0, b > 0 and r be real numbers with a 6= b, and let

Lr(a, b) = (
ar − br

r(a− b)
)1/(r−1) (r 6= 0, 1),

L0(a, b) =
a− b

log a− log b
,

L1(a, b) =
1
e
(
aa

bb
)1/(a−b).

The function r 7→ Lr(a, b) is strictly increasing on R.

3. Main Results

Theorem 3.1. Let ai and bi (i = 1, . . . , n) be real numbers such that 0 ≤ a1 ≤ · · · ≤ an, 0 ≤ b1 ≤
· · · ≤ bn, and

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n. If f ′′(x) is completely monotonic on (0,∞), then

exp
( n∑

i=1

(f(x+ ai)− f(x+ bi))
)

is completely monotonic on (0,∞).
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Proof. By Lemma 2.1, it suffices to show that

−
n∑

i=1

(
f ′(x+ ai)− f ′(x+ bi)

)
is completely monotonic on (0,∞) or for k ≥ 1,

(−1)k
n∑

i=1

f (k)(x+ ai) ≥ (−1)k
n∑

i=1

f (k)(x+ bi).

By Lemma 2.2, it suffices to show that (−1)kf (k)(x) is decreasing and convex on (0,∞) or equiva-
lently, (−1)kf (k+1)(x) ≤ 0 and (−1)kf (k+2)(x) ≥ 0 for k ≥ 1. The last two inequalities hold since
we assume that f ′′(x) is completely monotonic on (0,∞). This completes the proof. �

As a direct consequence of Theorem 3.1, we now generalize a result of Alzer[1, Theorem 10], we
note here one can also put our next result into a form similar to that of Theorem 4.1 in [8], we
leave this to the reader.

Corollary 3.1. Let ai and bi (i = 1, . . . , n) be real numbers such that 0 ≤ a1 ≤ · · · ≤ an,
0 ≤ b1 ≤ · · · ≤ bn, and

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n. Then,

x 7→
n∏

i=1

Γq(x+ ai)
Γq(x+ bi)

is completely monotonic on (0,∞).

Proof. Apply Theorem 3.1 to f(x) = log Γq(x) and note that f ′′(x) = ψ′q(x) is completely monotonic
on (0,∞) and this completes the proof. �

Theorem 3.2. Let f ′′(x) be completely monotonic on (0,∞), then for 0 ≤ s ≤ 1, the functions

x 7→ exp
(
−

(
f(x+ 1)− f(x+ s)− (1− s)f ′(x+

1 + s

2
)
))
,

x 7→ exp
(
f(x+ 1)− f(x+ s)− (1− s)

2
(f ′(x+ 1) + f ′(x+ s))

)
are completely monotonic on (0,∞).

Proof. We may assume 0 ≤ s < 1. We will prove the first assertion and the second one can be
shown similarly. By Lemma 2.1, it suffices to show that

f ′(x+ 1)− f ′(x+ s)− (1− s)f ′′(x+
1 + s

2
)

is completely monotonic on (0,∞) or for k ≥ 1,

1
1− s

∫ x+1

x+s
(−1)k+1f (k+1)(t)dt ≥ (−1)k+1f (k+1)(x+

1 + s

2
).

The last inequality holds by Lemma 2.3 and our assumption that f ′′(x) is completely monotonic
on (0,∞). This completes the proof. �

Corollary 3.2. For 0 ≤ s ≤ 1, the functions

x 7→ Γq(x+ s)
Γq(x+ 1)

exp
(
(1− s)ψq(x+

1 + s

2
)
)
,

x 7→ Γq(x+ 1)
Γq(x+ s)

exp
(
− (1− s)

2
(ψq(x+ 1) + ψq(x+ s))

)
are completely monotonic on (0,∞).
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Proof. Apply Theorem 3.2 to f(x) = log Γq(x) and note that f ′′(x) = ψ′q(x) is completely monotonic
on (0,∞) and this completes the proof. �

By applying Lemma 2.3 to f(x) = −ψq(x), we obtain

Theorem 3.3. For positive x and 0 ≤ s ≤ 1,

exp
((1− s)

2
(ψq(x+ 1) + ψq(x+ s))

)
≤ Γq(x+ 1)

Γq(x+ s)
≤ exp

(
(1− s)ψq(x+

1 + s

2
)
)
.

The upper bound in Theorem 3.3 is due to Ismail and Muldoon[8]. Our proof here is similar to
that of Corollary 3 in [13]. We further note the following integral analogue of Theorem 3.15 in [3]:

ψ(L0(b, a)) ≤
1

b− a

∫ b

a
ψ(x)dx ≤ ψ(L1(b, a)), b > a > 0.

It follows from this that for positive x and 0 ≤ s ≤ 1,

exp
(
(1− s)ψ(L0(x+ 1, x+ s))

)
≤ Γ(x+ 1)

Γ(x+ s)
≤ exp

(
(1− s)ψ(L1(x+ 1, x+ s))

)
.

By Lemma 2.4, observing that L−1(x+1, x+s) =
√

(x+ 1)(x+ s) and L2(x+1, x+s) = x+(1+s)/2,
we obtain

(3.1) exp
(
(1− s)ψ(

√
(x+ 1)(x+ s))

)
≤ Γ(x+ 1)

Γ(x+ s)
≤ exp

(
(1− s)ψ(x+ (1 + s)/2)

)
.

Note by (1.1),
ψ(x+ 1) + ψ(x+ s) ≤ 2ψ(

√
(x+ 1)(x+ s)),

also note that ψ(x) is an increasing function on (0,∞) and
√

(x+ 1)(x+ s) ≥ x + s1/2, we see
that the inequalities in (3.1) refine the case q → 1 in Theorem 3.3 and the following result of
Kershaw[10], which states that for positive x and 0 ≤ s ≤ 1,

exp
((1− s)

2
ψ(x+ s1/2)

)
≤ Γ(x+ 1)

Γ(x+ s)
≤ exp

(
(1− s)ψ(x+

1 + s

2
)
)
.

We now show the lower bound above and the corresponding one of the case q → 1 in Theorem
3.3 are not comparable in general(see p. 856, [7] for a similar discussion). In fact, on letting x→ 0
and by Theorem 3.7 of [3], we have

ψ(1) + ψ(s) < 2ψ(s1/2), 0 < s < 1.

On the other hand, using the well-known series representation(see, for example, [8, (1.8)]):

ψ(x) = −γ +
∞∑

n=0

(
1

n+ 1
− 1
x+ n

)

with γ = 0.57721 . . . denoting Euler’s constant, we obtain for x > 1,

ψ(x+ 1) + ψ(x+ s)− 2ψ(x+ s1/2) =
∞∑

n=0

(1− s1/2)2(x+ n− s1/2)
(x+ n+ 1)(x+ n+ s)(x+ n+ s1/2)

> 0.

We end our paper by answering a question of Qi in [14], stated as: If f(x) is an absolutely or
completely monotonic function on the interval (−∞,+∞), then the following inequality holds for
0 ≤ x < +∞ or reverses for −∞ < x ≤ 0:

E(x; f) := f2(x)f
′′′

(x)− 3f(x)f
′
(x)f

′′
(x) + 2(f

′
(x))3 ≤ 0.

We point out here in general the above assertion is not true. As one can check easily that for any
constant a > 0, g(x) = ex+a is an absolutely monotonic function on (−∞,+∞) while h(x) = e−x+a
is a completely monotonic function on (−∞,+∞). However, E(0; g) = −E(0;h) = a(a− 1) which
shows the falsity of the above assertion.
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