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ON SOME DISCRETE INEQUALITIES IN NORMED LINEAR
SPACES

SEVER S. DRAGOMIR

ABSTRACT. Some sharp discrete inequalities in normed linear spaces are ob-
tained. New reverses of the generalised triangle inequality are also given.

1. INTRODUCTION

Let (X, ]|-||) be a normed linear space over the real or complex number field K.

The mapping f: X - R, f(z) = % ||£L'H2 is obviously convex on R and then there

exists the following limits:

oyt =yl
(z,y); = lim o7 :

o lytrel® —llyl®
<$’y>s T Tliréli 2r

for any two vectors in X. The mapping (-,-), ((-,-);) will be called the superior
semi-inner product (inferior semi-inner product) associated to the norm ||-|| .
The following fundamental calculus rules are valid for these semi-inner products
see for instance [4, p. 27-32]):
) (@,2), = || for z € X;
) (x\x,y)p:/\<x,y)p for A\ >0 and z,y € X;
) (x, A\y), = Az,y), for A>0andz,ye€X;
) (A:U,y)pzA(x,y)q for A <0 and z,y € X;
) (am,5y>p =af (x,y>p for a, 8 € R with a8 > 0 and z,y € X;
) (—a,9), = (@, —y), = — (@,9), for o,y € X

where p,q € {s,i} and p # .
The following inequality is valid:

~ Y~ o~ —~ —~ —~
—_ = = = e

= RS2 T T JUR NCY

ly txHQ ||y||2
1. >
(17) 2t =

o Ny +sa® ~ Hyllz’
- 2s

x,y)s 2 <$, y>i

for any z,y € X and s < 0 < ¢.
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2 SEVER S. DRAGOMIR

An important result is the following Schwarz inequality:
(1.8) [(@,9),| < llall gl for cach @,y € X.

Also, the following properties of sub(super)-additivity should be noted:

(1.9) (@1 +22,Y) 55 < (2) {21, 9) 5y + (22,9)55)

for each z1, 22,y € X.
Another important property of “quasi-linearity” holds as well:

(1.10) (aw +y,2), = alz]” + (y,2),

for any z,y € X and « a real number, where p = s or p = 1.
Finally, we mention the continuity property:

(1.11) (y+z,2), = (z2), | < |yl Izl

for each z,y,z € X and p=sor p =1i.
One of the most used inequalities in normed spaces is the triangle inequality for
several vectors, i.e.,

n n
(1.12) ol <l
j=1 j=1

for any z; € X, j € {1,...,n}.

The main aim of this paper is to point out some inequalities for norms of the
vectors x; and Z;;l x;, including some reverses of the triangle inequality in the
multiplicative form, i.e., lower bounds for the quantity

| ]
> sl
provided that not all x; are zero and satisfy some appropriate conditions.

For classical results related to the reverse of the triangle inequality in normed
spaces see [3], [7], [9] and [§]. For more recent results, see [5], [6], [I] and [2].

2. THE RESULTS
The following lemma is of interest itself as well.

Lemma 1. Let (X, ||||) be a normed linear space. If x,a € X, then

1
(2.1) (w.a), = 5 (llal* = llz = all*) .

If lla|]| > ||z — a| , then the constant 5 cannot be replaced by a larger quantity.

1
2
Proof. Utilising the semi-inner product properties, we have by (1.7)) that

2 2 2 2 2 2
oy — 1y Jot el =lal® | Jat (<Dl = fol® _ ol = o —a
T s S0- 2s - 2(-1) 2
and the inequality (2.1)) is proved.
Now, assume that ||a|| > || — a| and there exists a C > 0 with the property
that

(2.2) (2,0}, 2 C (llal* - |l = al*).
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Obviously a # 0, and if we choose z = ea, € € (0,1), then ||a|]| > ||z — a|| since
|z —al| = (1 —€)||a|| - Replacing = in (2.2) we get

2 2 2 2
e lal = € (Jlall® - (1~ &)* flal*)
giving
e>C (2 —¢?),

for any ¢ € (0,1). This is in fact 1 > C' (2 —¢) and if we let ¢ — 0+, we get
c>1i1

Remark 1. As a coarser, but maybe more useful inequality, we can state that
(2.3) (@,a); 2 5 = 2l (lall — fla = all).
provided ||a|| > ||z — al| .

We observe that follows from since, for ||lal| > ||x — al|, the triangle
inequality gives:
1 2 2)
> (llal* = e = al

(lall = llz = all) (lall + |z = all)

(lall = llz = all) ||| -

It is an open question whether the constant % mn s sharp.

v Il
DN = N =

The following result may be stated.

Theorem 1. Let (X, |-||) be a normed space and z; € X, j € {1,...,n}, a €
X\{0}. Then for any p; >0,j € {1,...,n} with 3°7_, pj = 1 we have

(2.4) >_pizj| llall + 5 > pj llz; —all* > 5 llal
j=1 j=1

The constant % in the right hand side of 18 best possible in the sense that it
cannot be replaced by a larger quantity.

Proof. We apply Lemma [If on stating that

1 5 1. o
(@5, a); + 5 llzj —all” = 5 lla]

(N}

for each j € {1,...,n}.
Multiplying with p; > 0 and summing over j from 1 to n, we get

1
(2.5) ij Ty, a ij llz; — 5 ||a|| ij

Utilising the superadditivity property of the semi-inner product (-,-), in the first
variable (see [4, p. 29]) we have

(2.6) <ijfﬂj7a> > ij <$jaa>i'
j=1 i J=1
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By the Schwarz inequality applied for Z?:1 p;x; and a, we also have

(2.7) > pix lall > <ijxj,a> :
j=1 j=1

Therefore, by (2.5) — (2.7) we deduce the desired inequality (2.4]).
Now assume that there exists a D > 0 with the property that

(2.8) > pij|| llall + B > pillz;—al* = Dal?,
j=1 j=1

for any n > 1, z; € X, p; > 0,5 € {1,...,n} with 37, p; = 1 and a € X\ {0} .

If in (2.8) we choose n =1, p; =1, 1 =¢a, € € (0,1), then we get

2 1 20 12 2
ellall”+ 5 @ =e)llall” = D al”,
giving
1 2
e+ 5 (]. — 5) Z D,

for any € € (0,1) . Letting ¢ — 0+, we deduce D < % and the proof is complete. I

The following result may be stated as well:

Proposition 1. Let zj,a € X with a # 0 and ||z; —al < |la|| for each j €
{1,...,n}. Then for any p; > 0,5 € {1,...,n} with Z?zlpj =1 we have

n n n
1 1
(2.9) > pizj| llall + 3 > o llzjl =5 —all = 5 llal > willil.
j=1 j=1 j=1

Proof. From (12.3) we have
1 1
(@5, a); + 5 llzjll lz; = all = 5 llall [l

for any j € {1,...,n}.
The proof follows in the same manner as in Theorem [I]and we omit the details. I

The following reverse of the generalised triangle inequality may be stated:

Theorem 2. Let z; € X\ {0} and a € X\ {0} such that ||a|| > ||z; — a|| for each
je{l,...,n}. Then for any p; > 0,5 € {1,...,n} with Z?lej =1 we have

HZleﬂj 1 2 _ g — 2

D NS 7 VR P
> =1 Pjllzill — 2 1<i<n ;| {|el

The constant % is best possible in .

Proof. Let us denote
2 2
o Ll = la =)
1<j<n 5

From Lemma [I] we have
<xj ) a>i

5

(2.10)

2 2
1 lal|” = [lz; — all
2 25

>

Y

1
20
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for each j € {1,...,n}. Therefore
1 .
<xj7a>iZ§pijHa jG{l,...,Tl}.

Multiplying with p; and summing over j from 1 to n we obtain
n 1 n
(2.11) > vy laj.a), > 5/)2]% ;15
j=1 j=1

and since:

(2.12) > pis|| llall > <ijxj,a> > " pj(wj,a);,
j=1 j=1 j=1

i

hence by (2.11)) and (2.12]) we deduce the desired result ([2.10)).

Now, assume that there exists a constant £ > 0 such that

3] —
_ - o5 i [l Lol
Zj:l p; ||zl 1<j<n |2l llall
provided |la|| > ||lz; —a|, j € {1,...,n}.
If we choose 1 =--- =z, =€a,e € (0,1), and p; = ... =p, = %, then we get
2 2012
o el = (=02 ]
- 2 )
ellal
giving
1>E(2-¢)

for any € € (0,1) . Letting ¢ — 0+, we deduce F < % and the proof is complete. 1
The following result may be stated as well:

Proposition 2. Let z;,a € X\ {0}, j € {1,...,n} such that ||z; —a| < ||a.
Then for any p; > 0,5 € {1,...,n} with Z?:l pj = 1 we have

(2.14) Hzij_lpjxjH > (llall = maxi<j<n llz; —all) (>0).
> i=1 P Nzl 2 |all
Proof. From ({2.3)) we have
<Ijva>' 1
L > = (lla]] = |l — al)
llz;ll — 2 !
> 2 wmin (lall - Jlz; — al)
> 21r<njl£n a T —a
1

Now the proof follows the same steps as in that of Theorem [I] and the details are
omitted. I

Remark 2. If |la|| =1 and ||z; — al| <1, then has a simpler form:

|Zicipim] 11—
(2.15) 2= D01 Ly St s )
=1 pillzsll — 21<i<n (B
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while becones
HZ?=1PJ'%'H - 1 (
S pillzsll — 2

A different approach for bounding the semi-inner product is incorporated in the
following:

(2.16) 1— max |jz; — a||) (>0).

1<j<n

Lemma 2. Let (X,|]|]) be a normed space. If z,a € X, then

(2.17) (z,a); = |la] (la] — [l — all).

The inequality is sharp.

Proof. If a = 0, then obviously holds with equality. For a # 0, consider
- flat o — ol

T_(x,a) := sli%l_ 5

Observe that

la+ sal|” — flal

2.18 =i
(218) (v = lim 25
= 7_(z,a) lim [WHM] =7_(z,a)|al .
s—0— 2

On the other hand, since the function R 5 s — ||a + sz|| € R4 is convex on R,
hence

la+ (=D — |l

(2.19) T (2,a) > =) = [lall = llz = all -
Consequently, by (2.18) and (2.19) we get (2.17).
Now, let x = €a, € € (0,1), a # 0. Then
2
(@,a); =ellall”, lall = llz = all = [lall = (1 = &) [la]| = lall,

which shows that the equality case in (2.17)) holds true for the nonzero quantities
¢ ||a||®. The proof is complete. i

The following reverse of the generalised triangle inequality may be stated.

Theorem 3. Let a,z; € X\ {0} for j € {1,...,n} with the property that ||a| >
llz; —all for j € {1,...,n}. Then for any p; > 0,5 € {1,...,n} with Z;-L:lpj =1
we have

e ptotie,
(2.20) e R e e S
> =1 Py llwsll — 1<i<n [EA

The inequality is sharp.
Proof. On making use of Lemma [2| we have:

(@) lal <||a|| — all)

5 5

= [lal[n,
for each j € {1,...,n}, where

)= min { lall = llz; — af } .
1<j<n 251
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Now utilising the same argument explained in the proof of Theorem [2] we get the
desired inequality (2.20]).

If we choose in (2.20) 2y =--- =z, =€a,e € (0,1),a #0,and p; = ... =p, =1
then we have equality, and the proof is complete. i

Remark 3. The above result may be stated in a simpler way, i.e., if p € (0,1), a
and xj € X\ {0}, j € {1,...,n} are such that

(2:21) (=il =) lall = llz; — all = pllz;ll - (= 0)
for each j € {1,...,n}, then

(2.22) > vzl =Y oyl
j=1 j=1

3. OTHER RELATED RESULTS TO THE TRIANGLE INEQUALITY

The following result may be stated:

Theorem 4. Let (X,||||) be a normed linear space and x1, ..., x, nonzero vectors
in X andp; >0 with 37 pj = 1. If &, := >, pjx; # 0 and there exists ar >0
with

<xj’ jP>¢

ll5| 11z |

(3.1) >r foreach je{l,...,n}

then

(3.2) > pig|| = pyllall-
j=1 j=1

If pj >0 for each j € {1,...,n}, then the equality holds in if and only if the
equality case hold in for each j € {1,...,n}.

Proof. From (3.1) on multiplying with p; > 0 we have

(P, Tp); = pj |Zpll (2]

for any j € {1,...,n}.
Summing over j from 1 to n and taking into account the superadditivity property
of the interior semi-inner product, we have
n n n
(3.3) <Zpﬂj’fp> > (i, ), = 3l > py Il
j=1 , g=l j=1

and since
2

n n
<ijxj,xp> =D _pja;|| #0
=1 . |li=

hence by (3.3) we get (3.2).

The equality case is obvious and the proof is complete. |
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For the system of vectors x1, ...,z € X, we denote by Z its gravity center, i.e.,

1<
i=1
The following corollary is obvious.

Corollary 1. Let x1,...,z, € X\ {0} be such that T # 0. If there exists a r > 0
such that

(z,7),
5 11zl

then the following reverse of the generalised triangle inequality holds:

(3.5) Yoa| =)l

j=1 j=1
The equality holds in if and only if the case of equality holds in for each
jed{l,...,n}.

The following refinements of the generalised triangle inequality may be stated as
well:

(3.4) >r foreach j€e{l,...,n},

Theorem 5. Let x;,%,,pi, ¢ € {1,...,n} be as in Theorem . If there exists a
constant R with 1 > R > 0 and such that

<$-,:E >S .
(36) R Z m fOT’ each ] € {1, . ,77,},
J p

then

(3.7) RY pillasll = (D piz;

j=1 j=1
If pj >0 for each j € {1,...,n}, then the equality holds in if and only if the
equality case holds in (@ for each j € {1,...,n}.

The proof is similar to the one in Theorem [4 on taking into account that the
superior semi-inner product is a subadditative functional in the first variable.

Corollary 2. Let xj, j € {1,...,n} be as in Corollary . If there exists an R with
1>R>0 and

(3.8) R> ol
5 1zl

then the following refinement of the generalised triangle inequality holds:

(3.9) RY sl = |«
j=1 j=1

The equality hold in (@ if and only if the case of equality holds in (@ for each
je{l,...,n}.

foreach je€{l1,...,n},
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