

On Some Discrete Inequalities in Normed Linear Spaces

This is the Published version of the following publication

Dragomir, Sever S (2005) On Some Discrete Inequalities in Normed Linear Spaces. Research report collection, 8 (Suppl.).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17446/

ON SOME DISCRETE INEQUALITIES IN NORMED LINEAR SPACES

SEVER S. DRAGOMIR

ABSTRACT. Some sharp discrete inequalities in normed linear spaces are obtained. New reverses of the generalised triangle inequality are also given.

1. Introduction

Let $(X, \|\cdot\|)$ be a normed linear space over the real or complex number field \mathbb{K} . The mapping $f: X \to \mathbb{R}$, $f(x) = \frac{1}{2} \|x\|^2$ is obviously convex on \mathbb{R} and then there exists the following limits:

$$\begin{split} \langle x,y\rangle_{i} &:= \lim_{t\rightarrow 0-} \frac{\left\|y+tx\right\|^{2}-\left\|y\right\|^{2}}{2t},\\ \langle x,y\rangle_{s} &:= \lim_{\tau\rightarrow 0-} \frac{\left\|y+\tau x\right\|^{2}-\left\|y\right\|^{2}}{2\tau} \end{split}$$

for any two vectors in X. The mapping $\langle \cdot, \cdot \rangle_s$ ($\langle \cdot, \cdot \rangle_i$) will be called the *superior semi-inner product* (inferior semi-inner product) associated to the norm $\| \cdot \|$.

The following fundamental calculus rules are valid for these semi-inner products (see for instance [4, p. 27–32]):

$$(1.1) \langle x, x \rangle_n = ||x||^2 \text{for } x \in X;$$

(1.2)
$$\langle \lambda x, y \rangle_n = \lambda \langle x, y \rangle_n$$
 for $\lambda \ge 0$ and $x, y \in X$;

(1.3)
$$\langle x, \lambda y \rangle_n = \lambda \langle x, y \rangle_n$$
 for $\lambda \ge 0$ and $x, y \in X$;

(1.4)
$$\langle \lambda x, y \rangle_p = \lambda \langle x, y \rangle_q$$
 for $\lambda \leq 0$ and $x, y \in X$;

$$(1.5) \qquad \langle \alpha x, \beta y \rangle_p = \alpha \beta \langle x, y \rangle_p \quad \text{for } \alpha, \beta \in \mathbb{R} \text{ with } \alpha \beta \geq 0 \text{ and } x, y \in X;$$

$$(1.6) \langle -x, y \rangle_p = \langle x, -y \rangle_p = -\langle x, y \rangle_q \text{for } x, y \in X;$$

where $p, q \in \{s, i\}$ and $p \neq q$.

The following inequality is valid:

(1.7)
$$\frac{\|y + tx\|^2 - \|y\|^2}{2t} \ge \langle x, y \rangle_s \ge \langle x, y \rangle_i \\ \ge \frac{\|y + sx\|^2 - \|y\|^2}{2s},$$

for any $x, y \in X$ and s < 0 < t.

Date: 4 August, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B05, 26D15.

Key words and phrases. Inequalities in normed spaces, Semi-inner products, Analytic inequalities.

An important result is the following *Schwarz inequality*:

(1.8)
$$\left| \langle x, y \rangle_p \right| \le \|x\| \|y\| \quad \text{for each } x, y \in X.$$

Also, the following properties of sub(super)-additivity should be noted:

$$(1.9) \qquad \langle x_1 + x_2, y \rangle_{s(i)} \le (\ge) \langle x_1, y \rangle_{s(i)} + \langle x_2, y \rangle_{s(i)}$$

for each $x_1, x_2, y \in X$.

Another important property of "quasi-linearity" holds as well:

$$\langle \alpha x + y, x \rangle_{p} = \alpha \|x\|^{2} + \langle y, x \rangle_{p}$$

for any $x, y \in X$ and α a real number, where p = s or p = i.

Finally, we mention the continuity property:

$$\left| \langle y+z, x \rangle_p - \langle z, x \rangle_p \right| \le \|y\| \|x\|$$

for each $x, y, z \in X$ and p = s or p = i.

One of the most used inequalities in normed spaces is the triangle inequality for several vectors, i.e.,

(1.12)
$$\left\| \sum_{j=1}^{n} x_j \right\| \le \sum_{j=1}^{n} \|x_j\|$$

for any $x_j \in X, j \in \{1, ..., n\}$.

The main aim of this paper is to point out some inequalities for norms of the vectors x_j and $\sum_{j=1}^n x_j$, including some reverses of the triangle inequality in the multiplicative form, i.e., lower bounds for the quantity

$$\frac{\left\|\sum_{j=1}^{n} x_j\right\|}{\sum_{j=1}^{n} \left\|x_j\right\|},$$

provided that not all x_j are zero and satisfy some appropriate conditions.

For classical results related to the reverse of the triangle inequality in normed spaces see [3], [7], [9] and [8]. For more recent results, see [5], [6], [1] and [2].

2. The Results

The following lemma is of interest itself as well.

Lemma 1. Let $(X, \|\cdot\|)$ be a normed linear space. If $x, a \in X$, then

(2.1)
$$\langle x, a \rangle_i \ge \frac{1}{2} \left(\|a\|^2 - \|x - a\|^2 \right).$$

If ||a|| > ||x - a||, then the constant $\frac{1}{2}$ cannot be replaced by a larger quantity.

Proof. Utilising the semi-inner product properties, we have by (1.7) that

$$\left\langle x,a\right\rangle _{i}=\lim_{s\to 0-}\frac{\left\| a+sx\right\| ^{2}-\left\| a\right\| ^{2}}{2s}\geq\frac{\left\| a+\left(-1\right) x\right\| ^{2}-\left\| a\right\| ^{2}}{2\left(-1\right)}=\frac{\left\| a\right\| ^{2}-\left\| x-a\right\| ^{2}}{2}$$

and the inequality (2.1) is proved.

Now, assume that ||a|| > ||x - a|| and there exists a C > 0 with the property that

(2.2)
$$\langle x, a \rangle_i \ge C \left(\|a\|^2 - \|x - a\|^2 \right).$$

Obviously $a \neq 0$, and if we choose $x = \varepsilon a$, $\varepsilon \in (0,1)$, then ||a|| > ||x-a|| since $||x-a|| = (1-\varepsilon) ||a||$. Replacing x in (2.2) we get

$$\varepsilon \|a\|^{2} \ge C \left(\|a\|^{2} - (1 - \varepsilon)^{2} \|a\|^{2} \right)$$

giving

$$\varepsilon \ge C \left(2\varepsilon - \varepsilon^2 \right),$$

for any $\varepsilon \in (0,1)$. This is in fact $1 \geq C(2-\varepsilon)$ and if we let $\varepsilon \to 0+$, we get $C \geq \frac{1}{2}$.

Remark 1. As a coarser, but maybe more useful inequality, we can state that

$$\langle x, a \rangle_i \ge \frac{1}{2} \|x\| (\|a\| - \|x - a\|),$$

provided $||a|| \ge ||x - a||$.

We observe that (2.3) follows from (2.1) since, for $||a|| \ge ||x - a||$, the triangle inequality gives:

$$\frac{1}{2} (\|a\|^2 - \|x - a\|^2) = \frac{1}{2} (\|a\| - \|x - a\|) (\|a\| + \|x - a\|)$$
$$\geq \frac{1}{2} (\|a\| - \|x - a\|) \|x\|.$$

It is an open question whether the constant $\frac{1}{2}$ in (2.3) is sharp.

The following result may be stated.

Theorem 1. Let $(X, \|\cdot\|)$ be a normed space and $x_j \in X$, $j \in \{1, ..., n\}$, $a \in X \setminus \{0\}$. Then for any $p_j \geq 0, j \in \{1, ..., n\}$ with $\sum_{j=1}^n p_j = 1$ we have

(2.4)
$$\left\| \sum_{j=1}^{n} p_j x_j \right\| \|a\| + \frac{1}{2} \sum_{j=1}^{n} p_j \|x_j - a\|^2 \ge \frac{1}{2} \|a\|^2.$$

The constant $\frac{1}{2}$ in the right hand side of (2.4) is best possible in the sense that it cannot be replaced by a larger quantity.

Proof. We apply Lemma 1 on stating that

$$\langle x_j, a \rangle_i + \frac{1}{2} \|x_j - a\|^2 \ge \frac{1}{2} \|a\|^2$$

for each $j \in \{1, \ldots, n\}$.

Multiplying with $p_j \geq 0$ and summing over j from 1 to n, we get

(2.5)
$$\sum_{j=1}^{n} p_j \langle x_j, a \rangle_i + \frac{1}{2} \sum_{j=1}^{n} p_j \|x_j - a\|^2 \ge \frac{1}{2} \|a\|^2 \sum_{j=1}^{n} p_j.$$

Utilising the superadditivity property of the semi-inner product $\langle \cdot, \cdot \rangle_i$ in the first variable (see [4, p. 29]) we have

(2.6)
$$\left\langle \sum_{j=1}^{n} p_{j} x_{j}, a \right\rangle_{i} \geq \sum_{j=1}^{n} p_{j} \left\langle x_{j}, a \right\rangle_{i}.$$

By the Schwarz inequality applied for $\sum_{j=1}^{n} p_j x_j$ and a, we also have

(2.7)
$$\left\| \sum_{j=1}^{n} p_j x_j \right\| \|a\| \ge \left\langle \sum_{j=1}^{n} p_j x_j, a \right\rangle_i.$$

Therefore, by (2.5) - (2.7) we deduce the desired inequality (2.4). Now assume that there exists a D > 0 with the property that

(2.8)
$$\left\| \sum_{j=1}^{n} p_{j} x_{j} \right\| \|a\| + \frac{1}{2} \sum_{j=1}^{n} p_{j} \|x_{j} - a\|^{2} \ge D \|a\|^{2},$$

for any $n \ge 1$, $x_j \in X$, $p_j \ge 0$, $j \in \{1, ..., n\}$ with $\sum_{j=1}^n p_j = 1$ and $a \in X \setminus \{0\}$. If in (2.8) we choose n = 1, $p_1 = 1$, $x_1 = \varepsilon a$, $\varepsilon \in (0, 1)$, then we get

$$\varepsilon \|a\|^2 + \frac{1}{2} (1 - \varepsilon)^2 \|a\|^2 \ge D \|a\|^2,$$

giving

$$\varepsilon + \frac{1}{2} (1 - \varepsilon)^2 \ge D,$$

for any $\varepsilon \in (0,1)$. Letting $\varepsilon \to 0+$, we deduce $D \leq \frac{1}{2}$ and the proof is complete. \blacksquare The following result may be stated as well:

Proposition 1. Let $x_j, a \in X$ with $a \neq 0$ and $||x_j - a|| \leq ||a||$ for each $j \in \{1, ..., n\}$. Then for any $p_j \geq 0, j \in \{1, ..., n\}$ with $\sum_{j=1}^n p_j = 1$ we have

(2.9)
$$\left\| \sum_{j=1}^{n} p_j x_j \right\| \|a\| + \frac{1}{2} \sum_{j=1}^{n} p_j \|x_j\| \|x_j - a\| \ge \frac{1}{2} \|a\| \sum_{j=1}^{n} p_j \|x_j\|.$$

Proof. From (2.3) we have

$$\langle x_j, a \rangle_i + \frac{1}{2} \|x_j\| \|x_j - a\| \ge \frac{1}{2} \|a\| \|x_j\|$$

for any $j \in \{1, ..., n\}$.

The proof follows in the same manner as in Theorem 1 and we omit the details. \blacksquare

The following reverse of the generalised triangle inequality may be stated:

Theorem 2. Let $x_j \in X \setminus \{0\}$ and $a \in X \setminus \{0\}$ such that $||a|| \ge ||x_j - a||$ for each $j \in \{1, ..., n\}$. Then for any $p_j \ge 0, j \in \{1, ..., n\}$ with $\sum_{j=1}^n p_j = 1$ we have

$$(2.10) \qquad \frac{\left\|\sum_{j=1}^{n} p_{j} x_{j}\right\|}{\sum_{j=1}^{n} p_{j} \left\|x_{j}\right\|} \geq \frac{1}{2} \min_{1 \leq j \leq n} \left\{ \frac{\left\|a\right\|^{2} - \left\|a - x_{j}\right\|^{2}}{\left\|x_{j}\right\| \left\|a\right\|} \right\} (\geq 0).$$

The constant $\frac{1}{2}$ is best possible in (2.10).

Proof. Let us denote

$$\rho := \min_{1 \le j \le n} \left\{ \frac{\|a\|^2 - \|a - x_j\|^2}{\|x_j\|} \right\}.$$

From Lemma 1 we have

$$\frac{\langle x_j, a \rangle_i}{\|x_j\|} \ge \frac{1}{2} \cdot \frac{\|a\|^2 - \|x_j - a\|^2}{\|x_j\|} \ge \frac{1}{2}\rho$$

for each $j \in \{1, ..., n\}$. Therefore

$$\langle x_j, a \rangle_i \ge \frac{1}{2} \rho \|x_j\|, \quad j \in \{1, \dots, n\}.$$

Multiplying with p_j and summing over j from 1 to n we obtain

(2.11)
$$\sum_{j=1}^{n} p_{j} \langle x_{j}, a \rangle_{i} \geq \frac{1}{2} \rho \sum_{j=1}^{n} p_{j} \|x_{j}\|,$$

and since:

(2.12)
$$\left\| \sum_{j=1}^{n} p_j x_j \right\| \|a\| \ge \left\langle \sum_{j=1}^{n} p_j x_j, a \right\rangle_i \ge \sum_{j=1}^{n} p_j \left\langle x_j, a \right\rangle_i,$$

hence by (2.11) and (2.12) we deduce the desired result (2.10). Now, assume that there exists a constant E > 0 such that

(2.13)
$$\frac{\left\|\sum_{j=1}^{n} p_{j} x_{j}\right\|}{\sum_{j=1}^{n} p_{j} \|x_{j}\|} \geq E \cdot \min_{1 \leq j \leq n} \left\{ \frac{\|a\|^{2} - \|a - x_{j}\|^{2}}{\|x_{j}\| \|a\|} \right\},$$

provided $||a|| \ge ||x_j - a||, j \in \{1, ..., n\}.$

If we choose $x_1 = \cdots = x_n = \varepsilon a$, $\varepsilon \in (0,1)$, and $p_1 = \ldots = p_n = \frac{1}{n}$, then we get

$$1 \ge E \cdot \frac{\|a\|^2 - (1 - \varepsilon)^2 \|a\|^2}{\varepsilon \|a\|^2},$$

giving

$$1 \ge E(2 - \varepsilon)$$

for any $\varepsilon \in (0,1)$. Letting $\varepsilon \to 0+$, we deduce $E \le \frac{1}{2}$ and the proof is complete. \blacksquare

The following result may be stated as well:

Proposition 2. Let $x_j, a \in X \setminus \{0\}, j \in \{1, ..., n\}$ such that $||x_j - a|| \le ||a||$. Then for any $p_j \ge 0, j \in \{1, ..., n\}$ with $\sum_{j=1}^{n} p_j = 1$ we have

(2.14)
$$\frac{\left\| \sum_{j=1}^{n} p_{j} x_{j} \right\|}{\sum_{j=1}^{n} p_{j} \|x_{j}\|} \ge \frac{\left(\|a\| - \max_{1 \le j \le n} \|x_{j} - a\| \right)}{2 \|a\|} \quad (\ge 0).$$

Proof. From (2.3) we have

$$\frac{\langle x_j, a \rangle_i}{\|x_j\|} \ge \frac{1}{2} (\|a\| - \|x_j - a\|)
\ge \frac{1}{2} \min_{1 \le j \le n} (\|a\| - \|x_j - a\|)
= \frac{1}{2} (\|a\| - \max_{1 \le j \le n} \|x_j - a\|).$$

Now the proof follows the same steps as in that of Theorem 1 and the details are omitted. \blacksquare

Remark 2. If ||a|| = 1 and $||x_j - a|| \le 1$, then (2.10) has a simpler form:

(2.15)
$$\frac{\left\|\sum_{j=1}^{n} p_{j} x_{j}\right\|}{\sum_{j=1}^{n} p_{j} \|x_{j}\|} \ge \frac{1}{2} \min_{1 \le j \le n} \left\{ \frac{1 - \|x_{j} - a\|^{2}}{\|x_{j}\|} \right\} (\ge 0),$$

while (2.14) becomes

(2.16)
$$\frac{\left\|\sum_{j=1}^{n} p_j x_j\right\|}{\sum_{j=1}^{n} p_j \|x_j\|} \ge \frac{1}{2} \left(1 - \max_{1 \le j \le n} \|x_j - a\|\right) (\ge 0).$$

A different approach for bounding the semi-inner product is incorporated in the following:

Lemma 2. Let $(X, \|\cdot\|)$ be a normed space. If $x, a \in X$, then

$$(2.17) \langle x, a \rangle_i \ge ||a|| (||a|| - ||x - a||).$$

The inequality (2.17) is sharp.

Proof. If a=0, then obviously (2.17) holds with equality. For $a\neq 0$, consider

$$\tau_{-}(x,a) := \lim_{s \to 0-} \frac{\|a + sx\| - \|a\|}{s}.$$

Observe that

(2.18)
$$\langle x, a \rangle_i = \lim_{s \to 0-} \frac{\|a + sx\|^2 - \|a\|^2}{2s}$$

$$= \tau_-(x, a) \lim_{s \to 0-} \left[\frac{\|a + sx\| + \|a\|}{2} \right] = \tau_-(x, a) \|a\|.$$

On the other hand, since the function $R \ni s \longmapsto ||a + sx|| \in \mathbb{R}_+$ is convex on \mathbb{R} , hence

(2.19)
$$\tau_{-}(x,a) \ge \frac{\|a + (-1)x\| - \|a\|}{(-1)} = \|a\| - \|x - a\|.$$

Consequently, by (2.18) and (2.19) we get (2.17).

Now, let $x = \varepsilon a$, $\varepsilon \in (0,1)$, $a \neq 0$. Then

$$\langle x, a \rangle_i = \varepsilon \|a\|^2, \quad \|a\| - \|x - a\| = \|a\| - (1 - \varepsilon) \|a\| = \varepsilon \|a\|,$$

which shows that the equality case in (2.17) holds true for the nonzero quantities $\varepsilon \|a\|^2$. The proof is complete.

The following reverse of the generalised triangle inequality may be stated.

Theorem 3. Let $a, x_j \in X \setminus \{0\}$ for $j \in \{1, ..., n\}$ with the property that $||a|| \ge ||x_j - a||$ for $j \in \{1, ..., n\}$. Then for any $p_j \ge 0, j \in \{1, ..., n\}$ with $\sum_{j=1}^n p_j = 1$ we have

(2.20)
$$\frac{\left\|\sum_{j=1}^{n} p_{j} x_{j}\right\|}{\sum_{j=1}^{n} p_{j} \|x_{j}\|} \ge \min_{1 \le j \le n} \left\{ \frac{\|a\| - \|x_{j} - a\|}{\|x_{j}\|} \right\} \quad (\ge 0).$$

The inequality (2.20) is sharp.

Proof. On making use of Lemma 2, we have:

$$\frac{\langle x_j, a \rangle_i}{\|x_j\|} \ge \|a\| \left(\frac{\|a\| - \|x_j - a\|}{\|x_j\|} \right)$$
$$\ge \|a\| \eta,$$

for each $j \in \{1, \dots, n\}$, where

$$\eta := \min_{1 \le j \le n} \left\{ \frac{\|a\| - \|x_j - a\|}{\|x_j\|} \right\}.$$

Now utilising the same argument explained in the proof of Theorem 2, we get the desired inequality (2.20).

If we choose in (2.20) $x_1 = \cdots = x_n = \varepsilon a$, $\varepsilon \in (0,1)$, $a \neq 0$, and $p_1 = \cdots = p_n = 1$ then we have equality, and the proof is complete.

Remark 3. The above result may be stated in a simpler way, i.e., if $\rho \in (0,1)$, a and $x_j \in X \setminus \{0\}$, $j \in \{1, ..., n\}$ are such that

$$(2.21) (\|x_i\| \ge) \|a\| - \|x_i - a\| \ge \rho \|x_i\| (\ge 0)$$

for each $j \in \{1, ..., n\}$, then

(2.22)
$$\left\| \sum_{j=1}^{n} p_{j} x_{j} \right\| \geq \rho \sum_{j=1}^{n} p_{j} \|x_{j}\|.$$

3. Other Related Results to the Triangle Inequality

The following result may be stated:

Theorem 4. Let $(X, \|\cdot\|)$ be a normed linear space and x_1, \ldots, x_n nonzero vectors in X and $p_j \geq 0$ with $\sum_{j=1}^n p_j = 1$. If $\bar{x}_p := \sum_{j=1}^n p_j x_j \neq 0$ and there exists a r > 0 with

(3.1)
$$\frac{\langle x_j, \bar{x}_p \rangle_i}{\|x_j\| \|\bar{x}_p\|} \ge r \quad \text{for each } j \in \{1, \dots, n\}$$

then

(3.2)
$$\left\| \sum_{j=1}^{n} p_{j} x_{j} \right\| \geq r \sum_{j=1}^{n} p_{j} \|x_{j}\|.$$

If $p_j > 0$ for each $j \in \{1, ..., n\}$, then the equality holds in (3.2) if and only if the equality case hold in (3.1) for each $j \in \{1, ..., n\}$.

Proof. From (3.1) on multiplying with $p_i \geq 0$ we have

$$\langle p_i x_i, \bar{x}_p \rangle_i \geq r p_i \|\bar{x}_p\| \|x_i\|$$

for any $j \in \{1, \ldots, n\}$.

Summing over j from 1 to n and taking into account the superadditivity property of the interior semi-inner product, we have

(3.3)
$$\left\langle \sum_{j=1}^{n} p_{j} x_{j}, \bar{x}_{p} \right\rangle_{i} \geq \sum_{j=1}^{n} \left\langle p_{j} x_{j}, \bar{x}_{p} \right\rangle_{i} \geq r \|\bar{x}_{p}\| \sum_{j=1}^{n} p_{j} \|x_{j}\|$$

and since

$$\left\langle \sum_{j=1}^{n} p_j x_j, \bar{x}_p \right\rangle = \left\| \sum_{j=1}^{n} p_j x_j \right\|^2 \neq 0$$

hence by (3.3) we get (3.2).

The equality case is obvious and the proof is complete.

For the system of vectors $x_1, \ldots, x_k \in X$, we denote by \bar{x} its gravity center, i.e.,

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i.$$

The following corollary is obvious.

Corollary 1. Let $x_1, \ldots, x_n \in X \setminus \{0\}$ be such that $\bar{x} \neq 0$. If there exists a r > 0 such that

(3.4)
$$\frac{\langle x_j, \bar{x} \rangle_i}{\|x_i\| \|\bar{x}\|} \ge r \quad \text{for each } j \in \{1, \dots, n\},$$

then the following reverse of the generalised triangle inequality holds:

(3.5)
$$\left\| \sum_{j=1}^{n} x_j \right\| \ge r \sum_{j=1}^{n} \|x_j\|.$$

The equality holds in (3.5) if and only if the case of equality holds in (3.4) for each $j \in \{1, ..., n\}$.

The following refinements of the generalised triangle inequality may be stated as well:

Theorem 5. Let $x_i, \bar{x}_p, p_i, i \in \{1, ..., n\}$ be as in Theorem 4. If there exists a constant R with 1 > R > 0 and such that

(3.6)
$$R \ge \frac{\langle x_j, \bar{x}_p \rangle_s}{\|x_j\| \|\bar{x}_p\|} \quad \text{for each } j \in \{1, \dots, n\},$$

then

(3.7)
$$R \sum_{j=1}^{n} p_j \|x_j\| \ge \left\| \sum_{j=1}^{n} p_j x_j \right\|.$$

If $p_j > 0$ for each $j \in \{1, ..., n\}$, then the equality holds in (3.7) if and only if the equality case holds in (3.6) for each $j \in \{1, ..., n\}$.

The proof is similar to the one in Theorem 4 on taking into account that the superior semi-inner product is a subadditative functional in the first variable.

Corollary 2. Let x_j , $j \in \{1, ..., n\}$ be as in Corollary 1. If there exists an R with 1 > R > 0 and

(3.8)
$$R \ge \frac{\langle x_j, \bar{x} \rangle_s}{\|x_j\| \|\bar{x}\|} \quad \text{for each } j \in \{1, \dots, n\},$$

then the following refinement of the generalised triangle inequality holds:

(3.9)
$$R\sum_{j=1}^{n} \|x_j\| \ge \left\| \sum_{j=1}^{n} x_j \right\|.$$

The equality hold in (3.9) if and only if the case of equality holds in (3.8) for each $j \in \{1, ..., n\}$.

References

- [1] A.H. ANSARI and M.S. MOSLEHIAN, Refinements of the triangle inequality in Hilbert and Banach spaces, Preprint: ArXiv Math. FA/0502010, http://front.math.ucdavis.edu/math.FA/0502010.
- [2] A.H. ANSARI and M.S. MOSLEHIAN, More on reverse triangle inequality in inner product spaces, Preprint: ArXiv Math. FA/0506198, http://front.math.ucdavis.edu/math.FA/0506198.
- [3] J.B. DIAZ and F.T. METCALF, A complementary triangle inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc., 17(1) (1966), 88-97.
- [4] S.S. DRAGOMIR, Semi-Inner Products and Applications, Nova Science Publishers, Inc., New York, 2004.
- [5] S.S. DRAGOMIR, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., New York, 2004.
- [6] S.S. DRAGOMIR, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces, RGMIA Monographs, Victoria University, 2005. (ONLINE: http://rgmia.vu.edu.au/monographs/).
- [7] S.M. KHALEELULA, On Diaz-Metcalf's complementary triangle inequality, *Kyungpook Math. J.*, **15** (1975), 9-11.
- [8] P.M. MILIČIĆ, On a complementary inequality of the triangle inequality (French), Mat. Vesnik, 41(2) (1984), 83-88.
- [9] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne City, Victoria 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}\ URL: http://rgmia.vu.edu.au/dragomir$