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GENERALIZATIONS OF WEIGHTED OSTROWSKI TYPE
INEQUALITIES FOR MAPPINGS OF BOUNDED VARIATION

AND THEIR APPLICATIONS

KUEI-LIN TSENG, SHIOW RU HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we establish some generalizations of weighted Os-
trowski type Inequalities, and give several applications for r−moments, expec-

tation of a continuous random variable and the Beta mapping.

1. Introduction

Throughout this section, let a < b in R, In : a = x0 < x1 < · · · < xn = b be
a partition of the interval [a, b], ξi ∈ [xi, xi+1] (i = 0, 1, . . . , n− 1), li := xi+1 − xi

(i = 0, 1, . . . , n− 1) and ν (l) = max
i=0,1,...,n−1

li.

The Ostrowski’s inequality [10, p. 469], states that if f ′ exists and is bounded
on (a, b), then, for all x ∈ [a, b], we have the inequality

(1.1)

∣∣∣∣∣
∫ b

a

f(t)dt− f(x) (b− a)

∣∣∣∣∣ ≤
[

1
4

(b− a)2 +
(

x− a + b

2

)2
]
‖f ′‖∞ ,

where
‖f ′‖∞ := sup

t∈(a,b)

|f ′ (t)| < ∞.

Now if f is as above, then we can approximate the integral
∫ b

a
f (t) dt by the

Ostrowski quadrature formula AO (f, In, ξ), having an error given by RO (f, In, ξ),
where

AO (f, In, ξ) :=
n∑

i=1

f (ξi) li,

and the remainder satisfies the estimation

|RO (f, In, ξ)| ≤
n−1∑
i=0

[
1
4
l2i +

(
ξi −

xi−1 + xi

2

)2
]
‖f ′‖∞ .

For some recent results which generalize, improve and extend this classic inequal-
ity (1.1), see the papers [2, 3, 8, 9].

Recently, Dragomir [2] proved the following two Ostrowski type inequalities for
mappings of bounded variation:
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Theorem 1. Let f : [a, b] → R be a mapping of bounded variation. Then

(1.2)

∣∣∣∣∣
∫ b

a

f(t)dt− f(x) (b− a)

∣∣∣∣∣ ≤
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(f)

for all x ∈ [a, b], where
∨b

a (f) denotes the total variation of f on the interval [a, b] .
The constant 1

2 is the best possible.

Theorem 2. Let AO (f, In, ξ) and RO (f, In, ξ) be as above and let f and
∨b

a (f)
be defined as in Theorem 1, then we have∫ b

a

f(t)dt = AO (f, In, ξ) + RO (f, In, ξ) ,

and the remainder term RO (f, In, ξ) satisfies the estimation

|RO (f, In, ξ)| ≤ max
i=0,1,...,n−1

[
1
2
li +

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣] b∨
a

(f)

≤
[
1
2
ν (l) + max

i=0,1,...,n−1

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣] b∨
a

(f)

≤ ν (l)
b∨
a

(f) .(1.3)

The constant 1
2 is sharp in (1.3).

The Simpson’s inequality, states that if f (4) exists and is bounded on (a, b), then

(1.4)

∣∣∣∣∣
∫ b

a

f(t)dt− b− a

3

[
f(a) + f(b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ ≤ (b− a)5

2880

∥∥∥f (4)
∥∥∥
∞

,

where ∥∥∥f (4)
∥∥∥
∞

:= sup
t∈(a,b)

∣∣∣f (4) (t)
∣∣∣ < ∞.

Let f be as above, then we can approximate the integral
∫ b

a
f (t) dt by the

Simpson’s quadrature formula AS (f, In), having an error given by RS (f, In), where

AS (f, In) :=
n−1∑
i=0

li
3

[
f (xi) + f (xi+1)

2
+ 2f

(
xi + xi+1

2

)]
,

and the remainder satisfies the estimation

|RS (f, In)| ≤ 1
2880

∥∥∥f (4)
∥∥∥
∞

n−1∑
i=0

l5i .

For some recent results which generalize, improve and extend this classic inequal-
ity (1.4), see the papers [4] – [7], [12] – [14].

Recently, Dragomir [6] proved the following two Simpson type inequalities for
mappings of bounded variation:

Theorem 3. Let f and
∨b

a (f) be defined as in Theorem 2. Then

(1.5)

∣∣∣∣∣
∫ b

a

f(t)dt− b− a

3

[
f(a) + f(b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ ≤ 1
3

(b− a)
b∨
a

(f) .
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The constant 1
3 is the best possible.

Theorem 4. Let AS (f, In) and RS (f, In) be as above and let f and
∨b

a (f) be
defined as in Theorem 3, then we have∫ b

a

f(t)dt = AS (f, In) + RS (f, In)

and the remainder term RS (f, In) satisfies the estimation

(1.6) |RS (f, In)| ≤ 1
3
ν (l)

b∨
a

(f) .

The constant 1
3 is the best possible.

In this paper, we establish weighted generalizations of Theorems 1 – 4, and give
several applications for r−moments, expectation of a continuous random variable
and the Beta mapping.

2. Some Integral Inequalities

Theorem 5. Let 0 ≤ α ≤ 1, g : [a, b] → [0,∞) be continuous and positive on
(a, b) and let h : [a, b] → R be differentiable such that h′ (t) = g (t) on [a, b] . Let
c = h−1

((
1− α

2

)
h(a) + α

2 h(b)
)

and d = h−1
(

α
2 h(a) +

(
1− α

2

)
h(b)

)
. Suppose that

f and
∨b

a (f) are defined as in Theorem 4. Then, for all x ∈ [c, d], we have

(2.1)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣
≤ K ·

b∨
a

(f) ,

where

K :=


1−α

2

∫ b

a
g (t) dt +

∣∣∣h (x)− h(a)+h(b)
2

∣∣∣ , if 0 ≤ α ≤ 1
2

max
{

1−α
2

∫ b

a
g (t) dt +

∣∣∣h (x)− h(a)+h(b)
2

∣∣∣ , α
2

∫ b

a
g (t) dt

}
, if 1

2 < α < 2
3

α
2

∫ b

a
g (t) dt, if 2

3 ≤ α ≤ 1

and
∨b

a (f) denotes the total variation of f on the interval [a, b]. In (2.1), the
constant α

2 as 0 ≤ α ≤ 1
2 and the constant 1−α

2 as 2
3 ≤ α ≤ 1 are the best possible.

Proof. Let x ∈ [c, d]. Define

s (t) :=

 h (t)−
[(

1− α
2

)
h(a) + α

2 h(b)
]
, t ∈ [a, x)

h (t)−
[

α
2 h(a) +

(
1− α

2

)
h(b)

]
, t ∈ [x, b]

.
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Using integration by parts, we have the following identity∫ b

a

s (t) df (t)

=
[
h (t)−

[(
1− α

2

)
h(a) +

α

2
h(b)

]]
· f (t)

∣∣∣t=x

t=a
−

∫ x

a

f(t)g (t) dt

+
[
h (t)−

[α

2
h(a) +

(
1− α

2

)
h(b)

]]
· f (t)

∣∣∣t=b

t=x
−

∫ b

x

f(t)g (t) dt

=
[
(1− α) f (x) + α · f(a) + f(b)

2

]
[h(b)− h(a)]−

∫ b

a

f(t)g (t) dt

=
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt.(2.2)

It is well known [1, p. 159] that if µ, ν : [a, b] → R are such that µ is continuous
on [a, b] and ν is of bounded variation on [a, b], then

∫ b

a
µ (t) dν (t) exists and [1, p.

177]

(2.3)

∣∣∣∣∣
∫ b

a

µ (t) dν (t)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|µ (t)|
b∨
a

(ν) .

Now, using (2.2) and (2.3), we have

(2.4)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣
≤ sup

t∈[a,b]

|s (t)|
b∨
a

(f) .

Since h (t) −
[(

1− α
2

)
h(a) + α

2 h(b)
]

is increasing on the interval [a, x), h (t) −[
α
2 h(a) +

(
1− α

2

)
h(b)

]
is increasing on the interval [x, b] , max{σ, ρ} = σ+ρ

2 +
1
2 |σ − ρ| for σ, ρ ∈ R and∣∣∣∣h (x)− h(a) + h(b)

2

∣∣∣∣ ≤ 1− α

2
(h (b)− h (a)) =

1− α

2

∫ b

a

g (t) dt,

we have

sup
t∈[a,b]

|s (t)|

= max
{

h(x)−
[(

1− α

2

)
h(a) +

α

2
h(b)

]
,[α

2
h(a) +

(
1− α

2

)
h(b)

]
− h(x),

α

2
[h(b)− h(a)]

}
= max

{
1− α

2
[h(b)− h(a)] +

∣∣∣∣h(x)− h (a) + h (b)
2

∣∣∣∣ ,
α

2
[h(b)− h(a)]

}
= max

{
1− α

2

∫ b

a

g (t) dt +
∣∣∣∣h(x)− h (a) + h (b)

2

∣∣∣∣ ,
α

2

∫ b

a

g (t) dt

}
= K.(2.5)

Thus, by (2.4) and (2.5), we obtain (2.1).
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Suppose 0 ≤ α ≤ 1
2 . We assume that the inequality (2.1) holds with a constant

C1 > 0, i.e.,∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣
≤

[
C1

∫ b

a

g (t) dt +
∣∣∣∣h (x)− h(a) + h(b)

2

∣∣∣∣
]
·

b∨
a

(f) .

Let

f (t) =


0 as t ∈ [a, b]

∖{
h−1

(
h(a)+h(b)

2

)}
1
2 as t = h−1

(
h(a)+h(b)

2

) .

Then f is with bounded variation on [a, b], and∫ b

a

f(t)g (t) dt = 0,
b∨
a

(f) = 1

and for x = h−1
(

h(a)+h(b)
2

)
, we get in (2.1)

1− α

2
≤ C1,

which implies the constant 1−α
2 is the best possible.

Suppose 2
3 ≤ α ≤ 1. We assume that the inequality (2.1) holds with a constant

C2 > 0, i.e.,∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣
≤ C2

∫ b

a

g (t) dt ·
b∨
a

(f) .

Let

f (t) =

 0 as t ∈ [a, b)

1 as t = b
.

Then f is with bounded variation on [a, b] and∫ b

a

f(t)g (t) dt = 0,
b∨
a

(f) = 1,

we get in (2.1)
α

2
≤ C2

which implies the constant α
2 is the best possible.

This completes the proof.

Under the conditions of Theorem 5, we have the following remarks and corollar-
ies.
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Remark 1.
(1) If we choose α = 0 and g (t) ≡ 1, h (t) = t on [a, b], then the inequality (2.1)

reduces to (1.2).
(2) If we choose α = 1

3 , g (t) ≡ 1, h (t) = t on [a, b] and x = a+b
2 , then the

inequality (2.1) reduces to (1.5).
(3) If we choose α = 0, then for all x ∈ [a, b] the inequality (2.1) reduces to the

following inequality∣∣∣∣∣
∫ b

a

f(t)g (t) dt− f (x) ·
∫ b

a

g (t) dt

∣∣∣∣∣
≤

[
1
2

∫ b

a

g (t) dt +
∣∣∣∣h (x)− h(a) + h(b)

2

∣∣∣∣
]
·

b∨
a

(f) ,

which is the “weighted Ostrowski” inequality.
(4) If we choose α = 1, then the inequality (2.1) reduces to the following in-

equality∣∣∣∣∣
∫ b

a

f(t)g (t) dt− f (a) + f (b)
2

∫ b

a

g (t) dt

∣∣∣∣∣ ≤ 1
2

∫ b

a

g (t) dt ·
b∨
a

(f)

which is the “weighted trapezoid” inequality.
(5) If we choose α = 1

3 and x = h−1
(

h(a)+h(b)
2

)
, then the inequality (2.1)

reduces to the following inequality∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
2
3
f (x) +

1
3
· f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣ ≤ 1
3

∫ b

a

g (t) dt ·
b∨
a

(f)

which is the “weighted Simpson” inequality.

Corollary 1. Let 0 ≤ α ≤ 1, f ∈ C(1) [a, b] . Then we have the inequality∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣ ≤ K · ‖f ′‖1

for all x ∈ [c, d] , where ‖·‖1 is the L1−norm, namely

‖f ′‖1 :=
∫ b

a

|f ′ (t)| dt.

Corollary 2. Let 0 ≤ α ≤ 1, f : [a, b] → R be a Lipschitzian mapping with the
constant L > 0. Then we have the inequality∣∣∣∣∣

∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣ ≤ KL (b− a)

for all x ∈ [c, d].

Corollary 3. Let f : [a, b] → R be a monotonic mapping. Then we have the
inequality∣∣∣∣∣

∫ b

a

f(t)g (t) dt−
[
(1− α) f (x) + α · f(a) + f(b)

2

] ∫ b

a

g (t) dt

∣∣∣∣∣
≤ K · |f (b)− f (a)|
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for all x ∈ [c, d].

Remark 2. The following inequality is well-known in the literature as the Bullen’s
inequality [11, p. 141]:

(2.6)
∫ b

a

f(t)dt ≤ b− a

2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
≤ (b− a)

f (a) + f (b)
2

,

where f : [a, b] → R is convex. Using the above results and (2.1), letting α = 1
2 ,

g (t) ≡ 1 on [a, b] , h (t) = t on [a, b], x = a+b
2 , we obtain the following error bound

of the first inequality in (2.6),

0 ≤ b− a

2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
−

∫ b

a

f(t)dt ≤ 1
4

(b− a)
b∨
a

(f) ,

provided that f is of bounded variation on [a, b].

3. Applications for Quadrature Formula

Throughout this section, let a < b in R and let α, g and h be defined as in The-
orem 5. Let f : [a, b] → R, and let In : a = x0 < x1 < · · · < xn = b be a partition of
[a, b] and ci = h−1

((
1− α

2

)
h(xi) + α

2 h(xi+1)
)
, di = h−1

(
α
2 h(xi) +

(
1− α

2

)
h(xi+1)

)
and ζi ∈ [ci, di] (i = 0, 1, . . . , n− 1). Put Li := h(xi+1)− h(xi) =

∫ xi+1

xi
g (t) dt and

define the sum

AO (f, g, h, In, ζ) :=
n−1∑
i=0

[
(1− α) f (ζi) + α · f(xi) + f(xi+1)

2

]
Li

and

RO (f, g, h, In, ζ) =
∫ b

a

f(t)g(t)dt−AO (f, g, h, In, ζ) .

We have the following approximation of the integral
∫ b

a
f(t)g (t) dt.

Theorem 6. Let f be defined as in Theorem 5 and let∫ b

a

f(t)g(t)dt = AO (f, g, h, In, ζ) + RO (f, g, h, In, ζ) ,

then, the remainder term RO (f, g, h, In, ζ) satisfies the estimation

|RO (f, g, h, In, ζ)| ≤
n−1∑
i=0

Ki

xi+1∨
xi

(f)

≤ M1 ·
b∨
a

(f)

≤ M2 ·
b∨
a

(f)

≤ M3 ·
b∨
a

(f) ,(3.1)
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where

Ki :=


1−α

2 Li +
∣∣∣h (ζi)−

h(xi)+h(xi+1)
2

∣∣∣ , if 0 ≤ α ≤ 1
2

max
{

1−α
2 Li +

∣∣∣h (ζi)−
h(xi)+h(xi+1)

2

∣∣∣ , α
2 Li

}
, if 1

2 < α < 2
3

α
2 Li, if 2

3 ≤ α ≤ 1
(i = 0, 1, . . . , n− 1) ,

M1 :=



max
i=0,1,...,n−1

{
1−α

2 Li +
∣∣∣h (ζi)−

h(xi)+h(xi+1)
2

∣∣∣} , if 0 ≤ α ≤ 1
2

max
i=0,1,...,n−1

{
max

{
1−α

2 ν (L) +
∣∣∣h (ζi)−

h(xi)+h(xi+1)
2

∣∣∣ , α
2 ν (L)

}}
,

if 1
2 < α < 2

3

α
2 ν (L) , if 2

3 ≤ α ≤ 1

,

M2 :=



1−α
2 ν (L) + max

i=0,1,...,n−1

∣∣∣h (ζi)−
h(xi)+h(xi+1)

2

∣∣∣ , if 0 ≤ α ≤ 1
2

max
i=0,1,...,n−1

{
max

{
1−α

2 ν (L) +
∣∣∣h (ζi)−

h(xi)+h(xi+1)
2

∣∣∣ , α
2 ν (L)

}}
,

if 1
2 < α < 2

3

α
2 ν (L) , if 2

3 ≤ α ≤ 1

,

M3 :=

 (1− α) ν (L) , if 0 ≤ α ≤ 2
3

α
2 ν (L) , if 2

3 ≤ α ≤ 1
,

and ν (L) := max {Li |i = 0, 1, . . . , n− 1} . In the third inequality of (3.1), the con-
stant α

2 as 0 ≤ α ≤ 1
2 and the constant 1−α

2 as 2
3 ≤ α ≤ 1 are the best possible.

Proof. Apply Theorem 5 on the intervals [xi, xi+1] (i = 0, 1, · · · , n− 1) to get∣∣∣∣∫ xi+1

xi

f(t)g (t) dt−
[
(1− α) f (ζi) + α · f(xi) + f(xi+1)

2

]
Li

∣∣∣∣ ≤ Ki

xi+1∨
xi

(f) ,

for all i = 0, 1, . . . , n− 1.
Using this and the generalized triangle inequality, we have

|RO (f, g, h, In, ζ)|

≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f(t)g (t) dt−
[
(1− α) f (ζi) + α · f(xi) + f(xi+1)

2

]
Li

∣∣∣∣
≤

n−1∑
i=0

Ki

xi+1∨
xi

(f)

≤
(

max
i=0,1,...,n−1

Ki

)
·

n−1∑
i=0

xi+1∨
xi

(f) = M1 ·
b∨
a

(f) ≤ M2 ·
b∨
a

(f)

and the first inequality, second inequality and third inequality in (3.1) are proved.
For the fourth inequality in (3.1), we observe that∣∣∣∣h (ζi)−

h(xi) + h(xi+1)
2

∣∣∣∣ ≤ 1− α

2
· Li (i = 0, 1, . . . , n− 1);
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and then

max
i=0,1,...,n−1

∣∣∣∣h (ζi)−
h(xi) + h(xi+1)

2

∣∣∣∣ ≤ 1− α

2
ν (L)

and M2 ≤ M3. Thus the theorem is proved.

Under the conditions of Theorem 6, we have the following remarks and corollar-
ies.

Remark 3.
(1) If we choose α = 0 and g (t) ≡ 1, h (t) = t on [a, b] and ξi = ζi (i = 0, 1, . . . , n− 1),

then the inequality (3.1) reduces to (1.3).
(2) If we choose α = 1

3 , g (t) ≡ 1, h (t) = t on [a, b] and ζi = xi+xi+1
2

(i = 0, 1, . . . , n− 1), then the third inequality in (3.1) reduces to (1.6).

Corollary 4. In Theorem 6, let f : [a, b] → R be a Lipschitzian mapping with the
constant L > 0 and choose ζi := h−1

(
h(xi)+h(xi+1)

2

)
(i = 0, 1, . . . , n− 1). Then

M1 :=


(1−α)

2 ν (L) , if 0 ≤ α ≤ 1
2

α
2 ν (L) , if 1

2 ≤ α ≤ 1

and we have the formula∫ b

a

f(t)g(t)dt = AO (f, g, h, In, ζ) + RO (f, g, h, In, ζ)

=
n−1∑
i=0

[
(1− α) f (ζi) + α · f(xi) + f(xi+1)

2

]
Li + RO (f, g, h, In, ζ)

and the remainder satisfies the estimation

|RO (f, g, h, In, ζ)| ≤ M1L (b− a) .

Corollary 5. In Theorem 6, let f : [a, b] → R be a monotonic mapping and let
ζi (i = 0, 1, . . . , n− 1) and M1 be defined as in Corollary 4. Then the remainder
RO (f, g, h, In, ζ) satisfies the estimation

|RO (f, g, h, In, ζ)| ≤ M1 · |f (b)− f (a)| .
The case of equidistant divisions is embodied in the following corollary and

remark:

Corollary 6. Suppose that

xi := h−1

[
h (a) +

i (h(b)− h(a))
n

]
(i = 0, 1, . . . , n)

and

Li := h(xi+1)− h(xi)

=
h(b)− h(a)

n
=

1
n

∫ b

a

g (t) dt (i = 0, 1, . . . , n− 1) .

In Theorem 6, let ζi = h−1
(

h(xi)+h(xi+1)
2

)
(i = 0, 1, . . . , n− 1), then

M1 :=


(1−α)

2n

∫ b

a
g (t) dt, if 0 ≤ α ≤ 1

2

α
2n

∫ b

a
g (t) dt, if 1

2 ≤ α ≤ 1
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and we have the formula∫ b

a

f(t)g(t)dt = AO (f, g, h, In, ζ) + RO (f, g, h, In, ζ)

=
1
n

∫ b

a

g (t) dt ·
n−1∑
i=0

[
(1− α) f (ζi) + α · f(xi) + f(xi+1)

2

]
Li

+ RO (f, g, h, In, ζ)

and the remainder satisfies the estimate

|RO (f, g, h, In, ζ)| ≤ M1 ·
b∨
a

(f) .

Remark 4. If we want to approximate the integral
∫ b

a
f (t) g (t) dt by AO (f, g, h, In, ζ)

with an accuracy less than ε > 0, we need at least nε ∈ N points for the partition
In, where

Kε :=


(1−α)

2ε

∫ b

a
g (t) dt, if 0 ≤ α ≤ 1

2

α
2ε

∫ b

a
g (t) dt, if 1

2 ≤ α ≤ 1
, nε :=

[
Kε ·

b∨
a

(f)

]
+ 1

and [r] denotes the Gaussian integer of r ∈ R.

4. Some Inequalities for Random Variables

Throughout this section, let 0 < a < b in R, r ∈ R, and let X be a continuous
random variable having the continuous probability density function g : [a, b] →
[0,∞) which is positive on (a, b) and assume that the r−moment

Er (X) :=
∫ b

a

trg (t) dt,

is finite.

Theorem 7. The inequality

(4.1)
∣∣∣∣Er (X)−

[
(1− α) ·

(
h−1

(
1
2

))r

+ α · ar + br

2

]∣∣∣∣ ≤ K · |br − ar|

holds where h (t) =
∫ t

a
g (x) dx (t ∈ [a, b]) and

K :=


(1−α)

2 , if 0 ≤ α ≤ 1
2

α
2 , if 1

2 ≤ α ≤ 1
.

Proof. If we put f (t) = tr, and x = h−1
(

h(a)+h(b)
2

)
in Corollary 3, then

K = K =


(1−α)

2 , if 0 ≤ α ≤ 1
2

α
2 , if 1

2 ≤ α ≤ 1
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and we obtain the inequality

(4.2)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt−
[
(1− α) · f

(
h−1

(
h (a) + h (b)

2

))

+α · f(a) + f(b)
2

] ∫ b

a

g (t) dt

∣∣∣∣∣ ≤ K · |f (b)− f (a)| .

Since ∫ b

a

f(t)g (t) dt = Er (X) , h (a) = 0, h (b) =
∫ b

a

g (t) dt = 1,

f (a) + f (b)
2

=
ar + br

2
, and |f (b)− f (a)| = |br − ar| ,

(4.1) follows from (4.2).

If we choose r = 1 in Theorem 7, then we have the following remark:

Remark 5. If E(X) is the expectation of the random variable X, then∣∣∣∣E (X)−
[
(1− α) · h−1

(
1
2

)
+ α · a + b

2

]∣∣∣∣ ≤ K · (b− a) .

5. An Inequality for the Beta Mapping

The following mapping is well-known in the literature as the Beta mapping :

β (p, q) :=
∫ 1

0

tp−1 (1− t)q−1
dt, p > 0, q > 0.

Theorem 8. Let p > 0, q > 1 and n be a positive integer. Then the inequality

(5.1)

∣∣∣∣∣∣β (p, q)− 1
np

n−1∑
i=0

α

2

[
1−

(
i

n

) 1
p

]q−1

+

[
1−

(
i + 1

n

) 1
p

]q−1


+ (1− α)

[
1−

(
2i + 1

2n

) 1
p

]q−1


∣∣∣∣∣∣ ≤ M

holds where

M :=


(1−α)
2np , if 0 ≤ α ≤ 1

2

α
2np , if 1

2 ≤ α ≤ 1
.

Proof. If we put a = 0, b = 1, f(t) = (1− t)q−1, g(t) = tp−1 and h (t) = tp

p

(t ∈ [0, 1]) in Corollary 6, then,
∫ b

a
g(t)dt = 1

p , h−1 (t) = (pt)
1
p (t ∈ [0, 1]), xi =

( i
n )

1
p (i = 0, 1, . . . , n), ζi = 2i+1

2np (i = 0, 1, . . . , n− 1),
∨b

a(f) = 1 and M = M1, so
that the inequality (5.1) holds.
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[10] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and their Integrals

and Derivatives, Kluwer Academic Publishers, 1994.
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