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NORM AND NUMERICAL RADIUS INEQUALITIES FOR SUMS
OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract. Some inequalities for the operator norm and numerical radius of

sums of bounded linear operators in Hilbert spaces are given. Applications for
the Cartesian decomposition of an operator are also provided.

1. Introduction

Let B (H) denote the C∗−algebra of all bounded linear operators on a complex
Hilbert space H with inner product 〈·, ·〉. For A ∈ B (H) , let ‖A‖ denote the the
usual operator norm of A.

It is well known that, the following generalised triangle inequality holds true∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥ ≤
n∑

j=1

‖Aj‖

for any A1, ..., An ∈ B (H) and n a natural number.
In [1] we obtained several inequalities that provide alternative upper bounds for

the norm of the sum
∑n

j=1 Aj :

∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥
2

(1.1)

≤



∑n
j=1 ‖Aj‖2 ;

n1/p
(∑n

j=1 ‖Aj‖2q
)1/q

if p > 1, 1
p + 1

q = 1;

n max1≤j≤n ‖Aj‖2 ;

+



∑
1≤j 6=k≤n ‖AjA

∗
k‖ ;

[n (n− 1)]1/r
(∑

1≤j 6=k≤n ‖AjA
∗
k‖

s
)1/s

if r > 1, 1
r + 1

s = 1;

n (n− 1)max1≤j 6=k≤n ‖AjA
∗
k‖ ;

where (1.1) should be seen as all 9 possible configurations.
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Out of these inequalities, one can remark the following results of interest∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥(1.2)

≤

 n∑
j,k=1

‖AjA
∗
k‖

1/2

=

 n∑
j=1

‖Aj‖2 +
∑

1≤j 6=k≤n

‖AjA
∗
k‖

1/2

≤
n∑

j=1

‖Aj‖ , a refinement of the triangle inequality;

(1.3)

∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥ ≤ √
n

[
max

1≤j≤n
‖Aj‖2 + (n− 1) max

1≤j 6=k≤n
‖AjA

∗
k‖
]1/2

;

(1.4)

∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥ ≤ √
n

 max
1≤j≤n

‖Aj‖2 +

 ∑
1≤j 6=k≤n

‖AjA
∗
k‖

2

1/2


1/2

and ∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥(1.5)

≤ n1/2p


 n∑

j=1

‖Aj‖2q

1/q

+ (n− 1)1/p

 ∑
1≤j 6=k≤n

‖AjA
∗
k‖

q

1/q


1/2

for p, q > 1 with 1
p + 1

q = 1, which, for p = q = 2 provides∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥(1.6)

≤ n1/4


 n∑

j=1

‖Aj‖4

1/2

+ (n− 1)1/2

 ∑
1≤j 6=k≤n

‖AjA
∗
k‖

2

1/2


1/2

.

A different approach employed in [2] has lead to the following inequalities for
iterated sums:

(1.7)

∥∥∥∥∥∥
n∑

j=1

Aj

∥∥∥∥∥∥
2

≤

 α
β
γ
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where

α :=



∑n
j,k=1 ‖AjA

∗
k‖ ;

n1/r
[∑n

j=1 (
∑n

k=1 ‖AjA
∗
k‖)

s
]1/s

if r > 1, 1
r + 1

s = 1;

n max1≤j≤n (
∑n

k=1 ‖AjA
∗
k‖) ;

β :=


n1/p

∑n
j=1 (

∑n
k=1 ‖AjA

∗
k‖

q)1/q ;

n1/t+1/p
[∑n

j=1 (
∑n

k=1 ‖AjA
∗
k‖

q)u/q
]1/u

if u > 1, 1
u + 1

t = 1;
n1+1/p max1≤j≤n (

∑n
k=1 ‖AjA

∗
k‖

q)1/q ;

where p > 1, 1
p + 1

q = 1, and

γ :=



n
∑n

j=1 (max1≤k≤n ‖AjA
∗
k‖) ;

n1/m+1
[∑n

j=1

(
max1≤k≤n ‖AjA

∗
k‖

`
)]1/`

if m > 1, 1
m + 1

` = 1;

n2 max1≤j,k≤n ‖AjA
∗
k‖ .

Note that the choice p = t = 2 (therefore u = q = 2) will produce from the β−branch
the inequality∥∥∥∥∥∥

n∑
j=1

Aj

∥∥∥∥∥∥
2

≤ n

 n∑
j=1

‖Aj‖4 +
∑

1≤j 6=k≤n

‖AjA
∗
k‖

2

1/2

(1.8)

≤ n

n∑
j=1

‖Aj‖2
,

which is a refinement of the Cauchy-Bunyakovsky-Schwarz inequality.
The aim of this paper is to establish various new inequalities for the operator

norm and numerical radius of sums of bounded linear operators in Hilbert spaces. In
particular, two refinements of the generalised triangle inequality for operator norm
are obtained. Particular cases of interest for two bounded linear operators and their
applications for the Cartesian decomposition of an operator are also considered.

2. Some General Results

From a different perspective, we can state the following result that provides an
upper bound for the quantity ‖

∑n
k=1 Ak‖ :
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Theorem 1. For any sequence of operators A1, . . . , An ∈ B (H) we have:∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
2

∥∥∥∥∥∥
∑

1≤k 6=j≤n

A∗jAk

∥∥∥∥∥∥
2

+
1
2

(2.1)

=

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
2

∥∥∥∥∥∥
n∑

j=1

A∗j

n∑
k=1

Ak −
n∑

k=1

A∗kAk

∥∥∥∥∥∥
2

+
1
2

 .

Proof. For any x ∈ H, observe that∥∥∥∥∥
n∑

k=1

Akx

∥∥∥∥∥
2

= Re

 n∑
j=1

n∑
k=1

〈Akx, Ajx〉

(2.2)

=
n∑

j=1

n∑
k=1

Re 〈Akx, Ajx〉

=
n∑

k=1

‖Akx‖2 +
∑

1≤k 6=j≤n

Re 〈Akx,Ajx〉

=

〈(
n∑

k=1

A∗kAk

)
x, x

〉
+ Re

〈 ∑
1≤k 6=j≤n

(
A∗jAk

)
x, x

〉
.

Then

(2.3)

∥∥∥∥∥
n∑

k=1

Akx

∥∥∥∥∥
2

≤

〈(
n∑

k=1

A∗kAk

)
x, x

〉
+

1
2


∥∥∥∥∥∥

∑
1≤k 6=j≤n

(
A∗jAk

)
x

∥∥∥∥∥∥
2

+ ‖x‖2

 ,

where, for the last inequality we have used the elementary inequality in (H; 〈·, ·〉) :

Re 〈z, u〉 ≤ 1
2

[
‖z‖2 + ‖u‖2

]
, z, u ∈ H.

Taking the supremum in (2.3) over x ∈ H, ‖x‖ = 1, we get

(2.4)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
2

∥∥∥∥∥∥
∑

1≤k 6=j≤n

A∗jAk

∥∥∥∥∥∥
2

+
1
2
.

Since ∑
1≤k 6=j≤n

A∗jAk =
n∑

j=1

A∗j

n∑
k=1

Ak −
n∑

k=1

A∗kAk,

then the last part of (2.1) is also proved.

Remark 1. For the case of two operators, we can state that

(2.5) ‖B + C‖2 ≤ ‖B∗B + C∗C‖+
1
2
‖B∗C + C∗B‖2 +

1
2

for any B,C ∈ B(H). If in this inequality we choose B = A,C = A∗, then we get

(2.6) ‖A + A∗‖2 ≤ ‖A∗A + AA∗‖+
1
2

∥∥∥A2 + (A∗)2
∥∥∥2

+
1
2

for any A ∈ B(H).



NORM AND NUMERICAL RADIUS INEQUALITIES 5

Now, if A = B + C with B = A+A∗

2 , C = A−A∗

2 , i.e., B and C are the Cartesian
decomposition of A, then applying (2.5) for B and C as above will give the inequality

(2.7) ‖A‖2 ≤ 1
2
‖A∗A + AA∗‖+

1
4
‖A∗A−AA∗‖2 +

1
2

for any A ∈ B(H).

The following result may be stated as well.

Theorem 2. For any A1, . . . , An ∈ B (H) we have:

(2.8)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
2

∥∥∥∥∥(n− 2)
n∑

k=1

A∗kAk +
n∑

k=1

A∗k

n∑
k=1

Ak

∥∥∥∥∥ .

Proof. Utilising the elementary inequality

Re 〈z, u〉 ≤ 1
4
‖z + u‖2

, z, u ∈ H,

we then have:

∑
1≤k 6=j≤n

Re 〈Akx, Ajx〉 ≤
1
4

∑
1≤k 6=j≤n

‖(Ak + Aj)x‖2

=
1
4

∑
1≤k 6=j≤n

〈
(Ak + Aj)

∗ (Ak + Aj) x, x
〉

=
1
4

〈 ∑
1≤k 6=j≤n

(
A∗k + A∗j

)
(Ak + Aj) x, x

〉
.

Now, on making use of the identity (2.2), we can state that:

(2.9)

∥∥∥∥∥
n∑

k=1

Akx

∥∥∥∥∥
2

≤

〈(
n∑

k=1

A∗kAk

)
x, x

〉

+
1
4

〈 ∑
1≤k 6=j≤n

(
A∗k + A∗j

)
(Ak + Aj) x, x

〉

for any x ∈ H.
Taking the supremum in (2.9), we get

(2.10)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
4

∥∥∥∥∥∥
∑

1≤k 6=j≤n

(
A∗k + A∗j

)
(Ak + Aj)

∥∥∥∥∥∥ .
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Since ∑
1≤k 6=j≤n

(
A∗k + A∗j

)
(Ak + Aj)

=
n∑

k,j=1

(
A∗kAk + A∗jAk + A∗kAj + A∗jAj

)
− 4

n∑
k=1

A∗kAk

= 2n
n∑

k=1

A∗kAk + 2
n∑

k=1

A∗k

n∑
k=1

Ak − 4
n∑

k=1

A∗kAk

= 2

[
(n− 2)

n∑
k=1

A∗kAk +
n∑

k=1

A∗k

n∑
k=1

Ak

]
,

hence by (2.10) we deduce the desired inequality (2.8).

Remark 2. Since, by the triangle inequality we have that∥∥∥∥∥(n− 2)
n∑

k=1

A∗kAk +
n∑

k=1

A∗k

n∑
k=1

Ak

∥∥∥∥∥
≤ (n− 2)

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

hence by (2.8) we deduce that∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤ n

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥
for n ≥ 2 and A1, . . . , An ∈ B (H) .

Remark 3. The case n = 2 provides the following interesting inequality

(2.11)
∥∥∥∥B + C

2

∥∥∥∥2

≤
∥∥∥∥B∗B + C∗C

2

∥∥∥∥
for any B,C ∈ B(H). If in this inequality we choose B = A, C = A∗, then we get

(2.12)
∥∥∥∥A + A∗

2

∥∥∥∥2

≤
∥∥∥∥A∗A + AA∗

2

∥∥∥∥
for each A ∈ B(H).

Moreover, if in (2.11) we chose the Cartesian decomposition of an operator A,
then we get

(2.13) ‖A‖2 ≤ ‖A∗A + AA∗‖

for any A ∈ B(H).

Remark 4. Note that, as pointed out in [5], (2.13) follows by the inequality (33)
from [6]. We have shown above that it can be also easily deduced from (2.11).

A similar approach which provides another inequality for the operator norm is
incorporated in:
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Theorem 3. If A1, . . . , An ∈ B (H) , then

(2.14)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

+
n∑

k=1

‖Ak‖2 ≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
n∑

k,j=1

∥∥∥∥Ak + Aj

2

∥∥∥∥2

.

Proof. Since, by the proof of Theorem 2, we have∑
1≤k 6=j≤n

Re 〈Akx,Ajx〉 ≤
1
4

∑
1≤k 6=j≤n

‖(Ak + Aj) x‖2
,

then, by (2.2), we can state that:

(2.15)

∥∥∥∥∥
n∑

k=1

Akx

∥∥∥∥∥
2

≤

〈(
n∑

k=1

A∗kAk

)
x, x

〉
+

1
4

∑
1≤k 6=j≤n

‖(Ak + Aj) x‖2

for any x ∈ H, ‖x‖ = 1.
Taking the supremum over x, ‖x‖ = 1, we deduce that∥∥∥∥∥

n∑
k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
4

∑
1≤k 6=j≤n

‖Ak + Aj‖2

=

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
4

n∑
k,j=1

‖Ak + Aj‖2 −
n∑

k=1

‖Ak‖2
,

which is exactly the desired result (2.14).

Remark 5. The case n = 2 will also provide the inequality (2.11) obtained above
from a different inequality.

Finally, we have:

Theorem 4. If A1, . . . , An ∈ B (H) , then

(2.16)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
1
4

∥∥∥∥∥∥
∑

1≤k 6=j≤n

A∗jAk + I

∥∥∥∥∥∥
2

.

Proof. It follows by the identity (2.2) on noticing that

Re

〈 ∑
1≤k 6=j≤n

(
A∗jAk

)
x, x

〉
≤ 1

4

∥∥∥∥∥∥
∑

1≤k 6=j≤n

A∗jAk + x

∥∥∥∥∥∥
2

for any x ∈ H. The details are omitted.

Remark 6. The case n = 2 provides the following inequality

(2.17) ‖B + C‖2 ≤ ‖B∗B + C∗C‖+
1
4
‖B∗C + C∗B + I‖2

for any B,C ∈ B(H). If in this inequality we choose B = A and C = A∗, then we
get

(2.18) ‖A + A∗‖2 ≤ ‖A∗A + AA∗‖+
1
4

∥∥∥A2 + (A∗)2 + I
∥∥∥2

for any A ∈ B(H).
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Finally, the inequality (2.17) provides for the Cartesian decomposition of an
operator A ∈ B(H) the following result as well:

(2.19) ‖A‖2 ≤ 1
2

[
‖AA∗ + A∗A‖+

1
2

∥∥∥∥A∗A−AA∗

2
+ I

∥∥∥∥2
]

for any A ∈ B(H).

3. Some Results for Commuting Operators

For a bounded linear operator A, let w(A) denotes is numerical radius [3], [4].
We recall the following results concerning the numerical radius of a product of

two operators [3, pp. 37-40] that will be used in deriving various inequalities for
the sums of operators on Hilbert spaces:

Theorem 5. For any two bounded linear operators A,B we have

(3.1) w (AB) ≤ 4w (A)w (B) .

If A and B commute, i.e., AB = BA, then

(3.2) w (AB) ≤ 2w (A)w (B) .

To get closer to the elusive inequality

(3.3) w (AB) ≤ w (A) w (B) .

we recall the following result [3, p. 38]:

Theorem 6. If the operators A and B double commute, i.e., AB = BA and
AB∗ = B∗A, then

(3.4) w (AB) ≤ w (B) ‖A‖ .

As a particular case of interest that provides an affirmative answer for the validity
of the inequality (3.3) for some pair of operators (A,B) , we can state [3, p. 39]:

Corollary 1. Let A be a normal operator, i.e., AA∗ = A∗A. If A commutes with
B, then (3.3) holds true.

Another sufficient condition for (A,B) to satisfy (3.4) is incorporated in [3, p.
39].

Theorem 7. Let A commutes with B and A2 = αI for some α ∈ C. Then (3.4)
holds true.

Given that A and B are commutative, the question of whether

w (AB) ≤ w (A) ‖B‖
was open for about twenty years. The issue was finally resolved by V. Miller in
1988, see for instance [3, p. 40]. Miller’s approach was computational, and a
counterexample was found in a 12-dimensional Hilbert space.

The related question of the best constant C > 0 for the inequality

(3.5) w (AB) ≤ Cw (A) ‖B‖
for commuting A and B has also been considered by K. Okubo and T. Ando in
1976 and by K. Davidson and J. Holbrook in 1988, see for instance [3, p. 42].

For other results on numerical radius, see the classical problem book [4].
The following result may be stated.
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Theorem 8. If A1, . . . , An ∈ B (H) , then

(3.6)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤ 4w

(
n∑

k=1

Ak

)
n∑

j=1

w (Aj) .

Moreover, if
∑n

k=1 Ak commutes with each A∗j for j ∈ {1, . . . , n} , then

(3.7)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤ 2w

(
n∑

k=1

Ak

)
n∑

j=1

w (Aj) .

Proof. For any x ∈ H we have∥∥∥∥∥
n∑

k=1

Akx

∥∥∥∥∥
2

=

∣∣∣∣∣∣
n∑

j=1

〈(
n∑

k=1

Ak

)
x,Ajx

〉∣∣∣∣∣∣(3.8)

≤
n∑

j=1

∣∣∣∣∣
〈(

n∑
k=1

Ak

)
x,Ajx

〉∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣
〈

A∗j

(
n∑

k=1

Ak

)
x, x

〉∣∣∣∣∣ .
Taking the supremum over x ∈ H, ‖x‖ = 1 in (3.8), we get

(3.9)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤
n∑

j=1

w

[
A∗j

(
n∑

k=1

Ak

)]
,

which is an inequality of interest in itself.
Now, since, by (3.1) applied for A∗j (j = 1, . . . , n) and

∑n
k=1 Ak we can state

that

(3.10) w

[
A∗j

(
n∑

k=1

Ak

)]
≤ 4w (Aj) w

(
n∑

k=1

Ak

)
for any j ∈ {1, . . . , n} , then by (3.9) and (3.10) we deduce (3.6).

Now, if A∗j (j = 1, . . . , n) commutes with
∑n

k=1 Ak, then on utilising the second
part of Theorem 5 we can state that:

(3.11) w

[
A∗j

(
n∑

k=1

Ak

)]
≤ 2w (Aj)w

(
n∑

k=1

Ak

)
, j ∈ {1, . . . , n}

which, by (3.9) will imply the desired inequality (3.7).

The following particular case may be of interest.

Corollary 2. If A1, . . . , An ∈ B (H) are normal operators and ∗−commute with
each other, i.e., AkA∗j = A∗jAk for k, j ∈ {1, . . . , n} , k 6= j, then (3.7) holds true.

Remark 7. It is useful to observe that the case n = 2 in the inequality (3.9)
provides the result

(3.12) ‖B + C‖2 ≤ w (B∗B + B∗C) + w (C∗B + C∗C)
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for any B,C ∈ B(H). In particular, for B = A and C = A∗, we get from (3.12)
the inequality

(3.13) ‖A + A∗‖2 ≤ w
(
A∗A + (A∗)2

)
+ w

(
A2 + AA∗

)
for any A ∈ B(H).

Now, if we assume in (3.12) that B and C are the Cartesian decomposition of
A ∈ B (H) , then

‖A‖2 ≤ 1
2
[
w
(
A2 + A∗A

)
+ w

(
A2 −A∗A

)]
.

The constant 1
2 here is best possible in the sense that it cannot be replaced by a

smaller constant. The equality case is, for instance, realised when A is a self adjoint
operator.

A more interesting case which provides refinements of the generalised triangle
inequality for operator norm is incorporated in the following:

Theorem 9. Let A1, . . . , An ∈ B (H) . If A∗j (j = 1, . . . , n) double commutes with∑n
k=1 Ak, then we have the following refinement of the generalised triangle inequal-

ity:

(3.14)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥ ≤
n∑

k=1

w (Ak)

(
≤

n∑
k=1

‖Ak‖

)
.

Moreover, if
∑n

k=1 Ak 6= 0, then also

(3.15) (1 ≤)
‖
∑n

k=1 Ak‖
w (
∑n

k=1 Ak)
≤
∑n

k=1 ‖Ak‖
‖
∑n

k=1 Ak‖
.

Proof. If
∑n

k=1 Ak = 0, then (3.14) is obvious.
Now, suppose

∑n
k=1 Ak 6= 0 and A∗j (j = 1, . . . , n) double commutes with

∑n
k=1 Ak.

By Theorem 6, we then have

w

[
A∗j

(
n∑

k=1

Ak

)]
≤ w (Aj)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥ , j ∈ {1, . . . , n}

which, by (3.9), implies that∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
n∑

j=1

w (Aj) ,

which is clearly equivalent with (3.14).
By the same Theorem 6, we can also state that

w

[
A∗j

(
n∑

k=1

Ak

)]
≤ w

(
n∑

k=1

Ak

)
‖Aj‖ , j ∈ {1, . . . , n} ,

which, together with (3.9) imply (3.15).

The following corollary may be stated.

Corollary 3. If A1, . . . , An are normal operators which double commute with each
other, i.e., AkAj = AjAk and A∗kAj = AjA

∗
k for each k, j ∈ {1, . . . , n} ; then both

(3.14) and (3.15) hold true.

Utilising Theorem 7 we are able to state the following result as well.
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Corollary 4. Let A1, . . . , An ∈ B (H) such that A∗j commutes with
∑n

k=1 Ak. If

either (
∑n

k=1 Ak)2 = βI for some β ∈ C or
(
A∗j
)2 = βjI for some βj ∈ C,

j ∈ {1, . . . , n} ; are valid, then both (3.14) and (3.15) hold true.

From a different perspective, we can state the following result.

Theorem 10. Let A1, . . . , An ∈ B (H) . Then

(3.16)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

+ 4
n∑

k=1

w2 (Ak) ≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+ 4

(
n∑

k=1

w (Ak)

)2

.

If A∗j commutes with Ak for any k, j ∈ {1, . . . , n} , k 6= j, then

(3.17)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

+ 2
n∑

k=1

w2 (Ak) ≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+ 2

(
n∑

k=1

w (Ak)

)2

.

Proof. Let x ∈ H. Then∥∥∥∥∥
n∑

k=1

Akx

∥∥∥∥∥
2

=

∣∣∣∣∣∣
n∑

j=1

n∑
k=1

〈Akx,Ajx〉

∣∣∣∣∣∣(3.18)

=

∣∣∣∣∣∣
n∑

k=1

〈Akx,Akx〉+
∑

1≤k 6=j≤n

〈Akx,Ajx〉

∣∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

〈A∗kAkx, x〉

∣∣∣∣∣+ ∑
1≤k 6=j≤n

∣∣〈A∗jAkx, x
〉∣∣

=

∣∣∣∣∣
〈(

n∑
k=1

A∗kAk

)
x, x

〉∣∣∣∣∣+ ∑
1≤k 6=j≤n

∣∣〈A∗jAkx, x
〉∣∣ .

Taking the supremum in (3.18) over x ∈ H, ‖x‖ = 1, we deduce the following
inequality

(3.19)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
∑

1≤k 6=j≤n

w
(
A∗jAk

)
,

that is of interest in itself.
Since, by Theorem 5, in general we have

w
(
A∗jAk

)
≤ 4w (Aj)w (Ak) , k, j ∈ {1, . . . , n} , k 6= j

then ∑
1≤k 6=j≤n

w
(
A∗jAk

)
≤ 4

∑
1≤k 6=j≤n

w (Aj) w (Ak)

= 4

∑
i,j=1

w (Aj) w (Ak)−
n∑

k=1

w2 (Ak)


= 4

( n∑
k=1

w (Ak)

)2

−
n∑

k=1

w2 (Ak)

 ,

which, together with (3.19) provides the desired result (3.16).
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The second inequality follows by making use of the second part of Theorem 5.
The details are omitted.

Remark 8. The case n = 2 in (3.19) will produce the following sharp inequality

(3.20)
∥∥∥∥B + C

2

∥∥∥∥2

≤ 1
2

[∥∥∥∥B∗B + C∗C

2

∥∥∥∥+ w (B∗C)
]

,

for any B,C ∈ B(H). Here, the multiplicative constant 1
2 is best possible. We get

equality in (3.20) if B = C.
If we choose B = A∗ and C = A in (3.20), then we get

(3.21)
∥∥∥∥A + A∗

2

∥∥∥∥2

≤ 1
2

[∥∥∥∥A∗A + AA∗

2

∥∥∥∥+ w
(
A2
)]

for any A ∈ B(H). Here the constant 1
2 is also best possible. The equality case holds

if A is self adjoint.
Finally, if B and C are chosen in (3.20) to be the Cartesian decomposition of

an operator A, then we have

‖A‖2 ≤ 1
2

[‖A∗A + AA∗‖+ w [(A + A∗) (A−A∗)]] .

The constant 1
2 is sharp.

If one were to place more conditions on the operators involved, the following
result could be stated as well:

Theorem 11. If A1, . . . , An ∈ B (H) are such that A∗j double commutes with Ak

for k, j ∈ {1, . . . , n} , k 6= j, then

(3.22)

∥∥∥∥∥
n∑

k=1

Ak

∥∥∥∥∥
2

+
n∑

k=1

w (Ak) ‖Ak‖ ≤

∥∥∥∥∥
n∑

k=1

A∗kAk

∥∥∥∥∥+
n∑

k=1

w (Ak) ·
n∑

k=1

‖Ak‖ .

Proof. Since A∗j double commutes with Ak for k, j ∈ {1, . . . , n} , k 6= j, then, by
Theorem 6 we have

w
(
A∗jAk

)
≤ w (Aj) ‖Ak‖ ,

for k, j ∈ {1, . . . , n} , k 6= j. This implies that∑
1≤k 6=j≤n

w
(
A∗jAk

)
≤

∑
1≤k 6=j≤n

w (Aj) ‖Ak‖(3.23)

=
∑
i,j=1

w (Aj) w (Ak)−
n∑

k=1

w (Aj) ‖Ak‖

=
n∑

k=1

w (Ak) ·
n∑

k=1

‖Ak‖ −
n∑

k=1

w (Ak) ‖Ak‖ .

Now, utilising (3.19) and (3.23), we deduce the desired result (3.22).
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