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ON OSTROWSKI TYPE INEQUALITIES FOR STIELTJES
INTEGRALS WITH ABSOLUTELY CONTINUOUS INTEGRANDS

AND INTEGRATORS OF BOUNDED VARIATION

P. CERONE, W.S. CHEUNG∗, AND S.S. DRAGOMIR

Abstract. Some Ostrowski type inequalities are given for the Stieltjes inte-

gral where the integrand is absolutely continuous while the integrator is of
bounded variation. The case when |f ′| is convex is explored. Applications for

the midpoint rule and a generalised trapezoid type rule are also presented.

1. Introduction

The following result is known in the literature as Ostrowski’s inequality:
Let f : [a, b] → R be a differentiable mapping on (a, b) with the property that

|f ′ (t)| ≤ M for all t ∈ (a, b) . Then

(1.1)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) M

for all x ∈ (a, b) . The constant 1
4 is best possible in the sense that it cannot be

replaced by a smaller constant.
The above result has been naturally extended for absolutely continuous functions

and Lebesgue p−norms of the derivative f ′ in [11] – [13] and can be stated as:

Theorem 1. Let f : [a, b] → R be absolutely continuous on [a, b] . Then for all
x ∈ [a, b] we have:

(1.2)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣

≤



[
1
4 +

(
x− a+b

2
b−a

)2
]

(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p+1)
1
p

[(
x−a
b−a

)p+1

+
(

b−x
b−a

)p+1
]

(b− a)
1
q ‖f ′‖q

if f ′ ∈ Lp [a, b] , 1
p + 1

q = 1, p > 1;[
1
2 +

∣∣∣x− a+b
2

b−a

∣∣∣] ‖f ′‖1 ,
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where ‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b] , i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)| and ‖g‖r :=

(∫ b

a

|g (t)|r dt

) 1
r

, r ∈ [1,∞) .

The constants 1
4 , 1

(p+1)1/p and 1
2 respectively are sharp in the sense mentioned above.

They can also be obtained, in a slightly different form, as particular cases of
some results established by A.M. Fink in [14] for n−time differentiable functions.

For other Ostrowski type inequalities concerning Lipschitzian and r−H−Hölder
type functions, see [8] and [10].

The cases of bounded variation functions and monotonic functions were consid-
ered in [4] and [7] while the case of convex functions was studied in [3].

In an effort to obtain an Ostrowski type inequality for the Stieltjes integral,
which obviously contains the weighted integrals case, S.S. Dragomir established in
[5] the following result:

Theorem 2. Let f : [a, b] → R be a function of bounded variation and u : [a, b] → R
a function of r −H−Hölder type, i.e.,

(1.3) |u (x)− u (y)| ≤ H |x− y|r for any x, y ∈ [a, b] ,

where r ∈ (0, 1] and H > 0 are given. Then, for any x ∈ [a, b] ,∣∣∣∣∣[u (b)− u (x)] f (x)−
∫ b

a

f (t) du (t)

∣∣∣∣∣(1.4)

≤ H

[
(x− a)r

x∨
a

(f) + (b− x)r
b∨
x

(f)

]

≤ H ×



[(x− a)r + (b− x)r]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨x
a (f)−

∨b
x (f)

∣∣∣] ;

[(x− a)qr + (b− x)qr]
1
q

[
(
∨x

a (f))p +
(∨b

x (f)
)p] 1

p

if p > 1, 1
p + 1

q = 1;[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]r∨b
a (f) ,

where
∨d

c (f) denotes the total variation of f on the interval [c, d] .

The dual case was considered in [6] and can be stated as follows:

Theorem 3. Let u : [a, b] → R be a function of bounded variation on [a, b] and
f : [a, b] → R a function of r −H−Hölder type. Then

(1.5)

∣∣∣∣∣[u (b)− u (a)] f (x)−
∫ b

a

f (t) du (t)

∣∣∣∣∣
≤ H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]r b∨
a

(u)

for any x ∈ [a, b] .
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For other results concerning inequalities for Stieltjes integrals, see [1], [15] and
[16].

The aim of the present paper is to continue the study of Ostrowski type in-
equalities for Stieltjes integrals

∫ b

a
f (t) du (t) where the function f, the integrand,

is assumed to be absolutely continuous while the integrator u, is of bounded vari-
ation. Applications to the midpoint rule and for a generalised trapezoid rule are
also pointed out.

2. General Bounds for Absolutely Continuous Functions

The following representation result is of interest:

Lemma 1. Let f : [a, b] → R be an absolutely continuous function on [a, b] and
u : [a, b] → R such that the Stieltjes integrals∫ b

a

f (t) du (t) and
∫ b

a

(x− t)
(∫ 1

0

f ′ [λt + (1− λ) x] dλ

)
du (t)

exist for each x ∈ [a, b] . Then

(2.1) f (x) [u (b)− u (a)]−
∫ b

a

f (t) du (t)

=
∫ b

a

(x− t)
(∫ 1

0

f ′ [λt + (1− λ) x] dλ

)
du (t)

or, equivalently,

(2.2)
∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]

=
∫ b

a

(x− t)
(∫ 1

0

f ′ [λt + (1− λ) x] dλ

)
du (t)

for each x ∈ [a, b] .

Proof. Since f is absolutely continuous on [a, b] , hence, for any x, t ∈ [a, b] with
x 6= t, one has

f (x)− f (t)
x− t

=

∫ x

t
f ′ (u) du

x− t
=
∫ 1

0

f ′ [(1− λ)x + λt] dλ

giving the equality (see also [9]):

(2.3) f (x) = f (t) + (x− t)
∫ 1

0

f ′ [(1− λ) x + λt] dλ

for any x, t ∈ [a, b] .
Integrating the identity (2.3) we deduce

f (x)
∫ b

a

du (t) =
∫ b

a

f (t) du (t) +
∫ b

a

(x− t)
(∫ 1

0

f ′ [(1− λ) x + λt] dλ

)
du (t) ,

which is exactly the desired inequality (2.1).
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Now, on utilising the integration by parts formula for the Stieltjes integral, we
have

f (x) [u (b)− u (a)]−
∫ b

a

f (t) du (t)

= f (x) [u (b)− u (a)]−

[
f (b) u (b)− f (a) u (a)−

∫ b

a

u (t) df (t)

]

=
∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]

and the representation (2.2) is also obtained. �

For an absolutely continuous function f : [a, b] → R, let us denote by µ (f ;x, t) :=∣∣∣∫ 1

0
f ′ [λt + (1− λ) x] dλ

∣∣∣, where (t, x) ∈ [a, b]2 . It is obvious that, by the Hölder
inequality, we have

(2.4) µ (f ;x, t) ≤


‖f ′‖[t,x],∞ if f ′ ∈ L∞ [a, b] ;

‖f ′‖[t,x],p if f ′ ∈ Lp [a, b] , p ≥ 1,

where

‖f ′‖[t,x],∞ := sup
u∈[t,x]

(u∈[x,t])

|f ′ (u)| ,

‖f ′‖[t,x],p :=
∣∣∣∣∫ x

t

|f ′ (u)|p du

∣∣∣∣ 1p , p ≥ 1

and t, x ∈ [a, b].
We can also state the following result of Ostrowski type for the Stieltjes integral:

Theorem 4. Let f : [a, b] → R be an absolutely continuous function and u : [a, b] →
R a function of bounded variation on [a, b] . Then

(2.5)

∣∣∣∣∣[u (b)− u (a)] f (x)−
∫ b

a

f (t) du (t)

∣∣∣∣∣ ≤ M (x) ,

and, equivalently

(2.6)

∣∣∣∣∣
∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]

∣∣∣∣∣ ≤ M (x) ,

where M (x) = M1 (x) + M2 (x) and

M1 (x) :=
x∨
a

(u) sup
t∈[a,x]

[(x− t) µ (f ;x, t)] ,

M2 (x) :=
b∨
x

(u) sup
t∈[x,b]

[(t− x) µ (f ;x, t)] ,

for x ∈ [a, b] .
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Remark 1. Using the notations in Theorem 4, we have

M1 (x) ≤ (x− a)
x∨
a

(u) sup
t∈[a,x]

µ (f ;x, t)

≤ (x− a)
x∨
a

(u) ·


‖f ′‖[a,x],∞ if f ′ ∈ L∞ [a, b] ;

‖f ′‖[a,x],p if f ′ ∈ Lp [a, b] , p ≥ 1,

M2 (x) ≤ (b− x)
b∨
x

(u) sup
t∈[x,b]

µ (f ;x, t)

≤ (b− x)
b∨
x

(u) ·


‖f ′‖[x,b],∞ if f ′ ∈ L∞ [a, b] ;

‖f ′‖[x,b],p if f ′ ∈ Lp [a, b] , p ≥ 1,

for any x ∈ [a, b] .

Proof. We use the fact that, if p, v : [c, d] → R are such that p is continuous and v

is of bounded variation, then the Stieltjes integral
∫ d

c
p (t) dv (t) exists and∣∣∣∣∣

∫ d

c

p (x) dv (x)

∣∣∣∣∣ ≤ sup
x∈[c,d]

|p (x)|
d∨
c

(v) .

Utilising the representation (2.1) we have∣∣∣∣∣f (x) [u (b)− u (a)]−
∫ b

a

f (t) du (t)

∣∣∣∣∣
=
∣∣∣∣∫ x

a

(x− t)
(∫ 1

0

f ′ [λt + (1− λ) x] dλ

)
du (t)

+
∫ b

x

(x− t)
(∫ 1

0

f ′ [λt + (1− λ) x] dλ

)
du (t)

∣∣∣∣∣
≤
∣∣∣∣∫ x

a

(x− t)
(∫ 1

0

f ′ [λt + (1− λ) x] dλ

)
du (t)

∣∣∣∣
+

∣∣∣∣∣
∫ b

x

(x− t)
(∫ 1

0

f ′ [λt + (1− λ)x] dλ

)
du (t)

∣∣∣∣∣
≤

x∨
a

(u) sup
t∈[a,x]

[(x− t) µ (f ;x, t)] +
b∨
x

(u) sup
t∈[x,b]

[(t− x) µ (f ;x, t)]

≤ M1 (x) + M2 (x) =: M (x) .

The other inequalities for M1 and M2 are obvious from the inequality (2.4) and the
details are omitted. �
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Remark 2. Hence, if we denote by ‖f ′‖[c,d],p the p norm on the interval [c, d] ,
where 1 ≤ p ≤ ∞, then for f ′ ∈ Lp[a, b], we have

(2.7)

∣∣∣∣∣f (x) [u (b)− u (a)]−
∫ b

a

f (t) du (t)

∣∣∣∣∣
≤ (x− a)

x∨
a

(u) ‖f ′‖[a,x],p + (b− x)
b∨
x

(u) ‖f ′‖[x,b],p =: N (x) ,

where p ∈ [1,∞] and x ∈ [a, b] .

Obviously one can derive many upper bounds for the function N (x) defined
above. We intend to present in the following only a few that are simple and perhaps
of interest for applications.

Estimate 1:

N (x) ≤

[
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]
‖f ′‖[a,b],p(2.8)

≤ ‖f ′‖[a,b],p ·



max {x− a, b− x}
[∨x

a (u) +
∨b

x (u)
]
;

[(x− a)α + (b− x)α]
1
α

[
(
∨x

a (u))β +
(∨b

x (u)
)β
] 1

β

if α > 1, 1
α + 1

β = 1;

(b− a) max
{∨x

a (u) ,
∨b

x (u)
}

= ‖f ′‖[a,b],p ·



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]∨b
a (u) ;

[(x− a)α + (b− x)α]
1
α

[
(
∨x

a (u))β +
(∨b

x (u)
)β
] 1

β

if α > 1, 1
α + 1

β = 1;

(b− a)
[

1
2

∨b
a (u) + 1

2

∣∣∣∨x
a (u)−

∨b
x (u)

∣∣∣]
for any x ∈ [a, b] .

Estimate 2:

N (x) ≤ max {x− a, b− x}

[
x∨
a

(u) ‖f ′‖[a,x],p +
b∨
x

(u) ‖f ′‖[x,b],p

]

=
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]
[

x∨
a

(u) ‖f ′‖[a,x],p +
b∨
x

(u) ‖f ′‖[x,b],p

]
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≤
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]

×



max
{
‖f ′‖[a,x],p , ‖f ′‖[x,b],p

}∨b
a (u) ;[

‖f ′‖p
[a,x],p + ‖f ′‖p

[x,b],p

] 1
p
[
(
∨x

a (u))q +
(∨b

x (u)
)q] 1

q

if p > 1, 1
p + 1

q = 1;[
1
2

∨b
a (u) + 1

2

∣∣∣∨x
a (u)−

∨b
x (u)

∣∣∣] [‖f ′‖[a,x],p + ‖f ′‖[x,b],p

]
=
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]

×



max
{
‖f ′‖[a,x],p , ‖f ′‖[x,b],p

}∨b
a (u) ;

‖f ′‖[a,b],p

[
(
∨x

a (u))q +
(∨b

x (u)
)q] 1

q

if p > 1, 1
p + 1

q = 1;[
1
2

∨b
a (u) + 1

2

∣∣∣∨x
a (u)−

∨b
x (u)

∣∣∣] [‖f ′‖[a,x],p + ‖f ′‖[x,b],p

]

for any x ∈ [a, b] .

Estimate 3:

N (x) ≤ max

{
x∨
a

(u) ,
b∨
x

(u)

}[
(x− a) ‖f ′‖[a,x],p + (b− x) ‖f ′‖[x,b],p

]
=

[
1
2

b∨
a

(u) +
1
2

∣∣∣∣∣
x∨
a

(u)−
b∨
x

(u)

∣∣∣∣∣
] [

(x− a) ‖f ′‖[a,x],p + (b− x) ‖f ′‖[x,b],p

]
≤

[
1
2

b∨
a

(u) +
1
2

∣∣∣∣∣
x∨
a

(u)−
b∨
x

(u)

∣∣∣∣∣
]

×



max
{
‖f ′‖[a,x],p , ‖f ′‖[x,b],p

}
(b− a) ;

[(x− a)q + (b− x)q]
1
q ‖f ′‖[a,b],p

if p > 1, 1
p + 1

q = 1;

[
1
2 (b− a) +

∣∣x− a+b
2

∣∣] [‖f ′‖[a,x],p + ‖f ′‖[x,b],p

]

for each x ∈ [a, b] .
In practical applications, the midpoint rule, that results for x = a+b

2 , is of obvious
interest due to its simpler form.
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Corollary 1. With the assumptions in Theorem 4, we have the inequalities:∣∣∣∣∣[u (b)− u (a)] f
(

a + b

2

)
−
∫ b

a

f (t) du (t)

∣∣∣∣∣(2.9)

≤ 1
2

(b− a)

 a+b
2∨
a

(u) ‖f ′‖[a, a+b
2 ],p +

b∨
a+b
2

(u) ‖f ′‖[ a+b
2 ,b],p



≤ 1
2

(b− a)



max
{
‖f ′‖[a, a+b

2 ],p , ‖f ′‖[ a+b
2 ,b],p

}∨b
a (u) ;

[
‖f ′‖α

[a, a+b
2 ],p + ‖f ′‖α

[ a+b
2 ,b],p

] 1
α

×
[(∨ a+b

2
a (u)

)β

+
(∨b

a+b
2

(u)
)β
] 1

β

if α > 1, 1
α + 1

β = 1;[
1
2

∨b
a (u) + 1

2

∣∣∣∨ a+b
2

a (u)−
∨b

a+b
2

(u)
∣∣∣]

×
[
‖f ′‖[a, a+b

2 ],p + ‖f ′‖[ a+b
2 ,b],p

]
,

where p ∈ [1,∞] .

From the above, it is obvious that we can get some appealing inequalities as
follows:

(2.10)

∣∣∣∣∣[u (b)− u (a)] f
(

a + b

2

)
−
∫ b

a

f (t) du (t)

∣∣∣∣∣

≤ 1
2

(b− a)



‖f ′‖[a,b],∞
∨b

a (u) , if f ′ ∈ L∞ [a, b] ;

‖f ′‖[a,b],p

[(∨ a+b
2

a (u)
)q

+
(∨b

a+b
2

(u)
)q] 1

q

if p > 1, 1
p + 1

q = 1, f ′ ∈ Lp [a, b] ;[
1
2

∨b
a (u) + 1

2

∣∣∣∨ a+b
2

a (u)−
∨b

a+b
2

(u)
∣∣∣] ‖f ′‖[a,b],1 .

Remark 3. Similar inequalities can be obtained for the generalised trapezoid rule.
We only state here the following simple results:∣∣∣∣∣
∫ b

a

u (t) df (t)− u (b)
[
f (b)− f

(
a + b

2

)]
− u (a)

[
f

(
a + b

2

)
− f (a)

]∣∣∣∣∣

≤ 1
2

(b− a)



‖f ′‖[a,b],∞
∨b

a (u) , if f ′ ∈ L∞ [a, b] ;

‖f ′‖[a,b],p

[(∨ a+b
2

a (u)
)q

+
(∨b

a+b
2

(u)
)q] 1

q

if p > 1, 1
p + 1

q = 1, f ′ ∈ Lp [a, b] ;[
1
2

∨b
a (u) + 1

2

∣∣∣∨ a+b
2

a (u)−
∨b

a+b
2

(u)
∣∣∣] ‖f ′‖[a,b],1

provided that u is of bounded variation and f is absolutely continuous on [a, b].
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3. Bounds in the Case of |f ′| a Convex Function

Some of the above results can be improved provided that a convexity assumption
for |f ′| is in place:

Theorem 5. Let f : [a, b] → R be an absolutely continuous function on [a, b] ,
u : [a, b] → R a function of bounded variation on [a, b] and x ∈ [a, b] . If |f ′| is
convex on [a, x] and [x, b] (and the intervals can be reduced at a single point), then

∣∣∣∣∣[u (b)− u (a)] f (x)−
∫ b

a

f (t) du (t)

∣∣∣∣∣(3.1)

≤ 1
2

[
x∨
a

(u) sup
t∈[a,x]

{(x− t) |f ′ (t)|}+
b∨
x

(u) sup
t∈[x,b]

{(t− x) |f ′ (t)|}

]

+
1
2
|f ′ (x)|

[
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]

≤ 1
2

[
(x− a)

x∨
a

(u) ‖f ′‖[a,x],∞ + (b− x)
b∨
x

(u) ‖f ′‖[x,b],∞

]

+
1
2
|f ′ (x)|

[
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]
,

for any x ∈ [a, b] .

Proof. As in the proof of Theorem 4, we have

∣∣∣∣∣f (x) [u (b)− u (a)]−
∫ b

a

f (t) du (t)

∣∣∣∣∣
≤ sup

t∈[a,x]

[
(x− t)

∣∣∣∣∫ 1

0

f ′ [λt + (1− λ)x] dλ

∣∣∣∣] x∨
a

(u)

+ sup
t∈[x,b]

[
(t− x)

∣∣∣∣∫ 1

0

f ′ [λt + (1− λ) x] dλ

∣∣∣∣] b∨
x

(u)

≤ sup
t∈[a,x]

[
(x− t)

∫ 1

0

|f ′ [λt + (1− λ) x]| dλ

] x∨
a

(u)

+ sup
t∈[x,b]

[
(t− x)

∫ 1

0

|f ′ [λt + (1− λ)x]| dλ

] b∨
x

(u)

≤ sup
t∈[a,x]

[
(x− t)

|f ′ (t)|+ |f ′ (x)|
2

] x∨
a

(u)

+ sup
t∈[x,b]

[
(t− x)

|f ′ (t)|+ |f ′ (x)|
2

] b∨
x

(u)
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≤ 1
2

[
sup

t∈[a,x]

{(x− t) |f ′ (t)|} ·
x∨
a

(u) + sup
t∈[x,b]

{(t− x) |f ′ (t)|} ·
b∨
x

(u)

]

+
1
2
|f ′ (x)|

[
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]

which proves the first inequality in (3.1).
The second inequality in (3.1) is obvious using properties of sup and the theorem

is completely proved. �

The midpoint inequality is of interest in applications and provides a much simpler
inequality:

Corollary 2. If f and u are as above and |f ′| is convex on
[
a, a+b

2

]
and

[
a+b
2 , b

]
,

then ∣∣∣∣∣[u (b)− u (a)] f
(

a + b

2

)
−
∫ b

a

f (t) du (t)

∣∣∣∣∣(3.2)

≤ 1
4

(b− a)

‖f ′‖[a, a+b
2 ],∞

a+b
2∨
a

(u) + ‖f ′‖[ a+b
2 ,b],∞

b∨
a+b
2

(u)


+

1
4

(b− a)
∣∣∣∣f ′(a + b

2

)∣∣∣∣ b∨
a

(u)

≤ 1
4

(b− a)
b∨
a

(u)
[
‖f ′‖[a,b],∞ +

∣∣∣∣f ′(a + b

2

)∣∣∣∣] .

Remark 4. If we denote, from the second inequality in (3.1),

L1 (x) :=
1
2

[
(x− a) ‖f ′‖[a,x],∞

x∨
a

(u) + (b− x) ‖f ′‖[x,b],∞

b∨
x

(u)

]

and

L2 (x) :=
1
2
|f ′ (x)|

[
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]

for x ∈ [a, b] , then we can point out various upper bounds for the functions L1 and
L2 on [a, b] .

For instance, we have

L1 (x) ≤ 1
2
‖f ′‖[a,b],∞

[
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]
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and by (3.1) we can state the following inequality of interest:∣∣∣∣∣[u (b)− u (a)] f (x)−
∫ b

a

f (t) du (t)

∣∣∣∣∣(3.3)

≤ 1
2

[
‖f ′‖[a,b],∞ + |f ′ (x)|

] [
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]

≤ 1
2

[
‖f ′‖[a,b],∞ + |f ′ (x)|

]
×


[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]∨b
a (u)[

1
2

∨b
a (u) + 1

2

∣∣∣∨x
a (u)−

∨b
x (u)

∣∣∣] (b− a)

for each x ∈ [a, b] .

Remark 5. A similar result to (3.3) can be stated for the generalised trapezoid rule,
out of which we would like to note the following one that is of particular interest:∣∣∣∣∣

∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]

∣∣∣∣∣(3.4)

≤ 1
2

[
‖f ′‖[a,b],∞ + |f ′ (x)|

] [
(x− a)

x∨
a

(u) + (b− x)
b∨
x

(u)

]

≤ 1
2

[
‖f ′‖[a,b],∞ + |f ′ (x)|

]
×


[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]∨b
a (u)[

1
2

∨b
a (u) + 1

2

∣∣∣∨x
a (u)−

∨b
x (u)

∣∣∣] (b− a)

for each x ∈ [a, b] .

As in Corollary 2, the case x = a+b
2 in (3.4) provides the simple result∣∣∣∣∣

∫ b

a

u (t) df (t)− u (b)
[
f (b)− f

(
a + b

2

)]
− u (a)

[
f

(
a + b

2

)
− f (a)

]∣∣∣∣∣(3.5)

≤ 1
4

(b− a)

‖f ′‖[a, a+b
2 ],∞

a+b
2∨
a

(u) + ‖f ′‖[ a+b
2 ,b],∞

b∨
a+b
2

(u)


+

1
4

(b− a)
∣∣∣∣f ′(a + b

2

)∣∣∣∣ b∨
a

(u)

≤ 1
4

(b− a)
b∨
a

(u)
[
‖f ′‖[a,b],∞ +

∣∣∣∣f ′(a + b

2

)∣∣∣∣] .

Remark 6. Similar inequalities may be stated if one assumes either that |f ′| is
quasi-convex or that |f ′| is log-convex on [a, x] and [x, b] . The details are left to the
interested readers.
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