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ON A CONJECTURE ON THE SYMMETRIC MEANS

PENG GAO

Abstract. In this paper, we study some inequalities involving the symmetric means. The main
result is a proof of a conjecture of Alzer et al..

1. Introduction

Let Mn,r(x;q) be the generalized weighted means: Mn,r(x;q) = (
∑n

i=1 qix
r
i )

1
r , where Mn,0(x;q)

denotes the limit of Mn,r(x;q) as r → 0+, x = (x1, . . . , xn), q = (q1, . . . , qn) with qi > 0 (1 ≤ i ≤ n)
satisfying

∑n
i=1 qi = 1. In this paper, we let q = min qi and always assume 0 < x1 ≤ x2 ≤ · · · ≤ xn.

To any given x and t ≥ 0, we set x′ = (1 − x1, . . . , 1 − xn),xt = (x1 + t, . . . , xn + t) and
x−1 = (1/x1, . . . , 1/xn).

Let k ∈ {0, 1, . . . , n}, the k-th symmetric function En,k of x and its mean Pn,k are defined by

En,k(x) =
∑

1≤i1<···<ik≤n

k∏
j=1

xij , 1 ≤ k ≤ n; En,0 = 1; P k
n,k(x) =

En,k(x)(
n
k

) .

We define An(x;q) = Mn,1(x;q), Gn(x) = Mn,0(x;q),Hn(x;q) = Mn,−1(x;q) and we shall write
Mn,r for Mn,r(x;q), Mn,r,t for Mn,r(xt;q) and M

′
n,r for Mn,r(x′) if xn < 1 and similarly for other

means when there is no risk of confusion. We further denote σn =
∑n

i=1 qi(xi −An)2.
When xn < 1, we define

∆′
r,s =

M ′
n,r −M ′

n,s

Mn,r −Mn,s
.

In order to include the case of equality for various inequalities in our discussions, for any given
inequality, we define 0/0 to be the number which makes the inequality an equality. The author [7,
Theorem 2.1] has shown that

Theorem 1.1. For r > s, the following inequalities are equivalent:
r − s

2x1
σn ≥ Mn,r −Mn,s ≥ r − s

2xn
σn,(1.1)

xn

1− xn
≥ ∆′

r,s ≥ x1

1− x1
,(1.2)

where in (1.2) we require xn < 1.

In fact, one can further show that (see [9]) the two inequalities in Theorem 1.1 are equivalent to

(1.3)
xn

t + x1
≥ Mn,r,t −Mn,s,t

Mn,r −Mn,s
≥ x1

t + xn

being valid for all t ≥ 0.
We note that inequality (1.1) doesn’t hold for all pairs r, s (see [7]). Cartwright and Field [5]

first proved the validity of (1.1) for r = 1, s = 0. For other extensions and refinements of (1.1),
see [3], [11], [12], [8], [13] and [9]. Inequality (1.2) is commonly referred as the additive Ky Fan’s
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2 PENG GAO

inequality. We refer the reader to the survey article [2] and the references therein for an account
of Ky Fan’s inequality.

When inequality (1.1) holds for some r, s, one can often expect for a better result than (1.3),
namely

xn

t + xn
≥ Mn,r,t −Mn,s,t

Mn,r −Mn,s
≥ x1

t + x1
.

In this paper, we study some Ky Fan-type inequalities involving the symmetric means. Much of
our study was motivated by the following well-known Newton’s inequalities (see [10], Theorem 52)

Theorem 1.2. For 0 < k < n,
P k−1

n,k−1P
k+1
n,k+1 ≤ P 2k

n,k.

Alzer et al. [4] conjectured that:

Conjecture 1.1. For xi ∈ (0, 1/2], 2 ≤ k ≤ n,

(1.4)
E

1/k
n,k (x−1)

E
1/k
n,k (x′−1)

≤
E

1/(k−1)
n,k−1 (x−1)

E
1/(k−1)
n,k−1 (x′−1)

.

In view of the above discussion on the analogues between Ky Fan-type inequalities involving x′’s
and those involving xt’s, it is natural to expect that if Conjecture 1.1 is true, it should also be true
if one replaces x′ there with xt. Note that

P j
n,j(x

−1) = Pn−j
n,n−j(x)/Pn

n,n(x).

Using this, we can recast the analogue of (1.4) with x′ replaced by xt as
n− k + 1

k − 1
lnPn,n−k+1 −

n− k

k
lnPn,n−k −

n

k(k − 1)
lnGn

≥ n− k + 1
k − 1

lnPn,n−k+1,t −
n− k

k
lnPn,n−k,t −

n

k(k − 1)
lnGn,t.

It is easy to deduce the above inequality from the following analogues for Newton’s inequalities.
Namely, for 2 ≤ k ≤ n− 1,

(1.5) lnP 2k
n,k − lnP k+1

n,k+1 − lnP k−1
n,k−1 ≥ lnP 2k

n,k,t − lnP k+1
n,k+1,t − lnP k−1

n,k−1,t.

In fact, in view of the similar results obtained in [9], one expect stronger inequalities to hold and
we will prove in this paper the following result:

Theorem 1.3. For 2 ≤ k ≤ n− 1, t ≥ 0,

x2
n(lnP 2k

n,k − lnP k+1
n,k+1 − lnP k−1

n,k−1) ≥ (xn + t)2(lnP 2k
n,k,t − lnP k+1

n,k+1,t − lnP k−1
n,k−1,t),

x2
1(lnP 2k

n,k − lnP k+1
n,k+1 − lnP k−1

n,k−1) ≤ (x1 + t)2(lnP 2k
n,k,t − lnP k+1

n,k+1,t − lnP k−1
n,k−1,t).

By using a similar method as in the proof of Theorem 2.1 in [7], one can deduce from the above
theorem the following corollaries and we shall omit the proofs here.

Corollary 1.1. For 2 ≤ k ≤ n− 1,
σn

(n− 1)x2
1

≥ lnP 2k
n,k − lnP k+1

n,k+1 − lnP k−1
n,k−1 ≥

σn

(n− 1)x2
n

.

Corollary 1.2. For 2 ≤ k ≤ n− 1, xn < 1/2,

x2
n(lnP 2k

n,k − lnP k+1
n,k+1 − lnP k−1

n,k−1) ≥ (1− xn)2(lnP
′2k
n,k − lnP

′k+1
n,k+1 − lnP

′k−1
n,k−1),

x2
1(lnP 2k

n,k − lnP k+1
n,k+1 − lnP k−1

n,k−1) ≤ (1− x1)2(lnP
′2k
n,k − lnP

′k+1
n,k+1 − lnP

′k−1
n,k−1).

It is also easy to deduce from Corollary 1.2 the following stronger version of (1.4):
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Corollary 1.3. For 2 ≤ k ≤ n− 1, xn ≤ 1/2,

x2
n

(n− k + 1
k − 1

lnPn,n−k+1 −
n− k

k
lnPn,n−k −

n

k(k − 1)
lnGn

)
≥ (1− xn)2

(n− k + 1
k − 1

lnP ′
n,n−k+1 −

n− k

k
lnP ′

n,n−k −
n

k(k − 1)
lnG′

n

)
,

with the above inequality reversed if one replaces xn by x1 above.

In order to prove Conjecture 1.1, one can in fact use results which are weaker than Theorem 1.3.
For example, it’s easy to check that Corollary 1.1 will imply Conjecture 1.1. In Section 3, we will
give another proof of Conjecture 1.1 by giving a direct proof of Corollary 1.1.

It is conjectured by Alzer [1] that for xi ∈ (0, 1/2], qi = 1/n, the following inequality holds:

(1− 1
n

)An +
1
n

Hn −Gn ≥ (1− 1
n

)A′
n +

1
n

H ′
n −G′

n.

Once again one may ask whether the analogue of the above inequality holds with x′ replaced by xt

throughout. We will show that this is indeed true in Section 4.

2. Proof of Theorem 1.3

We first state a few lemmas:

Lemma 2.1. Let 2 ≤ r ≤ n, x = (x1, . . . , xn), x1 ≤ x2 ≤ · · · ≤ xn. There exists y = (y1, . . . , yr)
with x1 ≤ y1 ≤ · · · ≤ yr ≤ xn such that Pn,i(x) = Pr,i(y), 0 ≤ i ≤ r. Moreover, if x1, . . . , xn are
not all equal, then y1, . . . , yr are also not all equal.

The above lemma is due to Wu, Wang and Fu [14] (see also [2, p. 317-318]), it will play a key
role in our proof of Theorem 1.3.

Lemma 2.2. Theorem 1.3 holds for the case k = n− 1.

Proof. Since the proofs are similar, we will only prove the first inequality in Theorem 1.3. In this
case we need to show that for t ≥ 0,

g(x) = f(x)− f(xt) ≥ 0,

where

f(x) = x2
n

(
2 ln

(
n−1(

n∑
i=1

1
xi

)
)
− ln

((n

2

)−2

(
n∑

i,j=1
i6=j

1
xixj

)
))

.

If x1 = xn, then there is nothing to prove. Otherwise let 0 < x = x1 = · · · = xk < xk+1 for some
1 ≤ k < n, then

∂g

∂x
=

k∑
i=1

∂g

∂xi
.

We want to show that the right-hand side above is non-positive. It suffices to show each single term
in the sum is non-negative. Without loss of generality, we now show that ∂g/∂x1 ≤ 0. Calculation
yields that

∂g

∂x1
= h(xt)− h(x),

where

h(x) =
x2

n

∑n
i=1

xi−x1

x2
i

x3
1(
∑n

i=1
1
xi

)(
∑n

i,j=1
i6=j

1
xixj

)
.
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It is easy to check that
xn

xi
≥ xn + t

xi + t
,

x1

xi
≤ x1 + t

xi + t
.

We then deduce that ∂g/∂x1 ≤ 0. By letting x → xk+1 and repeating the above argument, we
conclude that g(x) ≥ g(xn, xn, . . . , xn) = 0 which completes the proof. �

Lemma 2.3. For t ≥ 0, inequality (1.5) holds for 2 ≤ k ≤ n− 1. Equivalently,

(2.1) 2k
P k−1

n,k−1

P k
n,k

− (k + 1)
P k

n,k

P k+1
n,k+1

− (k − 1)
P k−2

n,k−2

P k−1
n,k−1

≤ 0.

Proof. Let
f(x, t) = lnP 2k

n,k,t − lnP k+1
n,k+1,t − lnP k−1

n,k−1,t.

Since x, t are arbitrary, (1.5) is equivalent to

(2.2)
∂f

∂t

∣∣∣
t=0

≤ 0.

Using the relation that for 1 ≤ k ≤ n,

∂ lnPn,k,t

∂t

∣∣∣
t=0

=
P k−1

n,k−1

P k
n,k

,

we see that (2.2) is just (2.1). By Lemma 2.1, there exists y = (y1, . . . , yk+1) with x1 ≤ y1 ≤ · · · ≤
yk+1 ≤ xn such that Pn,i(x) = Pk+1,i(y), 0 ≤ i ≤ k + 1. It follows from this and Theorem 1.2 that

2k
P k−1

n,k−1(x)

P k
n,k(x)

− (k + 1)
P k

n,k(x)

P k+1
n,k+1(x)

− (k − 1)
P k−2

n,k−2(x)

P k−1
n,k−1(x)

= 2k
P k−1

k+1,k−1(y)

P k
k+1,k(y)

− (k + 1)
P k

k+1,k(y)

P k+1
k+1,k+1(y)

− (k − 1)
P k−2

k+1,k−2(y)

P k−1
k+1,k−1(y)

.

So it suffices to show the right-hand side expression above is non-positive. In this case note that
Lemma 2.2 implies (for the same reason as (1.5) being equivalent to (2.2))

2(lnP 2k
k+1,k− lnP k+1

k+1,k+1− lnP k−1
k+1,k−1)+xn

(
2k

P k−1
k+1,k−1

P k
n,k

− (k +1)
P k

k+1,k

P k+1
k+1,k+1

− (k−1)
P k−2

k+1,k−2

P k−1
k+1,k−1

)
≤ 0.

Now the lemma follows from this and Theorem 1.2. �

Now we are ready to prove Theorem 1.3. As the proofs are similar, we will only prove the first
inequality here. As in the proof of Lemma 2.3, it suffices to show that for 2 ≤ k ≤ n− 1,

(2.3) 2(lnP 2k
n,k − lnP k+1

n,k+1 − lnP k−1
n,k−1) + xn

(
2k

P k−1
n,k−1

P k
n,k

− (k + 1)
P k

n,k

P k+1
n,k+1

− (k − 1)
P k−2

n,k−2

P k−1
n,k−1

)
≤ 0.

By Lemma 2.1, there exists y = (y1, . . . , yk+1) with x1 ≤ y1 ≤ · · · ≤ yk+1 ≤ xn such that
Pn,i(x) = Pk+1,i(y), 0 ≤ i ≤ k + 1. It follows from this and Lemma 2.3 that

xn

(
2k

P k−1
n,k−1(x)

P k
n,k(x)

− (k + 1)
P k

n,k(x)

P k+1
n,k+1(x)

− (k − 1)
P k−2

n,k−2(x)

P k−1
n,k−1(x)

)
≤ yk+1

(
2k

P k−1
k+1,k−1(y)

P k
k+1,k(y)

− (k + 1)
P k

k+1,k(y)

P k+1
k+1,k+1(y)

− (k − 1)
P k−2

k+1,k−2(y)

P k−1
k+1,k−1(y)

)
.

Thus it suffices to prove (2.3) for the case n = k + 1 and this case is just Lemma 2.2 and this
completes our proof of Theorem 1.3.
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3. Another Proof of Conjecture 1.1

As mentioned in the introduction, it suffices to prove Corollary 1.1 in order to establish Conjec-
ture 1.1. In this section, we will make use of An,Hn and Mn,2 and we will assume throughout this
section that the weights associated to them are always qi = 1/n.

Before we give a direct proof of Corollary 1.1, we would like to give an account of a motivation
of this by pointing out that we may regard P k

n,k/P k−1
n,k−1, 1 ≤ k ≤ n as certain “means”, in the sense

that for any constant c > 0,
P k

n,k(cx)

P k−1
n,k−1(cx)

= c
P k

n,k(x)

P k−1
n,k−1(x)

,

and that by Theorem 1.2,

x1 ≤ Pn
n,n/Pn−1

n,n−1 ≤ Pn−1
n,n−1/Pn−2

n,n−2 ≤ · · · ≤ P 2
n,2/An ≤ An ≤ xn.

From this point of view, one may regard Theorem 1.3 as Ky Fan-type inequalities concerning
ln(P k

n,k/P k−1
n,k−1)’s. It is then natural to ask whether such inequalities hold with ln(P k

n,k/P k−1
n,k−1)’s

replaced by (P k
n,k/P k−1

n,k−1)’s. We now show that in general this is not true by considering the case
k = n here. First,

(3.1)
Pn−1

n,n−1

Pn−2
n,n−2

−
Pn

n,n

Pn−1
n,n−1

≥
Pn−1

n,n−1,t

Pn−2
n,n−2,t

−
Pn

n,n,t

Pn−1
n,n−1,t

doesn’t hold in general. The left-hand side above can be rewritten as

(3.2)
Pn−1

n,n−1(x)

Pn−2
n,n−2(x)

−
Pn

n,n(x)

Pn−1
n,n−1(x)

=
An(x−1)
P 2

n,2(x−1)
− 1

An(x−1)
=

A2
n(x−1)− P 2

n,2(x
−1)

P 2
n,2(x−1)An(x−1)

.

Using the relation

A2
n − P 2

n,2 =
1

2(n− 1)n2

n∑
i,j=1

(xi − xj)2,

we see that in the case x1 = . . . = xm = x, xm+1 = . . . = xn = y, the last expression in (3.2)
becomes

(3.3)
C(x− y)2

x2y2
(
(m

x + n−m
y )2 − m

x2 − n−m
y2

)
(m

x + n−m
y )

for some positive constant C. For (3.1) to hold in this case, the expression in (3.3) must be greater
than an analogue one with x, y replaced by x + t, y + t respectively and it is easy to see this is not
true when x → 0. Thus (3.1) doesn’t hold in general which further implies that

xn

(Pn−1
n,n−1

Pn−2
n,n−2

−
Pn

n,n

Pn−1
n,n−1

)
≥ (xn + t)

(Pn−1
n,n−1,t

Pn−2
n,n−2,t

−
Pn

n,n,t

Pn−1
n,n−1,t

)
doesn’t hold in general.

Next, we show

(3.4) x1

(Pn−1
n,n−1

Pn−2
n,n−2

−
Pn

n,n

Pn−1
n,n−1

)
≤ (x1 + t)

(Pn−1
n,n−1,t

Pn−2
n,n−2,t

−
Pn

n,n,t

Pn−1
n,n−1,t

)
doesn’t hold in general. We proceed as in the previous case above and similar to (3.3), the left-hand
side expression in (3.4) in the case x1 = . . . = xm = x, xm+1 = . . . = xn = y becomes

C(x− y)2/f(
y

x
),
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where
f(z) = z−1

(
(mz + n−m)2 −mz2 − n + m

)
(mz + n−m).

It is then easy to see that in order for (3.4) to hold, f(z) needs to be an increasing function of z ≥ 1
but one checks that this is not always true.

However, a special analogue of Theorem 1.3 holds:

Theorem 3.1. For 1 ≤ k ≤ n,

xn

(
An −

P k
k,n

P k−1
n,k−1

)
≥ (xn + t)

(
An,t −

P k
n,k,t

P k−1
n,k−1,t

)
,(3.5)

x1

(
An −

P k
k,n

P k−1
n,k−1

)
≤ (x1 + t)

(
An,t −

P k
n,k,t

P k−1
n,k−1,t

)
.

The proof of the above theorem is similar to that of Theorem 1.3, one can first reduce to the
case k = n and then note this case follows from case (v) of Theorem 3.1 in [9] by taking s = −1
there. We will leave the details to the reader.

Similar to Lemma 2.3, one sees that the case k = n of (3.5) is equivalent to

(3.6) An −Hn ≤ (n− 1)xn

(
1−

Pn
n,nPn−2

n,n−2

P
2(n−1)
n,n−1

)
.

Apply the inequality 1 + x ≤ ex with x = ln Pn
n,n + lnPn−2

n,n−1 − lnP
2(n−1)
n,n−1 , we obtain

(3.7)
(
1−

Pn
n,nPn−2

n,n−1

P
2(n−1)
n,n−1

)
≤ 2(n− 1) ln Pn,n−1 − n lnPn,n − (n− 2) ln Pn,n−2.

Note that (see, for example, Theorem 4.2 of [9])

(3.8)
σn

x1
≥ An −Hn ≥

σn

xn
.

We then deduce form (3.6), (3.7) and the right-hand side inequality of (3.8) the right-hand side
inequality in Corollary 1.1 for the case k = n − 1. One can then deduce from this the right-hand
side inequality in Corollary 1.1 for general k’s by following the method in the proof of Theorem
1.3.

What about the left-hand side inequality in Corollary 1.1? As in the discussion above, it suffices
to prove the case k = n− 1. In this case, we may attempt to prove, similar to (3.6),

An −Hn

n− 1
≥ x1

(
2(n− 1) ln Pn,n−1 − n lnPn,n − (n− 2) ln Pn,n−2

)
,

since this combined with the left-hand side inequality of (3.8) will yield the desired result. By a
change of variables: xi → 1/xn−i+1, we can rewrite the above as

(3.9)
An −Hn

(n− 1)AnHn
≥ 1

xn
(lnA2

n − lnP 2
n,2).

Note by Corollary 5.3 in [9], we have

(n− 1)AnHn ≤ nA2
n −M2

n,2 = (n− 1)P 2
n,2.

It follows from this and (3.8) that

An −Hn

(n− 1)AnHn
≥ An −Hn

(n− 1)P 2
n,2

≥ 1
xn

(
A2

n

P 2
n,2

− 1) ≥ 1
xn

ln
A2

n

P 2
n,2

,

where the last inequality above follows from the inequality 1+x ≤ ex by taking x = ln A2
n− lnP 2

n,2.
This established (3.9) which in turn completes our proof of Corollary 1.1.
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4. More Ky Fan-type Inequalities

Our goal in this section is to prove some Ky-Fan type inequalities that are related to those
mentioned in the introduction of the paper.

First, we give some refinements of certain inequalities of Ky Fan-type. This is motivated by
a recent result of Mercer [13], which refines (1.1) for the case r = 1, s = 0 by using Hadamard’s
inequality. A version of his result is given by Theorem 4.3 of [9] (note there is a typo in the original
statement though):

Theorem 4.1 ([9, Theorem 4.3]).
n∑

i=1

qi(xi −An)2

xi + min(xi, An)
≥ An −Gn ≥

n∑
i=1

qi(xi −Gn)2

xi + max(xi, Gn)
,

with equality holding if and only if x1 = · · · = xn.

We now improve the lower bound of (1.1) for the case r = 1,−1 ≤ s < 0 in a similar way. First,
we need a lemma:

Lemma 4.1. Let t > 0. For −1 ≤ α < 0 or α ≥ 1,

tα − αt + α− 1 ≥ α(α− 1)
2 max(1, t)

(t− 1)2.

The above inequality reverses when 0 < α ≤ 1.

Proof. We will prove the assertion for t ≥ 1 and −1 ≤ α < 0 or α ≥ 1. The other cases can be
shown similarly. It suffices to show that

f(t) = tα+1 − αt2 + (α− 1)t− α(α− 1)
2

(t− 1)2 ≥ 0, t ≥ 1.

One checks easily that f ′′(t) ≥ 0 for t ≥ 1 so that f ′(t) ≥ f ′(1) = 0 for t ≥ 1. This implies that
f(t) ≥ f(1) = 0 for t ≥ 1 which completes the proof. �

Theorem 4.2. For −1 ≤ s < 0,

An − Pn,s ≥
1− s

2

n∑
i=1

qi

max(xi, Pn,s)
(xi − Pn,s)2.

Proof. We apply Lemma 4.1 with α = s and t = xi/Pn,s to get

xs
i

P s
n,s

− s
xi

Pn,s
+ s− 1 ≥ s(s− 1)

2Pn,s max(xi, Pn,s)
(xi − Pn,s)2.

Our assertion then follows by multiplying the above inequality by qi and summing over i from 1 to
n. �

Next, we prove an analogue of a conjecture of Alzer mentioned at the end of Section 1:

Theorem 4.3. For xi > 0, qi = 1/n, t ≥ 0,

(1− 1
n

)An +
1
n

Hn −Gn ≥ (1− 1
n

)An,t +
1
n

Hn,t −Gn,t.

Proof. We may assume n ≥ 2 here. Let

f(x, t) = (1− 1
n

)An,t +
1
n

Hn,t −Gn,t.

Again it suffices to show that
∂f

∂t

∣∣∣
t=0

≤ 0.
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Direct calculations show that this is equivalent to

(1− 1
n

) +
1
n

(
n− (n− 1)

Pn
n,nPn−2

n,n−2

P
2(n−1)
n,n−1

)
−

Pn−1
n,n−1

Pn−1
n,n

≤ 0.

We can recast the above as

(4.1) (n− 1)
(
1−

Pn
n,nPn−2

n,n−2

P
2(n−1)
n,n−1

)
≤ n

(Pn−1
n,n−1

Pn−1
n,n

− 1
)
.

Using the inequality 1 + x ≤ ex for x = ln Pn−1
n,n−1 − lnPn−1

n,n , we get

lnPn−1
n,n−1 − lnPn−1

n,n ≤
Pn−1

n,n−1

Pn−1
n,n

− 1.

Using (3.7), we see that (4.1) follows from the following inequality:

(n− 1)
(
2 ln Pn−1

n,n−1 − lnPn
n,n − lnPn−2

n,n−2

)
≤ n

(
lnPn−1

n,n−1 − lnPn−1
n,n

)
.

One checks easily that the above inequality is equivalent to

Pn,n−1 ≤ Pn,n−2,

which is a consequence of Newton’s inequalities, see [10, Theorem 51]. This completes the proof. �

We remark here that one may expect to have (with qi = 1/n here)

(4.2) x2
n

(
(1− 1

n
)An +

1
n

Hn −Gn

)
≥ (xn + t)2

(
(1− 1

n
)An,t +

1
n

Hn,t −Gn,t

)
.

However, a dual form of the above inequality

x2
1

(
(1− 1

n
)An +

1
n

Hn −Gn

)
≤ (x1 + t)2

(
(1− 1

n
)An,t +

1
n

Hn,t −Gn,t

)
does not hold because one can deduce from the above inequality by a similar argument as used in
[9] that

(1− 1
n

)An +
1
n

Hn −Gn ≤
1− 2/n

x2
1

σn

and the above inequality fails to hold in the case of n = 2.
As an evidence for (4.2), we note that the case of r = n− 1 of the right-hand side inequality of

(7.4) in [9] implies that (by using a similar argument as in [6], again we take qi = 1/n here)

An −
G

n
n−1
n

H
1

n−1
n

= An − Pn,n−1 ≥
(n− 2)σn

2(n− 1)xn
.

Now the arithmetic-geometric mean inequality implies that

G
n

n−1
n

H
1

n−1
n

≤ n

n− 1
Gn −

1
n− 1

Hn.

We then deduce that

(1− 1
n

)An +
1
n

Hn −Gn ≥
1− 2/n

x2
n

σn,

which is consistent with (4.2) on taking t → +∞ there.

Acknowledgement

The author would like to thank the Centre de Recherches Mathématiques at the Université de
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