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GENERALIZATIONS OF WEIGHTED OSTROWSKI TYPE
INEQUALITIES FOR MAPPINGS OF BOUNDED VARIATION
AND THEIR APPLICATIONS

KUEI-LIN TSENG, SHIOW RU HWANG, AND S.S. DRAGOMIR

ABSTRACT. In this paper, we establish some generalizations of weighted Os-
trowski type Inequalities, and give several applications for r—moments, expec-
tation of a continuous random variable and the Beta mapping.

1. INTRODUCTION

Throughout this section, let a < binR, I, :a =29 <21 < --- <z, = b be

a partition of the interval [a,b], §; € [x;,xi41] (i =0,1,...,n=1), l; := ®j41 — 25
(t=0,1,....,.n—1) and v (1) = _omnax lli.

The Ostrowski’s inequality [10, p. 469], states that if f’ exists and is bounded
on (a,b), then, for all z € [a, ], we have the inequality

< li(b—a)z—f—(x—a;b)z

[l = sup [f'(t)] < oo
t€(a,b)

||f/||oo’

(1.1)

b
/ F(Hydt — £(x) (b — a)

where

Now if f is as above, then we can approximate the integral fj f(t)dt by the
Ostrowski quadrature formula Ao (f, I, £), having an error given by Ro (f, In, &),

where
n

Ao (filn, €)== f (&) L

i=1

and the remainder satisfies the estimation

1, wioi i\
1+ (6= 2 )]nfnoo.

For some recent results which generalize, improve and extend this classic inequal-
ity , see the papers [2 [3, [8, [I].

Recently, Dragomir [2] proved the following two Ostrowski type inequalities for
mappings of bounded variation:

n—1
[Ro (f.1n,6) <>
1=0
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Theorem 1. Let f : [a,b] — R be a mapping of bounded variation. Then

/f Dt — f() (b—a)| < _B(b—a)—&-’x—a;bu\b/(f)

a
for all x € [a,b], where \/a (f) denotes the total variation of f on the interval [a,b] .
The constant % is the best possible.

(1.2)

Theorem 2. Let Ao (f, In,&) and Ro (f,1.,§) be as above and let f and \/Z (f)
be defined as in Theorem[], then we have

b
[ 10t = 40 (£.1,,) + Ro (£.1,.).
and the remainder term Ro (f, I,,§) salisfies the estimation

1 T +x1+1
< —L: -
[Bo (f. In,§)l < | jmax {211 +1&

Vi
:rZ—HcZH }\i/

< [;1/(1) + max | —

i=0,1,...,n—1

b
(1.3) <v\ (/)

The constant % is sharp in (|1.3)).

The Simpson’s inequality, states that if f() exists and is bounded on (a, b), then
f(a) + f(b) a+b (b—a)’ H (4)H
/ 7®) { 2 +2f — 2880 /

‘)f(4)"oo = sup ‘f(4) (t)‘ < 0.

te(a,b)

where

Let f be as above, then we can approximate the integral f; f () dt by the
Simpson’s quadrature formula Ag (f, I,), having an error given by Rg (f, I,), where

n—1

As(f.1) = Z% [f(l’i) + f (@iv1) Lof (% +l’i+1>} 7

. 2 2
=0

and the remainder satisfies the estimation

n—1
1
IRs (/)| < 5o |79 000
=0

For some recent results which generalize, improve and extend this classic inequal-

ity (1.4), see the papers [4] — [7], [12] — [14].
Recently, Dragomir [6] proved the following two Simpson type inequalities for
mappings of bounded variation:

Theorem 3. Let f and \/b (f) be defined as in Theorem . Then

f(a >;f<)+2f<a;b>} g;(b—a)\i/(f)

(1.5)
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The constant % is the best possible.

Theorem 4. Let As(f,I,) and Rs (f,I,) be as above and let f and \/Z (f) be
defined as in Theorem[3, then we have

b
/ F(0)dt = As (f.1) + Rs (. 1)

and the remainder term Rg (f, I,) satisfies the estimation

b
(1.6 Rs (f.1)] < 50V ().

The constant % 18 the best possible.

In this paper, we establish weighted generalizations of Theorems [I]—[] and give
several applications for r—moments, expectation of a continuous random variable
and the Beta mapping.

2. SOME INTEGRAL INEQUALITIES

Theorem 5. Let 0 < a < 1, g : [a,b] — [0,00) be continuous and positive on
(a,b) and let h : [a,b] — R be differentiable such that h' (t) = g (t) on [a,b]. Let
c=h7'((1-2)h(a)+ $h(b)) andd =h~" ($h(a) + (1 — 2) h(b)). Suppose that
f and \/Z (f) are defined as in Theorem . Then, for all z € [c,d], we have

e | [ rwewa-[0-asw e O] [y a
<K\,
where
L8 [7 g (®)dt + | (o) - M0 fo<a<!
K= q max {152 [T g(t)dt + |h(2) - MO o Potya}, ifd<a<?
s J2 g (t)dt, if2<a<i

and \/Z (f) denotes the total variation of f on the interval [a,b]. In , the
constant % as 0 < a< % and the constant 1_7’1 as % < «a <1 are the best possible.

Proof. Let x € [c,d]. Define
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Using integration by parts, we have the following identity

/abs(t)df(t)

B (O AR I ey
+[h(t)—[%h(a)+(l—§)hb ttb—/ft

- @) +a- {0 gy /f

e =|a-af@ra LOHI0 }/ /f

It is well known [Il p. 159] that if p, v : [a,b] — R are such that u is continuous

on [a,b] and v is of bounded variation on [a, b], then f w(t) dv (t) exists and [I p.
177]

b b
. dv su V).
(2.3 [ nwav) < s n 1V @
Now, using and ., we have
a b
(2.4) /f {1a)f(x)+a~f();rm}/ag(t)dt

Since h( ) — [(1- a) h(a) + $h(b)] is increasing on the interval [a,z), h(t) —

[% + (1 —2)h(b)] is increasing on the interval [z,b], max{c,p} = ZE2 +
|0’— p| for o, p € R and
— — b
) - MO < L2 - n@) =152 [Ca0ar
we have
sup |s (t)]
t€la,b]
— max {h(x) - [(1 - %) h(a) + %h(b)} :
[Fh(@) + (1= ) hb)| = h@), 5 [k(e) - ha)]}
~ max { L2 h(e) — (@) + () - MO @) h(a)}}
— b a o b
:max{l . /ag(t)dt—&— hz) — M );h(b) 75/@ g(t)dt}

25) =K.

Thus, by (2.4) and (2.5, we obtain ([2.1]).
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Suppose 0 < o < 1. We assume that the inequality (2.1) holds with a constant
Cy >0, ie.,

/abf(t)g(t) dt - [(1 —a)f (@) +a f();f(b)] /abg(t) i

b b
o [ g(t)dt+’h(w>—WH-\/(f)-

0 asteg [a,b]\{h*l (M)}

1 - h(a)+h(b)
I oast=hn"t (af)

<

Let

f(t) =
2

Then f is with bounded variation on [a, b], and

b b
[ rog@a=o. V=1

and for ¢ = h! (M) , we get in 1’

— =0
which implies the constant :L*Ta is the best possible.
Suppose % < a < 1. We assume that the inequality li holds with a constant

Cy >0, ie.,

/abf(t)g(t) dt — [(1 ~a)f (@) +a- W] /:g(t) “

Let
0 ast€la,b)
f@) =
1 ast=b

Then f is with bounded variation on [a, b] and

we get in (2.1))

@
—<C
5 S02

which implies the constant $ is the best possible.
This completes the proof. i

Under the conditions of Theorem [5} we have the following remarks and corollar-
ies.
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Remark 1.
(1) If we choose « =0 and g (t) = 1,h (t) =t on [a,b], then the inequality
reduces to .

(2) If we choose a = %, g(t) = 1,h(t) =t on [a,b] and x = “£°, then the

inequality reduces to .
(3) If we choose o = 0, then for all x € [a,b] the inequality reduces to the
following inequality

b b
/ F(tyg (0)dt — f () - / g (1) dt

b b
< [;/ g(t)dt+’h(x)—WH'\/(f),

a

which is the “weighted Ostrowski” inequality.
(4) If we choose o = 1, then the inequality reduces to the following in-
equality

b b
[ 1wgyan- LI [y a

b

b
<5 [ awa-\ )

a

which is the “weighted trapezoid” inequality.
(5) If we choose o = & and v = h™* (M), then the inequality
reduces to the following inequality

/abf(t)g (t)dt ~ Ef @)+ W} /abg o

b

<y [ owaVo

which is the “weighted Simpson” inequality.

Corollary 1. Let 0 < a <1, f € C [a,b]. Then we have the inequality

fla) + £(b)

/abf(t)g (t)dt — {(1 —a)f(z)+a- 2} /abg e < KA

for all x € [c,d], where ||-||; is the Li—norm, namely

b
£ = [ 17 ©lar
Corollary 2. Let 0 < o < 1, f : [a,b] — R be a Lipschitzian mapping with the
constant L > 0. Then we have the inequality

b b
[ sts0a-|a-a @ e L0 o <xro-o

2

for all x € [c,d].

Corollary 3. Let f : [a,b] — R be a monotonic mapping. Then we have the
inequality

/abﬂt)g(t)dt— [(1—a>f<x>+a~f(‘l)+ﬂb)] /abgof)dt

2
< K-[f(b) - f(a)l
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for all x € [c,d].

Remark 2. The following inequality is well-known in the literature as the Bullen’s
inequality [T1] p. 141):

26) /:f(t)dtéb;a{f(a;b>+f(a);f(b)}g(b—a)f(“);f(b)?

where f : [a,b] — R is convex. Using the above results and , letting o = %,
g(t)=1 ona,b], h(t) =t on [a,b], x = “;rb, we obtain the following error bound
of the first inequality in

)

b—a a+b f(a b
0<2{f<2>+ ] /f Hdt < = b—a\a/

provided that f is of bounded variation on [a,].

3. APPLICATIONS FOR QUADRATURE FORMULA

Throughout this section, let @ < b in R and let «, g and h be defined as in The-
orem Let f:[a,b] = R,andlet I,, : a =29 < 21 < --- < &, = b be a partition of
[a, b] and ¢; = At ((1 — %) h,(xz) + %h(xi_,_l)), d; = ht (%h(xz) + (1 — %) h(xz+1))
and C; € [¢i,dy] (i =0,1,...,n—1). Put L; := h(zi11) — h(z;) = [ g (t) dt and
define the sum '

|
—

n

Ao (f,9,h, I, ) = [(1 —a)f(¢) +a-

%

CORFICVINS
2 2

Il
=]

and
b
O(fag7halnac):/ f(t)g<t)dt_AO (fag7h7[n7<.)'

We have the following approximation of the integral ff ft)g (¢)dt.
Theorem 6. Let [ be defined as in Theorem[5 and let

b
/ F(Og()dt = Ao (f.9. 1 1. O) + Ro (f.9 1y In,C),

then, the remainder term Ro (f, g, h, I, ) satisfies the estimation

n—1 Ti41
|Ro (£,9:h, T, Ol < > K \/ (f)
=0 T;

< M -

IN

/\
had
i

=

IN

b
V()
)

)
V
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where
159 L4 | (g) — Mot Fo<as
e max{liTaLi"')h(Ci)_% ’%Li}7 if3<a<?
%Lia Zf%ﬁagl
(i:071,...7n—1),
—a h(zi)+h(zit1) .
o {55kt [ - Mot [} o <asy
la . _w «@ }
M, = tﬂggﬁkl{nmx{ S0 (L) + | (C) ! v},
if3<a<?
Lay(L)+ max ‘h(()_w fo<a<l
2 1=0,1,...,n—1 ? 2 ) S <35
-2 h(zi)th(zit1) | «
ay e ) gmax fmax {50 (D) + h () - M| gy )} ),
ifi<a<?
%V(L)v Zf%<0é<1
(1-a)v(l), f0<ac<i
M3 = 7
sv(L), if§§a§1

and v (L) :=max{L; i =0,1,...,n—1}. In the third inequality of (3.1)), the con-
stant % as 0 < a< % and the constant 1_7" as % < a <1 are the best possible.
Proof. Apply Theorem [5| on the intervals [z;,2;11] (i =0,1,--- ;n — 1) to get

Tit1

[ swswar= 0w @y o LSO <10y (),

2

forallt=0,1,...,n—1.
Using this and the generalized triangle inequality, we have

|RO (f7ga h7]n7<)|

< i /xﬁl f(t)g (t)dt — [(1 —a)f () +a- f(x)+2f(wm] L
=0 Zi
EDAVAL
i=0 3
n—12Tit1 b b
= (io,rlr,lé.),(n1Ki> Z \/ (f) =M -\/(f) < M,- \/(f)

1=0 x4 a a

and the first inequality, second inequality and third inequality in (3.1]) are proved.
For the fourth inequality in (3.1]), we observe that
h(z;) + h(xit1

17
<%, (i=01,....,n—1);
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and then W) + h( ) )
xi) + (x4 -«
) — <
izog}?},{nq h(<) 2 - 2
and My < Ms. Thus the theorem is proved. i

Under the conditions of Theorem [6] we have the following remarks and corollar-
ies.
Remark 3.
(1) If we choose o =0 and g (t) =1,h(t) =t onfa,bl and&, = ¢, (i=0,1,...,n — 1),
then the inequality reduces to .
(2) If we choose o = L, g(t) = 1,h(t) = t on [a,b] and (; = =5t
(i=0,1,...,n—1), then the third inequality in reduces to @
Corollary 4. In Theorem@ let f :[a,b] — R be a Lipschitzian mapping with the
constant L > 0 and choose (; := h™1 (%) (i=0,1,...,n—1). Then

A9y (L), ifo

sv(L), if

IN
IN

NO[—=

(07
M1 =

IN
IN
—_

(&%

N[ =

and we have the formula

b
/ F(Og()dt = Ao (f.9, 1y I, ) + Ro (f. 9, 1y In, C)

n—1
i=0
and the remainder satisfies the estimation
[Ro (f,9,h. In, )| < MiL(b—a).

Corollary 5. In Theorem@ let f : ]a,b] — R be a monotonic mapping and let
¢ (1=0,1,...,n—1) and My be defined as in Corollary . Then the remainder
Ro (f,9,h, I,,C) satisfies the estimation

|Ro (f,9,h, I, Q)] < My - [f (b) = f (a)].

The case of equidistant divisions is embodied in the following corollary and
remark:

Corollary 6. Suppose that
xi=ht [h(a)—l—l(h(b)_h(a))] (i=0,1,...,n)

n

and
Li = h(.TiJrl) — h(ml)

:h‘(b);h(a):i/bg(t)dt (i=0,1,....,n—1).

In Theorem@, let (; =h~! (%) (i=0,1,...,n—1), then

(12_na) fabg(t) dt, if0<a<
M1 =
o Poydt, ifi<a<i

a
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and we have the formula

b
t/ FOg(0)dt = Ao (f 9.1, 1, ) + Ro (19, b In, O

_L S f(@) + [(@is)
=5 [s0a S a-a s a LT

+RO (f;gah,In7C)

and the remainder satisfies the estimate

b

‘RO (f?gvhv-[nvé-” éA]\ll\/(.]c)

a

Remark 4. If we want to approzimate the integral fab f@®)g)dtby Ao (f,9,h,In, Q)
with an accuracy less than € > 0, we need at least n. € N points for the partition
I,,, where

Oe) Py (t)dt, if0<a<?i )
Ks = b , Ne = KE\/(f) +1
& [ g(t)dt, ifi<a<i v

and [r] denotes the Gaussian integer of r € R.

4. SOME INEQUALITIES FOR RANDOM VARIABLES

Throughout this section, let 0 < @ < b in R, r € R, and let X be a continuous
random variable having the continuous probability density function g : [a,b] —
[0, 00) which is positive on (a,b) and assume that the r—moment

b
B ()= [ tg(at
is finite.

Theorem 7. The inequality
1" 40" —
(4.1) ’ET(X)— {(1—0[)-<h1 <2)> a2 ; ”gK-|b’“—a’“|

holds where h (t) = fi g (z)dx (t € [a,b]) and

55, ifo<ac<

N[

K =

IN
—

s «

<
N|—
IN

[N]]e]

Proof. If we put f(t) =t", and z = h~! (w) in Corollary then

e ifp<a

IA
N

K=K =
if

IN
IN
—

1
5 S«

R
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and we obtain the inequality

11

(4.2) - {(1 —a)-f (h—l (h (@) . h (b)»
b
ra IO Py al <5100 1 0.
Since
b
/f B, (X), h(a)=0, M@=/9@ﬁ=L
(@+f0) _ar+br L
: PV and 70) - @) =),

(4.1) follows from (4.2)).

If we choose r = 1 in Theorem [7] then we have the following remark:

Remark 5. If E(X) is the expectation of the random variable X, then

’E(X)— {(1—a)~h_1 (1>+a-a+bH<K-(b—a).

2 2

5. AN INEQUALITY FOR THE BETA MAPPING

The following mapping is well-known in the literature as the Beta mapping:

1
ﬂ@ﬂw:/t“%r4f*ﬁ,p>aq>u
0

Theorem 8. Let p > 0, ¢ > 1 and n be a positive integer. Then the inequality

1n—l IR o 1 199-1
« i\°? 7 P
5.1 - — — 1—1( - 1-—
(5.1) |B(p,q) np; 5 l (n> + (n)
1949—1
204+ 1\7 _
1—a)|l-— <M
+ ( a)l ( 5 ) <
holds where
- (12;;‘), f0<a<i
M =
« 1
2np? Zf§§a§1

Proof. If we put a = 0, b = 1, f(t) = (1—8)""", g(t) = t*»~* and h(t) =
(t€[0,1]) in Corollary 6, then,["g(t)dt = L, h=1(t) = (pt)7 (t € [0,1]),

p?

a

that the inequality (5.1)) holds. N

(D)7 (i=0,1,....n), (=2 (i=0,1,...,n—1), Vo(f) =1 and M = My, s

Io=ls
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