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A CLASS OF LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTIONS AND THE BEST BOUNDS IN THE FIRST

KERSHAW’S DOUBLE INEQUALITY

FENG QI

Abstract. In the article, the logarithmically complete monotonicity of a class
of functions involving the Euler’s gamma function are proved, a class of the

first Kershaw type double inequalities are established, and the first Kershaw’s

double inequality and Wendel’s inequality are generalized, refined or extended.
Moreover, an open problem is posed.

1. Introduction

It is well known that the classical Euler’s gamma function Γ can be defined for
x > 0 as Γ(x) =

∫∞
0
e−ttx−1 d t. The digamma or psi function ψ is defined as the

logarithmic derivative of Γ and ψ(i) for i ∈ N are called polygamma functions.
The ratio Γ(s)

Γ(r) has been researched by many mathematicians in the past more
than fifty years. In [32] J. Wendel gave for 0 < b < 1 and x > 0 the following
double inequality (

x

x+ b

)1−b

≤ Γ(x+ b)
xbΓ(x)

≤ 1. (1)

W. Gautschi showed in [7] for 0 < s < 1 and n ∈ N that

n1−s <
Γ(n+ 1)
Γ(n+ s)

< exp [(1− s)ψ(n+ 1)] . (2)

A strenghened upper bound was given by T. Erber in [6]:

Γ(n+ 1)
Γ(n+ s)

<
4(n+ s)(n+ 1)1−s

4n+ (s+ 1)2
, 0 < s < 1, n ∈ N. (3)

J. D. Kečkić and P. M. Vasić gave in [11] the inequalities below:

bb−1

aa−1
· ea−b < Γ(b)

Γ(a)
<
bb−1/2

aa−1/2
· ea−b, 0 < a < b. (4)
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2 F. QI

The following closer bounds were proved for 0 < s < 1 and x ≥ 1 by D. Kershaw
in [12]: (

x+
s

2

)1−s

<
Γ(x+ 1)
Γ(x+ s)

<

[
x− 1

2
+

(
s+

1
4

)1/2]1−s

, (5)

exp
[
(1− s)ψ

(
x+ s1/2

)]
<

Γ(x+ 1)
Γ(x+ s)

< exp
[
(1− s)ψ

(
x+

s+ 1
2

)]
. (6)

Let s and t be nonnegative numbers, α = min{s, t}, and

zs,t(x) =


[

Γ(x+ t)
Γ(x+ s)

]1/(t−s)

− x, s 6= t

eψ(x+s) − x, s = t

(7)

in x ∈ (−α,∞). In [4, 5, 13, 14, 20, 30], a monotonicity and convexity of zs,t(x)
was obtained: The function zs,t(x) is either convex and decreasing for |t− s| < 1
or concave and increasing for |t− s| > 1. From this, the best bounds in the first
Kershaw’s double inequality (5) were deduced.

For a and b being two constants, as x→∞, the following asymptotic formula is
given in [1, p. 257 and p. 259]:

xb−a
Γ(x+ a)
Γ(x+ b)

= 1 +
(a− b)(a+ b− 1)

2x
+O

(
1
x2

)
. (8)

For recent development and more detailed information on this topic, please refer
to, for example, [4, 5, 13, 14, 19, 20, 22, 24, 30] and the references therein.

Recall [2, 5, 15, 26] that a function f is said to be completely monotonic on an
interval I if f has derivatives of all orders on I and (−1)nf (n)(x) ≥ 0 for x ∈ I
and n ≥ 0, and that a function f is called logarithmically completely monotonic on
an interval I if f has derivatives of all orders on I and its logarithm ln f satisfies
0 ≤ (−1)k[ln f(x)](k) <∞ for all k ∈ N on I. For our own convenience, the sets of
the completely monotonic functions and the logarithmically completely monotonic
functions on I are denoted respectively by C[I] and L[I]. In [2, 15, 25, 26, 28, 29],
it has been proved that L[I] ⊂ C[I]. The well known Bernstein’s Theorem [33,
p. 161] states that f ∈ C[(0,∞)] if and only if f(x) =

∫∞
0
e−xs dµ(s), where µ is a

nonnegative measure on [0,∞) such that the integral converges for all x > 0. In [2,
Theorem 1.1] and [8] it is pointed out that the logarithmically completely mono-
tonic functions on (0,∞) can be characterized as the infinitely divisible completely
monotonic functions studied by Horn in [10, Theorem 4.4]. For more information on
the classes C[I] and L[I], please refer to [2, 15, 25, 26, 27, 28, 29] and the references
therein.

For x > 0 and a > 0, let

ha(x) =
(x+ a)1−aΓ(x+ a)

xΓ(x)
and fa(x) =

Γ(x+ a)
xaΓ(x)

, (9)

where Γ is the classical Euler’s gamma function. In [24], among other things, the
logarithmically completely monotonic properties of the functions ha(x) and fa(x)
are obtained:

(1) limx→0+ ha(x) = Γ(a+1)
aa and limx→∞ ha(x) = 1 for any a > 0,

(2) ha(x) ∈ L[(0,∞)] if 0 < a < 1,
(3) [ha(x)]−1 ∈ L[(0,∞)] if a > 1;
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(4) limx→∞ fa(x) = 1 for any a ∈ (0,∞),
(5) fa(x) ∈ L[(0,∞)] and limx→0+ fa(x) = ∞ if a > 1,
(6) [fa(x)]−1 ∈ L[(0,∞)] and limx→0+ fa(x) = 0 if 0 < a < 1.

Observe that the functions ha(x) and fa(x) can be rewritten as

ha(x) = (x+ a)1−a
Γ(x+ a)
Γ(x+ 1)

and fa(x) = x1−aΓ(x+ a)
Γ(x+ 1)

. (10)

In [3], the function Γ(x+1)
Γ(x+s)

(
x + s

2

)s−1 for s ∈ (0, 1) is proved to be completely
monotonic in (0,∞).

These hint us to consider the logarithmically complete monotonicity of the func-
tion

Ha,b,c(x) = (x+ c)b−a
Γ(x+ a)
Γ(x+ b)

(11)

for x ∈ (−ρ,∞), where a, b and c are real numbers and ρ = min{a, b, c}.
The first main result of this paper is the following Theorem 1.

Theorem 1. Let a, b and c be real numbers and ρ = min{a, b, c}. Then
(1) Ha,b,c(x) ∈ L[(−ρ,∞)] if (a, b, c) ∈ D1(a, b, c), where

D1(a, b, c) =
{

(a, b, c) : a+ b ≥ 1, c ≤ b < c+
1
2

}
∪

{
(a, b, c) : a > b ≥ c+

1
2

}
∪ {(a, b, c) : 2a+ 1 ≤ a+ b ≤ 1, a < c}
∪ {(a, b, c) : b− 1 ≤ a < b ≤ c}
\ {(a, b, c) : a = c+ 1, b = c}.

(12)

(2) [Ha,b,c(x)]−1 ∈ L[(−ρ,∞)] if (a, b, c) ∈ D2(a, b, c), where

D2(a, b, c) =
{

(a, b, c) : a+ b ≥ 1, c ≤ a < c+
1
2

}
∪

{
(a, b, c) : b > a ≥ c+

1
2

}
∪ {(a, b, c) : b < a ≤ c}
∪ {(a, b, c) : b+ 1 ≤ a, c ≤ a ≤ c+ 1}
∪ {(a, b, c) : b+ c+ 1 ≤ a+ b ≤ 1}
\ {(a, b, c) : a = c+ 1, b = c}
\ {(a, b, c) : b = c+ 1, a = c}.

(13)

As a direct consequence of the monotonicity of Ha,b,c(x) and a generalization and
a refinement of the first Kershaw’s double inequality (5), the following Theorem 2,
the second main result of this paper, is established.

Theorem 2. Let a, b and c be real numbers, ρ = min{a, b, c} and δ be a constant
greater than −ρ. If (a, b, c) ∈ D1(a, b, c), then inequality

(x+ c)a−b <
Γ(x+ a)
Γ(x+ b)

(14)
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holds in x ∈ (−ρ,∞) and inequality

Γ(x+ a)
Γ(x+ b)

≤ Γ(δ + a)
Γ(δ + b)

(
x+ c

δ + c

)a−b
(15)

sounds in x ∈ [δ,∞). If (a, b, c) ∈ D2(a, b, c), then inequalities (14) and (15) are
reversed in (−ρ,∞) and [δ,∞) respectively.

Remark 1. Let us take a = 1 and 0 < b < 1 in inequality (14). Then inequality

(x+ c)1−b <
Γ(x+ 1)
Γ(x+ b)

(16)

is valid in (−ρ,∞) for (b, c) ∈ D1(1, b, c) ∩ {(b, c) : 0 < b < 1} = {0 < b < 1, c ≤
b < 1} \ {(0, 0)}. This implies that, in particular, inequality

(x+ b)1−b <
Γ(x+ 1)
Γ(x+ b)

(17)

is valid in (−b,∞) for 0 < b < 1.
It is clear that inequality (17) not only refines the lower bound but also extends

the range of the argument x of the left hand side in inequality (5).

Remark 2. Now let us take a = 1, 0 < b < 1 and δ = 1 in inequality (15). Then
inequality

Γ(x+ 1)
Γ(x+ b)

≤ 1
Γ(1 + b)

(
x+ c

1 + c

)1−b

(18)

validates in [1,∞) for (b, c) ∈ D1(1, b, c) ∩ {(b, c) : 0 < b < 1} ∩ {(b, c) : −ρ < 1} =
{0 < b < 1, c ≤ b < 1} ∩ {(b, c) : −ρ < 1} \ {(0, 0)} = {(b, c) : 0 < b < 1,−1 < c ≤
b < 1}. In particular, for 0 < b < 1, inequality

Γ(x+ 1)
Γ(x+ b)

≤ 1
Γ(1 + b)

(
x+ b

1 + b

)1−b

(19)

makes sense in x ∈ [1,∞).
Standard argument reveals that if

x ≥
(
1/2−

√
b+ 1/4

)
(1 + b) 1−b

√
Γ(1 + b) + 1

(1 + b) 1−b
√

Γ(1 + b) − 1
, λ(b) (20)

then inequality (19) would be better than the right hand side of (5). It is easy to
obtain that limb→0+ λ(b) = ∞ and

lim
b→1−

λ(b) =
e+ eγ −

√
5 eγ

2eγ − e
= 0.6123686 · · · < 1,

where γ = 0.57721566 · · · is the Euler-Mascheroni’s constant. This means that
inequality (19) refines the right hand side of (5) if b is closer enough to 1 and that
the upper bound in (19) is better than the one in (5) if x is larger enough.

Remark 3. The inequality (1) can be rewritten as

(x+ b)1−b ≤ Γ(x+ 1)
Γ(x+ b)

≤ x1−b. (21)

It is easy to see that the range of the argument x in inequality (17) is larger than
that in the left hand side of inequality (21).
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Taking a = 1, 0 < b < 1 and δ = 0 in inequality (15) yields

Γ(x+ 1)
Γ(x+ b)

≤ 1
Γ(b)

(
x+ c

c

)1−b

(22)

for (b, c) ∈ D1(1, b, c) ∩ {(b, c) : 0 < b < 1} ∩ {(b, c) : −ρ < 0} = {0 < b < 1, c ≤ b <
1} ∩ {(b, c) : −ρ < 0} \ {(0, 0)} = {(b, c) : 0 < b < 1, 0 < c ≤ b < 1}. In particular,
inequality

Γ(x+ 1)
Γ(x+ b)

≤ 1
Γ(b)

(
x+ b

b

)1−b

(23)

makes true in [0,∞) for 0 < b < 1. When

x >
1

b 1−b
√

Γ(b) − 1
, (24)

the upper bound in (23) is better than that in (21).

Remark 4. Since

[Ha,b,c(x)]1/(a−b) =
1

x+ c

[
Γ(x+ a)
Γ(x+ b)

]1/(a−b)

=
zb,a(x) + x

x+ c
(25)

and

zb,a(x) = [Ha,b,c(x)]1/(a−b)(x+ c)− x, (26)

the monotonicity and convexity of zb,a(x) and the logarithmically complete mono-
tonicity of Ha,b,c(x) are connected.

Remark 5. Equation (25) shows that (1 + b) 1−b
√

Γ(1 + b) in (20) and b 1−b
√

Γ(b) in
(24) can be rewritten as [H1,b,b(1)]1/(b−1) and [H1,b,b(0)]1/(b−1) respectively. The
graphs of these two functions, pictured by Mathematica 5.2, remind us that these
two functions are increasing in b ∈ (−1,∞) and b ∈ (0,∞) respectively.

In [19], using some monotonicity results and inequalities of the generalized
weighted mean values with two parameters in [9, 16, 17, 21, 31], it was verified,

among other things, that the functions
[

Γ(s)
Γ(r)

]1/(s−r)
are increasing in both r > 0

and s > 0. In [30], it was showed that 1
zs,t(x)+1 ∈ C[(−α,∞)].

Now it is natural to propose the following open problem: Let δ ≥ 0, λ ≥ 0 and
µ be real constants and k ∈ N such that µ > λ(2δ)2k−1. For x, y ∈ (−δ,∞), define

Φδ,λ,µ,k(x, y) =


1

λ(x+ y)2k−1 + µ

[
Γ(δ + x)
Γ(δ + y)

]1/(x−y)

, x 6= y,

eψ(δ+y)

2λy2k−1 + µ
, x = y.

(27)

What about the monotonicity, complete monotonicity, logarithmically complete
monotonicity or Schur-convexity of the function Φδ,λ,µ,k(x, y)?

2. Lemmas

In order to prove our main results, the following lemmas are necessary.
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Lemma 1 ([1]). For x > 0 and ω > 0,

1
xω

=
1

Γ(ω)

∫ ∞

0

tω−1e−xt d t. (28)

For k ∈ N and x > 0,

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
d t. (29)

Lemma 2 ([18, 23]). For real numbers α and β with (α, β) 6∈ {(0, 1), (1, 0)} and
α 6= β, let

qα,β(t) =


e−αt − e−βt

1− e−t
, t 6= 0,

β − α, t = 0.
(30)

(1) The function qα,β(t) is increasing in (0,∞) if and only if (α, β) ∈ D1(α, β),
where

D1(α, β) =
{

(α, β) : α > β ≥ 1
2

}
∪

{
(α, β) : α ≥ 1− β, 0 ≤ β <

1
2

}
∪ {(α, β) : α+ 1 ≤ β ≤ 1− α, α < 0}
∪ {(α, β) : β − 1 ≤ α < β ≤ 0}
\ {(1, 0)}.

(31)

(2) The function qα,β(t) is decreasing in (0,∞) if and only if (α, β) ∈ D2(α, β),
where

D2(α, β) =
{

(α, β) : β ≥ 1− α,
1
2
> α ≥ 0

}
∪

{
(α, β) : β > α ≥ 1

2

}
∪ {(α, β) : β < α ≤ 0}
∪ {(α, β) : β ≤ α− 1, 0 ≤ α ≤ 1}
∪ {(α, β) : 1 ≤ α ≤ 1− β}
\ {(1, 0), (0, 1)}.

(32)

Remark 6. The (α, β)-domains D1(α, β) and D2(α, β) defined in Lemma 2, where
the function qα,β(t) is increasingly or decreasingly monotonic in (0,∞), can be
described respectively by Figure 1 and Figure 2 below.

Remark 7. In [18, 23, 30], the monotonicity, logarithmic convexity and 3-log-
convexity of the function qα,β(t) in either (−∞, 0), (0,∞) or (−∞,∞) have been
investigated thoroughly.

3. Proofs of theorems

Proof of Theorem 1. By formulas (28) and (29), direct computation yields

lnHa,b,c(x) = (b− a) ln(x+ c) + lnΓ(x+ a)− ln Γ(x+ b),
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Figure 1. The (α, β)-domain D1(α, β) in Lemma 2

[lnHa,b,c(x)]′ =
b− a

x+ c
+ ψ(x+ a)− ψ(x+ b)

=
b− a

x+ c
+

∫ ∞

0

e−bt − e−at

1− e−t
e−xt d t

= −
∫ ∞

0

[
e(c−a)t − e(c−b)t

1− e−t
+ (a− b)

]
e−(x+c)t d t

= −
∫ ∞

0

[qa−c,b−c(t) + (a− b)]e−(x+c)t d t

and, for k ∈ N,

(−1)k[lnHa,b,c(x)](k) =
∫ ∞

0

[qa−c,b−c(t) + (a− b)]tk−1e−(x+c)t d t,

where qα,β(t) is defined by (30) in Lemma 2.
From qα,β(0) = β − α and qa−c,b−c(0) = b − a, it is deduced that if qa−c,b−c(t)

is increasing (or decreasing respectively) in (0,∞) then qa−c,b−c(t) + (a− b) R 0 in
t ∈ (0,∞) and (−1)k[lnHa,b,c(x)](k) R 0 in x ∈ (−ρ,∞) for k ∈ N. Combining this
with Lemma 2 reveals that Ha,b,c(x) ∈ L[(−ρ,∞)] if (a− c, b− c) ∈ D1(a− c, b− c)
and [Ha,b,c(x)]−1 ∈ L[(−ρ,∞)] if (a − c, b − c) ∈ D2(a − c, b − c). The proof of
Theorem 1 is complete. �

Proof of Theorem 2. By formula (8), it follows that

Ha,b,c(x) =
(

1 +
c

x

)b−a[
xb−a

Γ(x+ a)
Γ(x+ b)

]
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Figure 2. The (α, β)-domain D2(α, β) in Lemma 2

=
(

1 +
c

x

)b−a[
1 +

(a− b)(a+ b− 1)
2x

+O

(
1
x2

)]
→ 1

as x→∞ for all real numbers a, b and c.
If (a, b, c) ∈ D1(a, b, c), the function Ha,b,c(x) is decreasing in (−ρ,∞) and

Ha,b,c(x) > limx→∞ = 1 which can be rearranged as inequality (14). Further,
if δ is a constant greater than −ρ, then

Ha,b,c(x) ≤ Ha,b,c(δ) = (δ + c)b−a
Γ(δ + a)
Γ(δ + b)

in [δ,∞), which can be rewritten as (15) for x ∈ [δ,∞).
If (a, b, c) ∈ D2(a, b, c) and δ is also a constant greater than −ρ, then the function

Ha,b,c(x) is increasing in (−ρ,∞), inequalities (14) and (15) are reversed respec-
tively. The proof of Theorem 2 is complete. �
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