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INEQUALITIES FOR DIRICHLET SERIES WITH POSITIVE
TERMS

P. CERONE AND S.S. DRAGOMIR

Abstract. Some fundamental inequalities for Dirichlet series with positive

terms by utilising certain classical results due to Hölder, Čebyšev, Pólya-Szegö,
Grüss and others are established.

1. Introduction

In the following we consider Dirichlet series of the form

(1.1) ψ (s) :=
∞∑

n=1

an

ns
,

with s > 1 and an assumed to be nonnegative for n ≥ 1.
In this class of series one can find the celebrated Zeta function defined by

(1.2) ζ (s) :=
∞∑

n=1

1
ns
, s > 1

and the Dirichlet Lambda function given by

(1.3) λ (s) :=
∞∑

n=0

1
(2n+ 1)s =

(
1− 2−s

)
ζ (s)

for s > 1.
If Λ (n) is the von Mangoldt function, where

(1.4) Λ (n) :=

 log p, n = pk (p prime, k ≥ 1)

0, otherwise,

then [2, p. 3]:

(1.5) −ζ
′ (s)
ζ (s)

=
∞∑

n=2

Λ (n)
ns

, s > 1.

If d (n) is the number of divisors of n, we have [2, p. 35] the following relationships
with the Zeta function:

(1.6) ζ2 (s) =
∞∑

n=1

d (n)
ns

,
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(1.7)
ζ3 (s)
ζ (2s)

=
∞∑

n=1

d
(
n2
)

ns
,

(1.8)
ζ4 (s)
ζ (2s)

=
∞∑

n=1

d2 (n)
ns

,

and [2, p. 36]

(1.9)
ζ2 (s)
ζ (2s)

=
∞∑

n=1

2ω(n)

ns
, s > 1,

where ω (n) is the number of distinct prime factors of n.
Further, if ϕ (n) denotes Euler’s function defined by

ϕ (n) := n
∏
p|n

(
1− 1

p

)
,

where the product is over all prime divisors of n, then

(1.10)
ζ (s− 1)
ζ (s)

=
∞∑

n=1

ϕ (n)
ns

, s > 2.

For a ∈ R we define
σa (n) :=

∑
d|n

da

and in particular σ (n) = σ1 (n) =
∑

d|n d, is the sum of the divisors of n, then [2,
p. 37] these are related to the Zeta function by

ζ (s) ζ (s− a) =
∞∑

n=1

σa (n)
ns

, s > 1, s > a+ 1;

and
ζ (s) ζ (s− a) ζ (s− b) ζ (s− a− b)

ζ (2s− a− b)
=

∞∑
n=1

σa (n)σb (n)
ns

,

where s > max {1, a+ 1, b+ 1, a+ b+ 1} .
One can prove in various ways that such functions ψ defined in (1.1) are mono-

tonic non-increasing on (1,∞) and logarithmic convex. This means that the func-
tion log f is convex or, alternatively:

(1.11) ψ (us1 + vs2) ≤ [ψ (s1)]
u [ψ (s2)]

v

for any s1, s2 > 1 and u, v ≥ 0 with u+ v = 1.
Since, by the geometric mean – arithmetic mean inequality we have

[ψ (s1)]
u [ψ (s2)]

v ≤ uψ (s1) + vψ (s2)

for s1, s2 > 1 and u, v ≥ 1, u+v = 1, we can also state that these classes of function
ψ are also convex on (1,∞) .

The main aim of this paper is to establish a number of fundamental inequalities
for ψ that can be stated by utilising some classical inequalities for nonnegative real
numbers such as Hölder’s inequality, Čebyšev’s inequality, Polyá-Szegö’s reverse of
Schwarz’s inequality, Grüss’ inequality and others.
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2. Inequalities for Dirichlet Series with Positive terms

We consider the Dirichlet series given by (1.1). We assume that the series which
defines ψ is uniformly convergent for s > 1.

The following result may be stated:

Proposition 1. Let α, β > 1 with α−1 + β−1 = 1. If s, p, q ∈ R are such that
s+ p+ q > 1, s+ pα > 1 and s+ qβ > 1, then

(2.1) ψ (s+ p+ q) ≤ [ψ (s+ pα)]
1
α [ψ (s+ qβ)]

1
β .

Proof. We use Hölder’s inequality to state that:

ψ (s+ p+ q) =
∞∑

n=1

an

ns
· 1
np

· 1
nq

≤

[ ∞∑
n=1

an

ns
·
(

1
np

)α
] 1

α
[ ∞∑

n=1

an

ns
·
(

1
nq

)β
] 1

β

=

( ∞∑
n=1

an

ns+αp

) 1
α
( ∞∑

n=1

an

ns+βq

) 1
β

= [ψ (s+ pα)]
1
α [ψ (s+ qβ)]

1
β ,

which proves the desired inequality (2.1).

Remark 1. We observe that for α = β = 2, we obtain from (2.1) the following
inequality

(2.2) ψ2 (s+ p+ q) ≤ ψ (s+ 2p)ψ (s+ 2q) ,

provided the real numbers s, p, q satisfy the conditions s+p+q, s+2p, s+2q > 1. In
its turn, the inequality (2.2), and in fact (2.1), is a generalisation of the following
result

(2.3) ψ2 (s+ 1) ≤ ψ (s)ψ (s+ 2) ,

provided s > 1.
We remark that for ψ = ζ one obtains from (2.3) that

(2.4)
ζ (s+ 1)
ζ (s)

≤ ζ (s+ 2)
ζ (s+ 1)

for s > 1.

This inequality is an improvement of a recent result due to Laforgia and Natalini
[3] who proved that

ζ (s+ 1)
ζ (s)

≤ s+ 1
s

· ζ (s+ 2)
ζ (s+ 1)

for s > 1.

Their arguments make use of an integral representation of the Zeta function and
Turán-type inequalities.

It should be further noted that, if s = 2n, n ∈ N, then (2.4) shows that

ζ (2n+ 1) ≤
√
ζ (2n) ζ (2n+ 2),

demonstrating that Zeta at the odd integers is bounded above by the geometric mean
of its immediate even Zeta values.

The following result also holds:
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Proposition 2. If a > 1, b, c ∈ R such that bc ≥ (≤) 0 and a+b, a+c, a+b+c > 1,
then:

(2.5) ψ (a)ψ (a+ b+ c) ≥ (≤)ψ (a+ b)ψ (a+ c) .

Proof. Consider the sequence αn := nb, n ≥ 1, b ∈ R. It is clear that αn is
increasing if b > 0 and decreasing if b < 0. Therefore, the sequences 1

nb ,
1

nc are
synchronous if bc ≥ 0 and asynchronous when bc < 0.

Utilising Čebyšev’s inequality for synchronous (asynchronous) sequences, we
have:

ψ (a)ψ (a+ b+ c) =
∞∑

n=1

an

na
·
∞∑

n=1

an

na
· 1
nb
· 1
nc

≥ (≤)
∞∑

n=1

an

na
· 1
nb
·
∞∑

n=1

an

na
· 1
nc

= ψ (a+ b)ψ (a+ c) ,

and the inequality (2.5) is proved.

Remark 2. Utilising the inequality (2.5) (for c = b) we can state the following
result

(2.6) ψ2 (a+ b) ≤ ψ (a)ψ (a+ 2b) ,

provided the real numbers a, b are such that a, a + b, a + 2b > 1. We also remark
that the choice b = 1 will produce the same inequality (2.3).

From a different perspective, we can state the following result as well:

Proposition 3. Assume that m ≥ 2 and k1, . . . , km > 1
2 . Then

(2.7)
∑

1≤i<j≤m

ψ (ki + kj) ≤
m− 1

2

m∑
j=1

ψ (2kj) .

Proof. By the Schwarz inequality:

m
m∑

j=1

z2
j ≥

 m∑
j=1

zj

2

we have

m
m∑

j=1

1
n2kj

≥

 m∑
j=1

1
nkj

2

=
m∑

i=1

m∑
j=1

1
nki+kj

(2.8)

=
m∑

j=1

1
n2kj

+ 2
∑

1≤i<j≤m

1
nki+kj

giving

(2.9)
m− 1

2

m∑
j=1

1
n2kj

≥
∑

1≤i<j≤m

1
nki+kj

.
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If we multiply (2.9) by an > 0 and sum over n ≥ 1, we get

m− 1
2

m∑
j=1

( ∞∑
n=1

an

n2kj

)
≥

∑
1≤i<j≤m

( ∞∑
n=1

an

nki+kj

)
which gives the desired inequality (2.7).

Remark 3. If a, b, c > 1 then from (2.7) applied for m = 3 we deduce the following
result

(2.10) ψ

(
a+ b

2

)
+ ψ

(
b+ c

2

)
+ ψ

(
c+ a

2

)
≤ ψ (a) + ψ (b) + ψ (c) .

In particular, the choice a = x, b = x+ 2, c = x+ 4 will produce the inequality

(2.11) ψ (x+ 1) + ψ (x+ 3) ≤ ψ (x) + ψ (x+ 4) ,

for each x > 1.

If more information about the size of kj , j = 1, . . . ,m is known, then the following
reverse of (2.7) may be stated as well:

Proposition 4. Assume that m ≥ 2 and 1
2 < γ ≤ k1, . . . , km ≤ Γ <∞. Then

(2.12) (0 ≤)
m− 1

2

m∑
j=1

ψ (2kj)−
∑

1≤i<j≤m

ψ (ki + kj)

≤ m2

8
[ψ (2Γ) + ψ (2γ)− 2ψ (γ + Γ)] .

Proof. We use the following Grüss type inequality:

1
m

m∑
j=1

z2
j −

 1
m

m∑
j=1

zj

2

≤ 1
4

(Γ− γ)2 ,

provided γ ≤ zj ≤ Γ for each j ∈ {1, . . . ,m} .
Since γ ≤ kj ≤ Γ for j ∈ {1, . . . ,m} , then

1
m

m∑
j=1

1
n2kj

− 1
m2

 m∑
j=1

1
nkj

2

≤ 1
4

(
1
nγ

− 1
nΓ

)2

=
1
4

(
1
n2γ

+
1
n2Γ

− 2
nγ+Γ

)
for n ≥ 1, which gives

1
m

m∑
j=1

1
n2kj

− 1
m2

 m∑
j=1

1
n2kj

+ 2
∑

1≤i<j≤m

1
nki+kj


≤ 1

4

(
1
n2γ

+
1
n2Γ

− 2
nγ+Γ

)
for n ≥ 1.

Multiplying with m2 and re-arranging, we get

(2.13)
m− 1

2

m∑
j=1

1
n2kj

−
∑

1≤i<j≤m

1
nki+kj

≤ m2

8

(
1
n2γ

+
1
n2Γ

− 2
nγ+Γ

)
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for any n ≥ 1.
Finally, if we multiply (2.13) by an ≥ 0 and sum over n ≥ 1, we get the desired

inequality (2.12).

Remark 4. If R > a, b, c > r > 1 then from (2.12) applied for m = 3 we deduce
the following result

0 ≤ ψ (a) + ψ (b) + ψ (c)− ψ

(
a+ b

2

)
− ψ

(
b+ c

2

)
− ψ

(
c+ a

2

)
(2.14)

≤ 9
4
·
[
ψ (r) + ψ (R)

2
− ψ

(
r +R

2

)]
.

The following result may be stated as well:

Proposition 5. Assume that m ≥ 1 and 1
2 < γ ≤ k1, . . . , km ≤ Γ <∞. Then

(2.15)
m∑

j=1

[ψ (kj + γ) + ψ (kj + Γ)] ≥
m∑

j=1

ψ (2kj) +mψ (γ + Γ) .

Proof. We have: (
1
nγ

− 1
nkj

)(
1
nkj

− 1
nΓ

)
≥ 0

for each j ∈ {1, . . . ,m} and n ≥ 1. This is clearly equivalent to:
1

nγ+kj
+

1
nΓ+kj

≥ 1
n2kj

+
1

nγ+Γ

for j ∈ {1, . . . ,m} and n ≥ 1.
Summing over j from 1 to m, we get:

(2.16)
m∑

j=1

1
nγ+kj

+
m∑

j=1

1
nΓ+kj

≥
m∑

j=1

1
n2kj

+
m

nγ+Γ

for each n ≥ 1.
Multiplying (2.16) with an ≥ 0 and summing over n ≥ 1, we deduce the desired

inequality (2.15).

The following result may be stated as well:

Proposition 6. Assume that m ≥ 1 and 1
2 < γ ≤ k1, . . . , km ≤ Γ <∞. Then

(2.17)
(
m− 1

2

) m∑
j=1

ψ (2kj) ≤
1
2

m∑
j=1

[
ψ (2kj − γ + Γ) + ψ (2kj − Γ + γ)

2

]

+
∑

1≤i<j≤m

[
ψ (ki + kj − Γ + γ) + ψ (ki + kj − γ + Γ)

2

]
+

∑
1≤i<j≤m

ψ (ki + kj) .

Proof. We apply the Polyá-Szegö inequality:

(2.18) (1 ≤)
m
∑m

j=1 z
2
j(∑m

j=1 zj

)2 ≤
(Γ + γ)2

4γΓ
,

provided γ ≤ zj ≤ Γ, j ∈ {1, . . . ,m} .
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Observing that
1
nΓ

≤ 1
nkj

≤ 1
nγ
, j = 1, . . . ,m

then by (2.18) we have

m
m∑

j=1

1
n2kj

≤
(

1
nγ + 1

nΓ

)2
4 1

nγ · 1
nΓ

 m∑
j=1

1
nkj

2

=
1
4
(
nΓ−γ + nγ−Γ + 2

) m∑
j=1

1
n2kj

+ 2
∑

1≤i<j≤m

1
nki+kj


=

1
4

 m∑
j=1

1
n2kj−Γ+γ

+
m∑

j=1

1
n2kj−γ+Γ

+ 2
m∑

j=1

1
n2kj


+

1
2

 ∑
1≤i<j≤m

1
nki+kj−Γ+γ

+
∑

1≤i<j≤m

1
nki+kj−γ+Γ

+ 2
∑

1≤i<j≤m

1
nki+kj

 ,
which is clearly equivalent to:

(2.19)
(
m− 1

2

) m∑
j=1

1
n2kj

≤ 1
4

 m∑
j=1

1
n2kj−Γ+γ

+
m∑

j=1

1
n2kj−γ+Γ


+

1
2

 ∑
1≤i<j≤m

1
nki+kj−Γ+γ

+
∑

1≤i<j≤m

1
nki+kj−γ+Γ


+

∑
1≤i<j≤m

1
nki+kj

for any n ≥ 1.
Multiplying (2.19) by an ≥ 0 and summing over n, we deduce the desired result

(2.17).

3. Representations as Double Sums

Consider the sequences

(3.1) I±k (p, s) :=
1
2

k∑
n=1

k∑
m=1

(np ±mp)2

nsms
anam, k ≥ 1

where an ≥ 0, n ≥ 1 and s, p ∈ R.
The following representation holds:

Proposition 7. If s > 1 and p ∈ R such that s− 1 > 2p and s− 1 > p, then

(3.2) I± (p, s) := lim
k→∞

I±k (p, s) = ψ (s− 2p)ψ (s)± [ψ (s− p)]2 (≥ 0) .
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Proof. We observe that

I±k (p, s) =
1
2

k∑
n=1

k∑
m=1

(
n2p ± 2npmp +m2p

nsms

)
anam

=
1
2

[
k∑

n=1

an

ns−2p

k∑
m=1

am

ms
± 2

k∑
n=1

an

ns−p

k∑
m=1

am

ms−p

+
k∑

n=1

an

ns

k∑
m=1

am

ms−2p

]
.

Since, for s > 1, s− 1 > 2p, s− 1 > p,

lim
k→∞

k∑
n=1

an

ns−2p
= ψ (s− 2p) , lim

k→∞

k∑
n=1

an

ns−p
= ψ (s− p) ,

and lim
k→∞

k∑
n=1

an

ns
= ψ (s)

then, the limk→∞ I±k (p, s) exists and the relation (3.2) is proved.

Remark 5. We observe that for s > 1 and p = −1, we have:

(3.3) ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2 =
1
2

lim
k→∞

k∑
n=1

k∑
m=1

(n−m)2

ns+2ms+2
anam ≥ 0.

The following result may be stated:

Proposition 8. Let α, β > 1 with α−1 + β−1 = 1. If s, p, q, r ∈ R are such that
s+ q+ r > 1, s+ q+ r− 1 > 2p, s+ q+ r− 1 > p and s+αq > 1, s+αq− 1 > 2p,
s+ αq − 1 > p, s+ βr > 1, s+ βr − 1 > 2p, s+ βr − 1 > p, then

(3.4) I± (p, s+ q + r) ≤
[
I± (p, s+ αq)

] 1
α
[
I± (p, s+ βr)

] 1
β .

Proof. Using the representation (3.1), (3.2) and the Hölder inequality for double
sums, we have:

I± (p, s+ q + r) =
1
2

lim
k→∞

k∑
n=1

k∑
m=1

(np ±mp)2

ns+q+rms+q+r
anam

=
1
2

lim
k→∞

k∑
n=1

k∑
m=1

1
nq ·mq

· 1
nr ·mr

· (np ±mp)2

ns ·ms
anam

≤

[
1
2

lim
k→∞

k∑
n=1

k∑
m=1

(np ±mp)2

ns ·ms
anam

(
1

nq ·mq

)α
] 1

α

×

[
1
2

lim
k→∞

k∑
n=1

k∑
m=1

(np ±mp)2

ns ·ms
anam

(
1

nr ·mr

)β
] 1

β

=
[
I± (p, s+ αq)

] 1
α
[
I± (p, s+ βr)

] 1
β

and the inequality (3.4) is obtained.
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Remark 6. In particular, if we define:

(3.5) I (s) := ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2 for s > 1,

then we have:

(3.6) I (s+ q + r) ≤ [I (s+ αq)]
1
α [I (s+ βr)]

1
β ,

where α, β > 1, 1
α + 1

β = 1 and s, q, r ∈ R with s+ q + r, s+ αq and s+ βr > 1.

The following log-convexity property may be stated:

Proposition 9. Let p ∈ R and s0 := max {1, p+ 1, 2p+ 1} . Then the function
s 7→ I±k (p, s) is log-convex on the interval (s0,+∞) .

Proof. Let s1, s2 ∈ (s0,+∞) . Then for α, β > 0, α + β = 1 by Hölder’s inequality
for double sums we have

I±k (p, αs1 + βs2) =
1
2

k∑
n=1

k∑
m=1

(np ±mp)2

nαs1+βs2mαs1+βs2
anam

=
1
2

k∑
n=1

k∑
m=1

(np ±mp)2 anam

(nm)αs1 (nm)βs2

≤

[
1
2

k∑
n=1

k∑
m=1

(np ±mp)2 anam

[(nm)αs1 ]1/α

]α

×

1
2

k∑
n=1

k∑
m=1

(np ±mp)2 anam[
(nm)βs2

]1/β


β

=
[
I±k (p, s1)

]α [
I±k (p, s2)

]β
for any k ≥ 1.

Taking the limit over k →∞, and using the representation (3.2) we deduce the
desired result.

Corollary 1. The function I (s) := ψ (s+ 2)ψ (s) − [ψ (s+ 1)]2 is log-convex on
(1,∞) .

For given s, p ∈ R and k ∈ N, k ≥ 1, we consider the sequence

∆k (s, p) :=
1
2

k∑
n=1

k∑
m=1

(an − am)
(

1
ms

− 1
ns

)
1

npmp
,

where an is also a sequence of real numbers.
The following representation result may be stated:

Proposition 10. If an ≥ 0, n ∈ N, n ≥ 1 and p > 1, s ∈ R such that s + p > 1,
then we have the representation

(3.7) lim
k→∞

∆k (s, p) = ψ (p) ζ (s+ p)− ζ (p)ψ (s+ p) ,

where ζ is the Zeta function, i.e.,

ζ (p) :=
∞∑

n=1

1
np
, p > 1.
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Proof. Observe that, by Korkine’s identity, i.e., the equality
m∑

i=1

pi

m∑
i=1

piaibi −
m∑

i=1

piai

m∑
i=1

pibi =
1
2

m∑
i=1

n∑
j=1

pipj (ai − aj) (bi − bj) ,

we have:
k∑

n=1

1
np

k∑
n=1

1
np

· an ·
1
ns
−

k∑
n=1

1
np

· an ·
k∑

n=1

1
np

· 1
ns

=
1
2

m∑
i=1

n∑
j=1

1
npmp

(an − am)
(

1
ns
− 1
ms

)
= −∆k (s, p)

for each k ≥ 1 and p, s as above.
Since

lim
k→∞

k∑
n=1

1
np

= ζ (p) and lim
k→∞

k∑
n=1

an

np
= ψ (p)

then, the limk→∞ ∆k (p, s) exists and the identity (3.7) holds true.

Corollary 2. If the sequence (an)n∈N is decreasing (increasing) then

(3.8) ζ (s+ p)ψ (p) ≤ (≥) ζ (p)ψ (s+ p)

for p > 1 and s ∈ R such that s+ p > 1.

The following result concerning some bounds for the quantity

ζ (s+ p)ψ (p)− ζ (p)ψ (s+ p)

in the case when the sequences (an)n∈N satisfy some Lipschitz type conditions may
be stated as well:

Proposition 11. Assume that for (an)n∈N there exists the constants γ,Γ ∈ R such
that

(3.9) γ ≤ an − am

n−m
≤ Γ

for any n,m ∈ N, n 6= m. Then for p > 2 and s ∈ R such that , p+ s > 2

γ [ζ (p− 1) ζ (p+ s)− ζ (p) ζ (p+ s− 1)](3.10)

≤ ζ (s+ p)ψ (p)− ζ (p)ψ (s+ p)

≤ Γ [ζ (p− 1) ζ (p+ s)− ζ (p) ζ (p+ s− 1)] .

Proof. With the assumption (3.9) we have

(3.11)
1
2
γ

k∑
n=1

k∑
m=1

(n−m)
(

1
ms

− 1
ns

)
1

npmp

≤ ∆k (p, s) ≤ 1
2
Γ

k∑
n=1

k∑
m=1

(n−m)
(

1
ms

− 1
ns

)
1

npmp

for each k ∈ N, k ≥ 1.
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Further, utilising Korkine’s identity produces

Ik :=
1
2

k∑
n=1

k∑
m=1

(n−m)
(

1
ms

− 1
ns

)
1

npmp

=
k∑

n=1

n

np
·

k∑
n=1

1
ns
· 1
np

−
k∑

n=1

1
np

k∑
n=1

1
np

· n · 1
ns

=
k∑

n=1

1
np−1

k∑
n=1

1
np+s

−
k∑

n=1

1
np

k∑
n=1

1
np+s−1

for each k ∈ N, k ≥ 1 and so, for p > 2, s ∈ R with p+ s, p+ s− 1 > 1, we have

lim
k→∞

Ik = ζ (p− 1) ζ (p+ s)− ζ (p) ζ (p+ s− 1) .

Taking the limit in (3.11) we deduce the desired inequality (3.10).

The following simple result also holds:

Proposition 12. Let an ≥ 0, n ∈ N, n ≥ 1 and s > 1.

(i) If an is increasing and

M := sup
k∈N
k≥1

{
1
k

k∑
n=1

an

}
,

then

(3.12) ψ (s) ≤M · ζ (s) .

(ii) If an is decreasing and

m := inf
k∈N
k≥1

{
1
k

k∑
n=1

an

}
then

(3.13) ψ (s) ≥ m · ζ (s) .

Proof. Utilising Korkine’s identity we have for each k ≥ 1 that

(3.14) k

k∑
n=1

an

ns
−

k∑
n=1

an

k∑
n=1

1
ns

=
1
2

k∑
n=1

k∑
m=1

(an − am)
(

1
ns
− 1
ms

)
(i) If an is increasing, then by (3.14) we deduce that

(3.15)
k∑

n=1

an

ns
≤

(
1
k

k∑
n=1

an

)
k∑

n=1

1
ns

≤M
k∑

n=1

1
ns
.

Taking the limit over k →∞ in (3.15) we deduce (3.12).
(ii) Goes likewise and we omit the details.
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4. Inequalities in Terms of the First and Second Derivatives

We consider the sequence

(4.1) Sk (s) :=
1
2

k∑
n=1

k∑
m=1

(lnn− lnm)2

nsms
anam, s > 1,

where k ∈ N, k ≥ 1.
The following representation holds:

Proposition 13. Consider the Dirichlet series ψ (s) :=
∑∞

n=1
an

ns with an ≥ 0 and
assumed to be uniformly convergent on (1,∞). Then

(4.2) S (s) := lim
k→∞

Sk (s) = ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2 (≥ 0) ,

for s ∈ (1,∞) .

Proof. It is obvious that

ψ′ (s) = −
∞∑

n=1

an

ns
· lnn

and

ψ′′ (s) =
∞∑

n=1

an

ns
· (lnn)2

for s > 1.
Now, observe that for k ≥ 1

Sk (s) =
1
2

k∑
n=1

k∑
m=1

[
(lnn)2 + (lnm)2 − 2 lnn · lnm

nsms

]
anam

=
k∑

n=1

an

ns
· (lnn)2

k∑
n=1

an

ns
−

( ∞∑
n=1

an

ns
· lnn

)2

,

and since

lim
k→∞

k∑
n=1

an

ns
· (lnn)2 = ψ′′ (s) and lim

k→∞

∞∑
n=1

an

ns
· lnn = ψ′ (s)

then (4.2) holds.

The following result concerning the convexity property of S (s) may be stated.

Proposition 14. The function S (s) = ψ′′ (s)ψ (s) −
[
ψ′ (s)

]2 is log-convex on
(1,∞) .

The proof follows by making use of the representation (4.1) and utilising the
Hölder inequality for double sums.

The details are omitted.

Theorem 1. We have the inequality:

(4.3) (0 ≤)ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2 ≤ ψ (s− 1)ψ (s+ 1)− [ψ (s)]2 ,

for any s > 2.
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Proof. We use the following inequality between the geometric mean and the loga-
rithmic mean of two positive numbers a, b, a 6= b,

b− a

ln b− ln a
>
√
ab,

to state that
lnn− lnm
n−m

≤ 1√
nm

for n,m ≥ 1, n 6= m.

This obviously implies that

(lnn− lnm)2 ≤ (n−m)2

nm

for each n,m ≥ 1 and then from (4.1)

Sk (s) ≤ 1
2

k∑
n=1

k∑
m=1

(n−m)2

ns+1ms+1
anam(4.4)

=
k∑

n=1

1
ns−1

an ·
k∑

n=1

an

ns+1
−

(
k∑

n=1

an

ns

)2

,

for each k ∈ N, k ≥ 1.
Since

lim
k→∞

k∑
n=1

an

ns
= ψ (s)

for s > 1, hence by (4.4) we deduce the desired inequality (4.3).

In [4], F. Topsøe obtained amongst others, the following inequality for the loga-
rithmic function:

(4.5) |lnx| ≤ 1
2

∣∣∣∣x− 1
x

∣∣∣∣ for x > 0.

We may state the following result based on (4.5):

Theorem 2. We have the inequality:

(4.6) (0 ≤)ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2 ≤ 1
2

[
ψ (s+ 2)ψ (s− 2)− [ψ (s)]2

]
,

for any s > 3.

Proof. On making use of (4.5), we have:

(lnn− lnm)2 ≤ 1
2

( n
m
− m

n

)2

for n,m ∈ N, n 6= m;n,m ≥ 1

which gives from (4.1):

Sk (s) ≤ 1
4

k∑
n=1

k∑
m=1

n4 − 2n2m2 +m4

ns+2ms+2
anam

=
1
2

 k∑
n=1

an

ns−2

k∑
n=1

an

ns+2
−

(
k∑

n=1

an

ns

)2


which implies the desired inequality (4.6).
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Remark 7. From (4.3) and (4.6), a computer comparison of the bounds

B1 (s) := ψ (s− 1)ψ (s+ 1)− [ψ (s)]2 , s > 2

and
B2 (s) :=

1
2

[
ψ (s+ 2)ψ (s− 2)− [ψ (s)]2

]
, s > 3

for s > 3 and ψ = ζ (Zeta function) shows that

B2 (s) ≤ B1 (s) for all s > 3.

However, we do not have an analytic proof for this inequality.

The following result may be stated as well:

Theorem 3. We have the inequality:

(4.7) (0 ≤)ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2 ≤ ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2
for any s > 1.

Proof. We use the following elementary inequality for the logarithmic mean:
b− a

ln b− ln a
≤ a+ b

2
, a, b > 0 (a 6= b)

which implies:
lnn− lnm
n−m

≥ 2
n+m

for n,m ∈ N, n 6= m;n,m ≥ 1.

This obviously implies:

(lnn− lnm)2 ≥ 4 (n−m)2

(n+m)2
for any n,m ∈ N, n,m ≥ 1.

Consequently, with the above notation, we have from (4.1):

Sk (s) ≥ 2
k∑

n=1

k∑
m=1

(n−m)2

(n+m)2
· 1
nsms

anam(4.8)

= 2
k∑

n=1

k∑
m=1

(n−m)2(
1
n + 1

m

)2 · 1
ns+2ms+2

anam

≥ 1
2

k∑
n=1

k∑
m=1

(n−m)2

ns+2ms+2
· anam

=: Lk (s) ,

where we have used the fact that 1
n + 1

m ≤ 2 for n,m ≥ 1.
Observing that

Lk (s) =
1
2

k∑
n=1

k∑
m=1

n2 − 2nm+m2

ns+2ms+2
anam(4.9)

=
k∑

n=1

an

ns+2

k∑
n=1

an

ns
−

(
k∑

n=1

an

ns+1

)2

= Mk (s) ,
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then, on making use of (4.8) and (4.9) we deduce:

(4.10) Sk (s) ≥Mk (s) for k ≥ 1 and s > 1.

Further, since
lim

k→∞
Sk (s) = ψ′′ (s)ψ (s)−

[
ψ′ (s)

]2
and

lim
k→∞

Mk (s) = ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2

uniformly for s > 1, then by (4.10) we conclude the desired result (4.7).

Remark 8. Theorem 3 provides a lower bound for ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2 whereas
Theorems 1 and 2 give upper bounds.

5. Other Inequalities for the First Derivative

In this section we establish some bounds for the quantity

(5.1) Q (s) :=
ζ ′ (s)
ζ (s)

− ψ′ (s)
ψ (s)

, s > 1

provided ψ is defined by the Dirichlet series

(5.2) ψ (s) :=
∞∑

n=1

an

ns
, s > 1

and ζ is the Zeta function.
We observe that if (an)n∈N is nonnegative and monotonic nondecreasing (non-

increasing) then (see [1]):

(5.3)
ζ ′ (s)
ζ (s)

≥ (≤)
ψ′ (s)
ψ (s)

for s > 1.

The following result may be stated as well.

Theorem 4. If (an)n∈N is nonnegative and nondecreasing, then we have the reverse
inequality:

(5.4) (0 ≤)
ζ ′ (s)
ζ (s)

− ψ′ (s)
ψ (s)

≤
ψ
(
s− 1

2

)
ζ
(
s+ 1

2

)
− ψ

(
s+ 1

2

)
ζ
(
s− 1

2

)
ζ (s)ψ (s)

,

for any s > 3
2 .

Proof. Consider the sequence:

Qk (s) :=
∑k

n=1
an ln n

ns ·
∑k

n=1
1

ns −
∑k

n=1
an

ns ·
∑k

n=1
ln n
ns

ζ (s)ψ (s)
for k ≥ 1.

We observe that for s > 1 the sequence Qn (s) is uniformly convergent and

lim
n→∞

Qn (s) = Q (s) =
ζ ′ (s)
ζ (s)

− ψ′ (s)
ψ (s)

, s > 1.

Utilising Korkine’s identity, we also have:

(5.5) Qk (s) =
1
2
·
∑k

n=1

∑k
m=1 (an − am) (lnn− lnm) 1

nsms∑k
n=1

1
ns ·

∑k
n=1

an

ns

for k ≥ 1, s > 1.
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Utilising the fact that (an) is monotonic nondecreasing, the elementary inequal-
ity:

lnn− lnm
n−m

≤ 1√
nm

, n,m ≥ 1, n 6= m,

we get

Qk (s) ≤ 1
2
·

∑k
n=1

∑k
m=1 (an − am) (n−m) 1

ns+ 1
2 ms+ 1

2∑k
n=1

1
ns ·

∑k
n=1

an

ns

(5.6)

=

∑k
n=1

an·n
ns+ 1

2
·
∑k

n=1
1

ns+ 1
2
−
∑k

n=1
an

ns+ 1
2
·
∑k

n=1
n

ns+ 1
2∑k

n=1
1

ns ·
∑k

n=1
an

ns

=: Vk (s) , s > 1.

Since

lim
k→∞

Vk (s) =
ψ
(
s− 1

2

)
ζ
(
s+ 1

2

)
− ψ

(
s+ 1

2

)
ζ
(
s− 1

2

)
ζ (s)ψ (s)

for s > 3
2 , then by (5.6) we deduce the desired result (5.4).

The following upper bound for Q (s) , s > 1, can be established as well:

Theorem 5. With the assumptions of Theorem 4, we have

(5.7) (0 ≤)
ζ ′ (s)
ζ (s)

− ψ′ (s)
ψ (s)

≤ 1
2
·
[
ψ (s− 1) ζ (s+ 1)− ψ (s+ 1) ζ (s− 1)

ζ (s)ψ (s)

]
for any s > 2.

Proof. From inequality (4.9) we have:

lnn− lnm
n−m

≤ n+m

2nm
, for any n,m ≥ 1, n 6= m,

which from (5.5) implies that

Qk (s) ≤ 1
4
·
∑k

n=1

∑k
m=1 (an − am) (n−m) n+m

ns+1ms+1∑k
n=1

1
ns ·

∑k
n=1

an

ns

(5.8)

=
1
2
·
∑k

n=1
an·n2

ns+1 ·
∑k

n=1
1

ns+1 −
∑k

n=1
an

ns+1 ·
∑k

n=1
n2

ns+1∑k
n=1

1
ns ·

∑k
n=1

an

ns

=: Wk (s) , s > 1.

Since

lim
k→∞

Wk (s) =
1
2
· ψ (s− 1) ζ (s+ 1)− ψ (s+ 1) ζ (s− 1)

ζ (s)ψ (s)
for s > 1, the inequality (5.8) produces the desired result (5.7).

Finally, the following refinement of the inequality (5.3) may be stated as well:

Theorem 6. With the assumptions of Theorem 4, we have the inequality:

(5.9) 0 ≤ ζ (s+ 1)
ζ (s)

− ψ (s+ 1)
ψ (s)

≤ ζ ′ (s)
ζ (s)

− ψ′ (s)
ψ (s)

,

for s > 1.
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Proof. Utilising the inequality:

lnn− lnm
n−m

≤ 2
n+m

, for n,m ∈ N, n 6= m, n,m ≥ 1,

we have

Qk (s) ≥ 1
2
·
∑k

n=1

∑k
m=1 (an − am) (n−m) · 2

n+m · 1
nsms∑k

n=1
1

ns ·
∑k

n=1
an

ns

(5.10)

≥ 1
2
·
∑k

n=1

∑k
m=1 (an − am) (n−m) · 1

ns+1ms+1∑k
n=1

1
ns ·

∑k
n=1

an

ns

= Zk (s)

since for n,m > 1,
2

n+m
=

2
nm

(
1
n + 1

m

) ≥ 1
nm

.

Observing that:

Zk (s) =
∑k

n=1
an·n
ns+1 ·

∑k
n=1

1
ns+1 −

∑k
n=1

an

ns+1 ·
∑k

n=1
n

ns+1∑k
n=1

1
ns ·

∑k
n=1

an

ns

=
∑k

n=1
an

ns ·
∑k

n=1
1

ns+1 −
∑k

n=1
an

ns+1 ·
∑k

n=1
n

ns+1∑k
n=1

1
ns ·

∑k
n=1

an

ns

for k ≥ 1, and

lim
k→∞

Zk (s) =
ζ (s+ 1)ψ (s)− ψ (s+ 1) ζ (s)

ψ (s) ζ (s)

=
ζ (s+ 1)
ζ (s)

− ψ (s+ 1)
ψ (s)

,

then by (5.10) we deduce the desired result (5.9).

Remark 9. The inequalities (5.4), (5.7) and (5.9) are obviously equivalent to:

(0 ≤)ζ ′ (s)ψ (s)− ψ′ (s) ζ (s)(5.11)

≤ ψ

(
s− 1

2

)
ζ

(
s+

1
2

)
− ψ

(
s+

1
2

)
ζ

(
s− 1

2

)
, s >

3
2

(0 ≤)ζ ′ (s)ψ (s)− ψ′ (s) ζ (s)(5.12)

≤ 1
2

[ψ (s− 1) ζ (s+ 1)− ψ (s+ 1) ζ (s− 1)] , s > 2

and

(0 ≤)ζ (s+ 1)ψ (s)− ψ (s+ 1) ζ (s)(5.13)

≤ ζ ′ (s)ψ (s)− ψ′ (s) ζ (s) , s > 1

respectively.
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Now, consider ψ (s) :=
∑∞

n=1
ln n
hs , s > 1. We observe that this Dirichlet series

satisfies the assumptions of Theorem 4. Also ψ (s) = −ζ (s) , s > 1. Therefore, by
(5.11), (5.12) and (5.13) we have the inequalities:

(0 ≤)ζ ′′ (s) ζ (s)−
[
ζ ′ (s)

]2(5.14)

≤ ζ ′
(
s+

1
2

)
ζ

(
s− 1

2

)
− ζ ′

(
s− 1

2

)
ζ

(
s+

1
2

)
, s >

3
2

(0 ≤)ζ ′′ (s) ζ (s)−
[
ζ ′ (s)

]2(5.15)

≤ 1
2
[
ζ ′ (s+ 1) ζ (s− 1)− ζ ′ (s− 1) ζ (s+ 1)

]
, s > 2

and

(0 ≤)ζ ′ (s+ 1) ζ (s)− ζ (s+ 1) ζ ′ (s)(5.16)

≤ ζ ′′ (s) ζ (s)−
[
ζ ′ (s)

]2
, s > 2

respectively.
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