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TRAPEZOIDAL TYPE INEQUALITIES FOR n—TIME
DIFFERENTIABLE FUNCTIONS

S.S. DRAGOMIR AND A. SOFO

ABSTRACT. In this paper, by utilising a result given by Fink [2], we obtain
some new results relating to the trapezoidal inequality and some of its gener-
alisations for n—time differentiable functions.

1. INTRODUCTION

The following result is known in the literature as Ostrowski’s inequality [3], p.
468].

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) with the
property that |f' (t)| < M for allt € (a,b). Then

b x_LH'2
f@) = 5= [ 1 < i+((b_§)2) ](b_am.

The Ostrowski inequality has been generalised in a number of different ways, see
[3] and [1].
Fink [2] also obtained the following result for n—time differentiable functions.

Theorem 2. Let {1 (t) be absolutely continuous on [a,b] with f™ (t) € L, (a,b)
and let

(L1) Fo()="" k [f(k—ﬂ (a) (z — ) — FO=D) () (& — b)k‘| |

k! -
k=1,2,...,n—1;
then
1 n—1 1 b
w2 D@+ DA - [ f
k=1 a
1
r—a)"” +1 )" +17g
o qn!;gg) L (@+1,(n=1) g+ 1) [[f™] . for feLyla,b];
1 1 1.
< oDt max{(@—a)",(b-n)") p>1 o +5=1
B B e =l LA Y for fé€Lilab];
(e—a) b=y ] || || .
[ n(n+1)!(bia)) i| ||f( )HDQ’ fOT f c Loo [a,b],
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where B («, ) is Euler’s Beta function,

(L

1= esssup ‘f(”) (t)‘ < 0.

=

p

Hf<”> f(”)(t)’pdt> S p>1 and

(1.3) H Fo

Remark 1. The result above on the infinite norm was given by Milovanovi¢ and
Pecarié in 1976 (see [3, p. 468]).

Note that for n = 1 and the infinite norm, Theorem [2| reduces to Theorem

In the next section we develop an integral equality that will permit us to obtain
bounds for the error estimate in a generalised trapezoid formula. The new results
complement some of the earlier inequalities related to the trapezoidal rule reported
in [1J

2. THE RESULTS
The following generalisation of the trapezoid formula holds:

Theorem 3. Let f : [a,b] — R be a mapping such that its (n —1)™ derivative
F=1) s absolutely continuous on [a,b] . Then we have the equality

L[f@+f)  =m-—kb-a"
<2-1>n[ 2 )+;( i
k=1 (@ —1)Ft pk-1) b
X{f 1()+(21) ! l(b)H_bia/f(y)dy
b
s [ 000 [0 o e 0 @

Proof. We may use Fink’s identity [2] which states

b
—bia/ fy)dy
1

b
= [ (@ K () £
o | T R ) 0

@mlpm+iaw
k=1

n

nl
where
t—a if a<t<ax<b
K (t,x) :=
t—b if a<zx<t<b

and Fj, (z) is defined by (L.1).
If in (2.2) we put & = a, then we obtain

1 b
e [ Wy

_ b
- n!((bl_) a) /a (t—a)"" (b—1t) f) (1) dt,

(2. iP@+Zﬂ@
k=1
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where

()" (n—k) fFEDB) (0—a)

Fi (a) = Kl

Similarly, if in (2.2)) we put x = b, we get

(2.4) %

FO)+ SR (b)
k=1

b
5o [t
—# ’ _p\n—Ll (n)
- | e T e s v

where

(n—k) f* (@) (b—a)""
k! ’

Adding (2.3) to (2.4) and dividing by 2, we have

Fy (b) =

1
2n

F@)+ 0+ (Fe(a) + Fe (b))
k=1

1 b
s [ Tway
a
Y R e XY
2n!(b—a) J, ’
replacing Fy, (a) and Fy, (b) we obtain identity (2.1]), hence the theorem is proved. I
Remark 2. (a) Forn =1, we recapture the known identity,

es) L0 g - ()] row

(b) For n = 2, we deduce the equality below, which is also well known in the
literature,

a b b
PO IO o [ 1wt = s [ =001

“soa [ |(47) - (- (5) ] roa

(¢) For n = 3, we have some extra terms involving the first derivative at the
end points, namely:

(2.6)

—a b
en L IO 2oty o - [ i

_ 6(b{a) /ab(t—a)(b—t) (“‘2”’ —t> £ () dt.
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(d) Finally, for n = 4, we have the following
(b—a)

482 —a/f

(2.8)

+ [f" (a) + £ (b

b
:m/ (t_a) (b_t) |:(b—t)2+(t—a)2:| f'(4) (t)dt

:M(bl_a)/ab(t—a)(b—t) Kt—“;b)Z(b;aﬂ SO (¢) dt.

The following inequalities can now be stated.

Theorem 4. Let f : [a,b] — R be a mapping such that F=1 s absolutely contin-
uous on [a,b]. Define

T (a,b,n)
-1 [f<>+f<b> I oI {f““’ () + (-1 740 (1) H
n 2 Pt k! 2
i [rwa
then
(2.9) [T (a,b,n)|
e gl g+ - g+ D /O], for 1+io
p>1, q¢>1
< ig(;ig;jm 220 =21+ (=) @] |, for p=2,0=2
mes vl FARI N

where B (x,y) is the Beta function and Hf(") Hp, Hf(") Hoo are as defined in .
Proof. From and the definition of T (a,b,n) we have

b
(2.10) IT (a,b,n)] = m/ Y () £ (1) dt|
where
(2.11) Y(#):=(t—a)(b—)"""+(=1)"(t—a)" " (b—1t).

By Hoélder’s inequality

b q b P %
(212) |T<a,b,n>s2n!<;_a></a |Y<t>|th> (/ 7 ) dt) ,

1 1
7+7:17q>17p>1'
p g

|=
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Now, let us provide some upper bounds for the integral: ff Y (t)|*dt. For real o
and 3 and ¢ > 1, we have the elementary inequality

(2.13) lo+ 8|7 <2971 (|| + |B]9) .
Utilising (2.13]), we obtain

b b
/ \Y(t)|th§2q_1/ (= a)" 0= " 4 (= )" (b~ 1)7]

=20(b—a)""" B(g+1,(n—1)g+1)

by the substitution w = z:—g and the symmetry of the Beta function,

1
B(a,p) =B (B,a) = / b (1—)tay, o8> 0.
0
Also

b q
(/ |Y(t)|th> g2(b—a)"+EB%(q+1,(n—1)q+1)
so from (2.12]) we deduce

(b—a)" s

T (a,bo)| < 2

Bi(g+1,(n—1)g+1) |1

P
and the first part of the theorem is proved.
For the Euclidean norm (p = 2, ¢ = 2), we can compute exactly

/ab Y (¢)] dt

_ /ab
- /ab ((t —a)? b=t 2(-1)"(t—a)"(b—t)"+ (t—a)* *(b— t)2> dat
=20b—a)” BB, 2n—1)+ (-1)"B(n+1,n+1)]
= m [2 (2n —2)! + (—1)" (n!)ﬂ .
From
T (0, b, n)| < —2— a) "t

T V2@2n+ 1D)in!

and the second part of the theorem is proved.
For the third part of the theorem, observe that

/ab|Y(t)|dt_/a

b
b b
g/ (tfa)(bft)"*ldw/ (t—a)" " (b—t)dt

2(b—a)"t
n(n+1)

t—a)(b—)"""+ (1) (t—a)" " (b—1t) ®

1
2

220 =2+ (=) ()] | 5

2

(t—a)(b—t)" P+ (=) (t—a)"  (b— t)| dt
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From (212
(b—=a)" || ;n)
l < - 7
7 (a,b,m)] < n(n+1)! Hf

the third part of the theorem is proved, hence Theorem [4]is proved. I

)
e}

For the 1—norm we can also delineate the following theorem.

Theorem 5. Let f : [a,b] — R be a mapping such that F=1 s absolutely contin-
uwous on [a,b] .

(i) Forn even, let n =2k, k > 1, then

rrigx { (t*7a)(b7t*)2k—1+(t*7a)2k—1(b*t*)} ||f(2k:)“1 . for k>2;

202k (b—a)

T (a,b,2k)| < { bze |||, for k=1;

G |79, for k=2;

where t* € (a, a'QH’] s a solution of the polynomial equation
b t)2k—1 . a)2k—1
+(2k—1) [(t — a2 (b—t)— (t—a) (b t)QH} =0.
(ii) Forn odd, letn=2k+1, k>0

max{<T—a)<b—r)2k—<T—a)2’“<b—7>} 1fCR, for k=1

p 2(2k+1)!(b—a)
IT (a,b, 2k +1)| <

Il for k=0,n=1

where T € (a, C‘T*'b] is a solution of the polynomial equation

(t—a)® + (b—t)* — 2%k [(t —a)(b—t)* T (t—a)* T (b t)} —0.
The following two lemmas will be useful in the proof of Theorem [f]

Lemma 1. Letb > a, k is an integer and t € [a,b]. Define M (t, k) == (t — a) (b— t)** !
+(t—a)® " (b—t), then M (t, k) has ezactly two zeros as a function of t on [a,b].

Proof. Observe that
M (t,k) = —(t —a) (t —b) [(t ey 5)2’“—2} .
k-1]2 k-1]?
Since for ¢ € (a,b), [(t —a) ] + [(t —b) } > 0, hence M (t,k) = 0 has the
only real solutions t =a and t = b. i

Lemma 2. Let b > a, k is an integer and t € [a,b] . Define
P(tk)=(t—a)(b—t)" +(t—a)* (b—1),

then P (t,k) has exactly three zeros in [a, b).
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Proof. We have
Ptk)=(t—a)(t—b) [(t B (- b)%—l} .
Observe that
P(a,k)=P(bk)=0.

Since

(t—a)™ ' (t =) = (2t —a+b) [(t —a)* P (b t)ZH]
and

t—a)* P+ t-a) P 0-t) - +t—a) -+ 0-1)">0
for ¢ € [a,b], hence the third solution of P (¢,k) = 0 for ¢ € [a,b] is t = “F2. |}
Proof of Theorem[5 (i) Consider the case of n even, let n = 2k, k > 1 and denote

Y := sup ‘(t —a)(b-)* "+t —a)* (b t)‘ .
t€[a,b]

For M (t, k) defined above, simple calculations show that
M/ (t, k) _ (b _ t)2k_1 _ (t _ a)Qk:—l
2k —1) [(t —a)* TP t) — (t—a) (b— t)%ﬂ :

M" (t,k) = —2(2k — 1) {(t S Ry (- t)2k72}
+(2k—-2)(2k-1) [(t —a)(b— t)2k—3 . a)gk_g b t)} 7

and

2k—2
M (a,k) = M (b, k) = 0; M(a;b,k)—2<b;a> >0

_ _ b
M (a,k)=0b—-a)** >0, M (bk)=—-0b-0a)’*"<o0, M'<“; ,k>:0,

a+b b—a\ 22
M”( ,k>:2(2k—1)(2k—2)< . ) >0 for k> 2.

2

The local extrema for the function M (-, k) are the real numbers t* € [a, ‘%b] that
are solutions of the polynomial equation

b—t)* " = (t—a)*!
+(2k—1) [(t — a2 (b—t)— (t—a) (b t)QH} = 0.
Therefore, by LemmalT]
Y = max {(t* —a) (b— ) — )P (b t*)} >0
hence

(t—a) b=t (=0 T (-t
I (a,5,2k)] < H%?i‘x{ 2R (b a) 721,

for k > 2.
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For the two special cases k = 1, (n = 2), we have
b—a
T(a,b,2)] < 22 H <2>H
7 (a0,2)] < " )
and for k =2, (n=4)

)< i ]

(ii) When n is odd, let n = 2k + 1, k > 0, and denote

Z:= sup )(t— a) (b— )% — (t —a)® (b — t)‘ .
t€la,b]

L .

With P (t, k) defined above in Lemma 2} we have
P (tk)=(t—a) + (b—t)%* — 2% [(t —a)(b—t)F T (t—a)? (b t)} :

P(a,k)P(b,k)P(a;b,k> =0,

P'(a,k) =P (bk) = (b—a)** >0,

b b_ 2k
p/<a—2’_,k>=2(1—2k)< 2a> <0, for k>1,

so there exists at least one point 7 € (a, GTH’) such that

P(r.k):=(r—a)(b—7)* = (r—a)* (b—7) > 0.

One can realise that the local extrema for P (-, k) are the real numbers T € (a, 4$2]
that are solutions of the polynomial equation

(t—a)* + b - =2k [t -a) -+ - b -1)] =0.
Now, by Lemma 2]
7 = max {(T —a)(b— 7')%71 —(r— a)2k71 (b— 7’)} >0

T

hence
2k—1
—(

T (a,b,2k)| < max { (r—a)(b—7) T—a)* (b 7) } Hf(2k+1)H .

2(2k+ 1) (b—a)
For the trivial case k =0 (n = 1), we have
1
ACRRIERITT
hence Theorem [f]is proved. I

3. SOME EXAMPLES

In this section we give some examples that highlight Theorems [4] and
(i) For n =4, let
fla)+f®) b-a

T (a,b,4) == 5 + 5 [f' (@) = f7 (V)]

—a)? b
@ o= [ rwa
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then
G-t 1 3g £ 1) SO L, la.b
24 (q+ ) q+ )Hf ||pv OI‘fG p[av]a
pa>1, L+ =1

e
Tan <] v 17Ol for f € La[a,b];

Lo 1|79, for f € Lo [a,b];

LD 1@, for f € Ly[a,b].

(ii) For n =5, let

T(ab5) =@ FO)  30—a)(f (@)= f'()

2 * 20
(b—a)’(f" (@) + 1" (®) , (b= a)* (S (@) = /" (b))
i 30 - 240

b
- [ Twa

then
(b—a)'ta 1 ©)
o B¢+ L4+ 1) |[fO . for feLyfab],
pa>1, 4o =1
9 1
b—a)?2 5
rassy<d 00 L for f € Laa.]:
a’7 b i
(l;,gg(%o A ”oo ) for f € Lyla,b];
9—6)v/10v6—15(b—a)*
( ) 60000 Hf(5)| 19 for f e Lyla,b];

For n =5, k = 2, solving

(r=a)'+ (- =0 +4[(r—a) (r =0’ + (r =)’ (7= B)] =0

we obtain
a+b 10v/6 — 15 a+b
T=—5 - 10 (b—a), T€|:a72 ],

for which

(9 —6) V10v6 — 15 (b — a)°

P(r2) = 250

is the required maximum in Theorem [5| (ii). Therefore

(9~ V6) VIE T30 o)’

T (a,b,5)| <
T (a,b,5)] < 60000

]

N .
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(iii) For n =6, let
fla)+1®)  (b-a)

T (a,b,6) := 5 5 (f' (a) = f" (b))
(b - a)2 " " (b - CL)3 " "
+T(f (a) + f (b))‘*'v(f (a) — " (b))
(b—a)" () (4) 1 /b
a0 (@O 0) - = [ Fwdy,
then
Ste 1
(b77az)o B (q+1,5q+1)“f(6)||p, for f e Lyla,b],
pg>1, L4 =1
(bfa)% % .
Tang <im0 @) 11Ol for f€Lala.b];
rll A I for f € Loc[a,b];
5v10—14)(b—a)®
/e | so)), for £ € L [a,1].

Forn =6, k=3,

oo at+b V610 — 15 (b — a) c {a a—|—b]

2 6 2

satisfies
(b—t) — (" —a) +5 [(t* —a) (b—t) — (t* —a) (b t*)ﬂ ~0
and
(5v/10 — 14) (b — a)°
27 ’
which provides the required maximum in Theorem [5} (i). Therefore
5
(5v/10 — 14) (b — a) Hf(fi)H .
38880 1
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