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A COMPLETELY MONOTONIC FUNCTION INVOLVING
DIVIDED DIFFERENCES OF PSI AND POLYGAMMA

FUNCTIONS AND AN APPLICATION

FENG QI

Abstract. A function involving the divided differences of the psi function and
the polygamma functions is proved to be completely monotonic. As an appli-
cation of this result, the monotonicity and convexity of a function originated
from establishing the best upper and lower bounds in Kershaw’s inequality is
deduced.

1. Introduction

Recall [5] that a function f is said to be completely monotonic on an interval I
if f has derivatives of all orders on I and (−1)nf (n)(x) ≥ 0 for x ∈ I and n ≥ 0.
For information about the history, applications and recent developments on the
completely monotonic function, please refer to the expository article [5] and the
references therein.

The Kershaw’s inequality [4] states that
(
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for 0 < s < 1 and x ≥ 1, where Γ denotes the classical Euler’s gamma function and
the middle term in (1) is a special case of the Wallis’ function Γ(x+p)

Γ(x+q) for x + p > 0
and x + q > 0. It is clear that inequality (1) can be rearranged as
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Let s and t be nonnegative numbers and α = min{s, t}. Define

zs,t(x) =





[
Γ(x + t)
Γ(x + s)

]1/(t−s)

− x, s 6= t

eψ(x+s) − x, s = t

(3)

in x ∈ (−α,∞). Standard differentiating and simplifying yields

z′s,t(x) = [zs,t(x) + x]
ψ(x + t)− ψ(x + s)

t− s
− 1, (4)
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z′′s,t(x) = [zs,t(x) + x]
{[

ψ(x + t)− ψ(x + s)
t− s

]2

+
ψ′(x + t)− ψ′(x + s)

t− s

}
(5)

=
zs,t(x) + x

(t− s)2

{
[ψ(x + t)− ψ(x + s)]2 + (t− s)[ψ′(x + t)− ψ′(x + s)]

}
. (6)

In order to obtain the best upper and lower bounds for double inequality (1) or (2),
the monotonicity and convexity properties of the function zs,t(x) in x ∈ (−α,∞)
is showed in [2, 3, 7] by using Laplace transform and other complicated techniques
respectively.

Let

Θs,t(x) = [ψ(x + t)− ψ(x + s)]2 + (t− s)[ψ′(x + t)− ψ′(x + s)] (7)

and

∆s,t(x) =





[
ψ(x + t)− ψ(x + s)

t− s

]2

+
ψ′(x + t)− ψ′(x + s)

t− s
, s 6= t

[ψ′(x + s)]2 + ψ′′(x + s), s = t

(8)

in x ∈ (−α,∞). It is clear from (5) and (6) that

z′′s,t(x) = [zs,t(x) + x]∆s,t(x) =
zs,t(x) + x

(t− s)2
Θs,t(x) (9)

for t 6= s.
The aim of this paper is to prove the completely monotonic property of the

functions Θs,t(x) and ∆s,t(x) in (−α,∞).

Theorem 1. The functions Θs,t(x) for |t− s| < 1 and −Θs,t(x) for |t− s| > 1
are completely monotonic in (−α,∞). The functions ∆s,t(x) for |t− s| < 1 and
−∆s,t(x) for |t− s| > 1 are completely monotonic in x ∈ (−α,∞).

Remark 1. Note that, among other things, the positivity of the function ∆0,0(x) =
[ψ′(x)]2 + ψ′′(x) in (8) has been verified in [1].

As a straightforward application of Theorem 1, the monotonicity and convexity
of the function zs,t(x) is obtained.

Theorem 2 ([2, 3, 7]). The function zs,t(x) in (−α,∞) is either convex and de-
creasing for |t− s| < 1 or concave and increasing for |t− s| > 1.

2. Proofs of theorems

The basic tool of this paper is the following lemma.

Lemma 1. Let f(x) be defined in an infinite interval I. If limx→∞ f(x) = 0 and
f(x)− f(x + ε) > 0 for any given ε > 0, then f(x) > 0 in I.

Proof. By induction, for any x ∈ I, we have

f(x) > f(x + ε) > f(x + 2ε) > · · · > f(x + kε) → 0

as k →∞. The proof of Lemma 1 is complete. ¤
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2.1. Proof of Theorem 1. It is well known that for any positive integer n ∈ N
the psi function ψ(x) and the polygamma or multigamma functions ψ(n)(x) have
the following integral expressions

ψ(x) = ln x +
∫ ∞

0

[
1
u
− 1

1− e−u

]
e−xu du (10)

and

ψ(n)(x) = (−1)n+1

∫ ∞

0

un

1− e−u
e−xu du. (11)

Using

ψ(i−1)(x + 1) = ψ(i−1)(x) +
(−1)i−1(i− 1)!

xi
(12)

for i ∈ N and x > 0 and direct computing gives

Θs,t(x)−Θs,t(x + 1) =
{
[ψ(x + t) + ψ(x + t + 1)]− [ψ(x + s) + ψ(x + s + 1)]

}

× {
[ψ(x + t)− ψ(x + t + 1)]− [ψ(x + s)− ψ(x + s + 1)]

}

+ (t− s)
{
[ψ′(x + t)− ψ′(x + t + 1)]− [ψ′(x + s)− ψ′(x + s + 1)]

}

=
{

[ψ(x + t + 1) + ψ(x + t)]− [ψ(x + s + 1) + ψ(x + s)]
t− s

− 2x + s + t

(x + s)(x + t)

}
(t− s)2

(x + s)(x + t)
, Λs,t(x)

(t− s)2

(x + s)(x + t)

(13)

and

Λs,t(x)− Λs,t(x + 1) =
1

t− s

(
1

x + s
+

1
x + s + 1

− 1
x + t

− 1
x + t + 1

)

− 2x2 + 2(s + t + 1)x + s2 + t2 + s + t

(x + s)(x + s + 1)(x + t)(x + t + 1)

=
1− (s− t)2

(x + s)(x + s + 1)(x + t)(x + t + 1)
.

Since limx→∞ Λ(i)
s,t(x) = 0 for any nonnegative integer i by (10) and (11), and

the function Λs,t(x)−Λs,t(x+1)
1−(s−t)2 is completely monotonic, that is,

(−1)i [Λs,t(x)− Λs,t(x + 1)](i)

1− (s− t)2
=

(−1)iΛ(i)
s,t(x)− (−1)iΛ(i)

s,t(x + 1)
1− (s− t)2

≥ 0,

in (−α,∞), then (−1)iΛ
(i)
s,t(x)

1−(s−t)2 ≥ 0 follows from Lemma 1. This means the function
Λs,t(x)

1−(s−t)2 is completely monotonic in (−α,∞).

Since the function (t−s)2

(x+s)(x+t) is completely monotonic and a product of two
completely monotonic functions is also completely monotonic, then the function
Θs,t(x)−Θs,t(x+1)

1−(s−t)2 is completely monotonic in (−α,∞) by considering (13), which is
equivalent to

(−1)k

[
Θs,t(x)−Θs,t(x + 1)

1− (s− t)2

](k)

=
(−1)kΘ(k)

s,t (x)− (−1)kΘ(k)
s,t (x + 1)

1− (s− t)2
≥ 0

for nonnegative integer k. Further, from limx→∞Θ(k)
s,t (x) = 0 for nonnegative inte-

ger k, which can be deduced by utilizing (10) and (11), and Lemma 1, it is concluded
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that (−1)kΘ
(k)
s,t (x)

1−(s−t)2 ≥ 0 for any nonnegative integer k. This implies (−1)kΘ(k)
s,t (x) R 0

if and only if |t− s| ≶ 1. Therefore, the functions Θs,t(x) for |t− s| < 1 and
−Θs,t(x) for |t− s| > 1 are completely monotonic in (−α,∞).

Since Θs,t(x) = (t− s)2∆s,t(x), the function ∆s,t(x) has the same monotonicity
property as Θs,t(x) in (−α,∞). The proof of Theorem 1 is complete.

2.2. Proof of Theorem 2. By Theorem 1, it is easy to see that Θs,t(x) R 0 and
∆s,t(x) R 0 in (−α,∞) if and only if |t− s| ≶ 1. Then z′′s,t(x) R 0 for |t− s| ≶ 1
follows from formula (9). The convexity and concavity of the function zs,t(x) is
proved.

In [6], the inequality

exp [(s− r)ψ(s)] >
Γ(s)
Γ(r)

> exp [(s− r)ψ(r)] (14)

for s > r > 0 was obtained, which is equivalent to

max
{
eψ(s), eψ(r)

}
>

[
Γ(s)
Γ(r)

]1/(s−r)

> min
{
eψ(s), eψ(r)

}

for any positive numbers s > 0 and t > 0. This implies

z′s,t(x) =
[

Γ(x + t)
Γ(x + s)

]1/(t−s)
ψ(x + t)− ψ(x + s)

t− s
− 1

< eψ(x+t) ψ(x + t)− ψ(x + s)
t− s

− 1

= eψ(x+t)ψ′(x + ξ)− 1 < ψ′(x + t)eψ(x+t) − 1

(15)

and

z′s,t(x) > eψ(x+s) ψ(x + t)− ψ(x + s)
t− s

− 1

= eψ(x+s)ψ′(x + ξ)− 1

> ψ′(x + s)eψ(x+s) − 1,

(16)

if assuming t > s > 0 without loss of generality, where ξ ∈ (s, t).
By inequality

ln x− 1
x

< ψ(x) < ln x− 1
2x

(17)

for x > 0, we obtain

xψ′(x)e−1/x < ψ′(x)eψ(x) < xψ′(x)e−1/2x (18)

for x > 0. Using the asymptotic representation

ψ′(x) ∼ 1
x

+
1

2x2
+ · · · (19)

as x →∞ yields

lim
x→∞

[
xψ′(x)e−1/x

]
= 1 and lim

x→∞
[
xψ′(x)e−1/2x

]
= 1. (20)

Hence,
lim

x→∞
[
ψ′(x)eψ(x)

]
= 1. (21)
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Combining (21) with (15) and (16) leads to

lim
x→∞

z′s,t(x) ≤ lim
x→∞

[
ψ′(x + t)eψ(x+t)

]− 1 = lim
x+t→∞

[
ψ′(x + t)eψ(x+t)

]− 1 = 0

and

lim
x→∞

z′s,t(x) ≥ lim
x→∞

[
ψ′(x + s)eψ(x+s)

]− 1 = lim
x+s→∞

[
ψ′(x + s)eψ(x+s)

]− 1 = 0.

Thus, it is concluded that limx→∞ z′s,t(x) = 0.
Since z′′s,t(x) R 0 in x ∈ (−α,∞) for |t− s| ≶ 1, then the function z′s,t(x)

is increasing/decreasing in x ∈ (−α,∞) for |t− s| ≶ 1. Thus, it follows that
z′s,t(x) Q 0 and zs,t(x) is decreasing/increasing in x ∈ (−α,∞) for |t− s| ≶ 1. The
monotonicity of the function zs,t(x) is proved.
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