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ON THE DECOMPOSITION OF n! INTO PRIMES
MEHDI HASSANI

ABSTRACT. In this note, we make explicit approximation of the average of prime powers in
the decomposition of n!. Then we find the order of geometric and harmonic means of such

powers.

1. INTRODUCTION

Letting

nl — Hp”p(n!)7

p<n

with p is prime, it is known [6], as a classic result that

(1) wnl) =3 2] > i

k k
k=1 p k=1 p

2

we study the following summation for a fixed positive integer n,

Y(n) =Y vy(n)).

p<n

with m =m,,, = | and |z] is the largest integer less than or equal to z. In this paper,

1.1. Approximate Formula for the Function Y(n). First, we note that integrating by
parts, yields

" dx N N " dx
1.2 = n -2 N _
(12) /2 log x Z 1 Z log 2 /2 logN ™

k=1 k=1
N
n
- ”Z O( N+1 )
Pt log n log

Considering (1.1), we have

=X 3 |5 =5 (% +ow).

p<n k<m p<n k<m
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So, we have

—ZZ% < ZZl<<Zm<<lognZ1
pgnkgmp ogp

p<n k<m p<n p<n

1 " dx
< lognz@<<logn/2 gz’

p<n k<m
Thus, since m > 1, we have
1
—nZZ——i—O ):nz——l—O(n)
p<n k<m p<n p<n p

In the other hand, it is known [2] that

Zl = loglogn + O(1).

p<n
Therefore,
T (n) =nloglogn + O(n).

Now, let T(n) be the mean value of the values of v,(n!) for p < n. We have

. 0
T = 2, |p<n}2p w(n)’

p<n

where m(n) = the number of primes not exceeding of n. Considering the Prime Number
Theorem (PNT) [2]; w(n) ~ we obtain

logn’

— logl

T(n) = % O(%) = lognloglogn + O(logn).
What does this mean? Putting £ = logn and letting p, = |2|™ prime number for z > 1,
another analogue of PNT yields that Y(n) ~ pge, which means the average of the prime

powers in the factorization of n! into the primes is approximately £ prime number.
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1.2. Aim of Work and Summary of the Results. In the next sections, first we get some
explicit bounds for the function Y(n), and then consequently for the function Y(n). More
precisely, we prove the following results. Note that the constants ¢4, cg and c¢1¢ at bellow all

are effective.

Theorem 1.1. For every n > 2, we have

n 1717433n
T(n) < (n—1)logl —1)+ - 1)+ .
(1) < (n = 1)loglog(n — 1)+ cx(n 1) + o+ =™
Theorem 1.2. For every n > 3, we have
— logn cqlog?n logn 1717433
T(n) < ———1 log 1 —-1)+ + :
(n) 1+ logn ognlog log(n — 1) l1+logn 14logn = (1+logn)log®n

Corollary 1.3. For n > 12602987, we have

— 380537
T | log1
(n) < lognloglogn + 17966

logn + 1.

Theorem 1.4. For every n > 3, we have

n o 1638In  6n  54281n
logn  5000log”n  log®n  800log*n

YT(n) > (n—1)loglogn + cs(n — 1) — — ¢y0logn.

Theorem 1.5. For every n > 2, we have

T(n) (= D lognloglogn + ol 17”)Lﬁn L 5%%?681:;”” - 1§glznn
54281k,  cigky log®n
"~ 800log*n  n
where
5000 logn

Ky = :
6381 + 5000 log n

1.3. Some Tools. During proofs, we will need to estimate summations of the form Zp <nt (p)

for a given function f(r) € C'(RT) with summation over primes p. Concerning this problem,

using Stieljes integral [7] and integrating by parts, we have

13) Y f) f:)(g; I(x) = % * /; M@d% (%(?) o

p<n

where ¥(x) = > log p, and it is known that [4] for 2 > 1, we have

p<z

793x

14 He) — x| < ———,
(1.4) () =l 20010g2x
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and
(1.5) 9(z) — x| < 1717433———.
log™ x
Starting point of explicit approximations of Y (n) is the following known [5] bounds
n—p logn n—1
1.6 — < <
(16) Db ) < T

which holds true for every n € N and prime p, with p < n. To apply obtained results for

approximating Y (n), we need some explicit bounds concerning 7(n); it is known [4] that

n 1
1. > 1
(L.7) m(n) 2 logn < * logn) 7
which holds true for every n > 599. Also, for every n > 2, we have
n 6381
1.8 < 1 :
(18) m(n) < logn ( * 500010gn)

To do careful computations, we use the Maple software. Specially, to compute the values

of T(n) (and consequently Y(n)), we use the following program in Maple software worksheet:

G:=proc(n)

tot := 0:

for i from 1 by 1 while ithprime(i)<n do

tot := tot + sum(floor(n/ithprime(i)**k),k=1..floor(log(n)/log(ithprime(i))))
end do:

end:

2. EXPLICIT APPROXIMATION OF THE FUNCTIONS Y(n) AND Y(n)

In this section we introduce the proof of mentioned explicit bounds for the functions Y (n)
and Y(n).

2.1. Upper Bounds. Using the right hand side of (1.6) and (1.3), we have T(n) < S;(n),

where

(2.1) Sim) = YLt

p—1

p<n

= o =0 [ 90 (T ) %
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2.1.1. Upper Approzimation of Si(n). Since, %(m) > 0, using (1.4), we obtain

[ (Vi< g o v

dz \ (z — 1)logx
where
7,(n) /” 1200x3+365x2+9944x—1993d
n) = x,
! ) 1200 (z — 1) log
and
2
— log2+1
o = 5937 log 2—1—39635 og 2 + 1586 ~ 7.416262921,
600 log® 2
and & (n) = —% with B(n) = 1200(n — 1)%log® n, and
A
Aln) - _ 120012 log® n + 237912 log n + 158612 — 63651 log* n
n
— 3172nlogn — 3172n + 1993 1og? n + 793 log n + 1586.
Easily lim & (n)logn = —1 and for every n we have & (n) < 0. Therefore, we get
I(n
Si(n) < lo(g?i—l—cl(n—l)—i—(n—l)L(n) (n>2).
Now, we have
™ 1200 23 + 365 22 + 9944 x — 1993
Zi(n) = 1 dzx + ¢,
et1 1200 (z — 1)  log x
where 1120023 + 365 22 + 9944 x — 1993
¢y = / - dx ~ 12.35466367,
2 1200 (x — 1)  logx
and so,

™ 1200 23 + 365 22 + 9944  — 1993
Zi(n) < / v Ao - dx + ¢ = loglog(n — 1) + &(n) + s,

1 1200 (z — 1)*log(z — 1)

where
793 2379
_ o B8 =22 B2l (n—1
&y (n) 240Ez(1,log(n 1)) 500 Fi (1,2 log (n ))
—%Ei(l,iﬂog(n—l))ﬁo_ (n>2),

and 793 2379 793

B D)+ 2 Bi(1.2) + 222 Bi(1.3) + 2 ~ 13.76468999.

¢s = 50 B (L) + 55 Bi (1,2) + 05 Bi(1,3) + ¢

Note that Ei is the formal notation for the Exponential Integral [1], defined by

Fi(a,z) = /looe_tzt_adt (R(z) > 0).
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Therefore, putting ¢4 = ¢; + ¢3 &~ 21.18095291, we obtain

9(n)

Si(n) < (n—1)loglog(n — 1)+ c4(n — 1) + logn

(n > 2),

and using (1.5), we get the following explicit upper bound

n 1717433n
+ 5
logn log”n

Si(n) < (n—1)loglog(n — 1) 4+ c4(n — 1) + (n > 2).

Remembering Y (n) < S1(n), completes the proof of the Theorem 1.1. Now, we can use this

result to get some upper bounds for the function Y(n). Since T(n) = %, considering (1.7),
for every n > 599 we have
— logn calog?n logn 1717433
T(n) < ————lognloglo —1)+ + —,
(n) 1+logn gnloglog(n —1) 1+logn 14logn (14 logn)log®n

which holds true for 3 < n < 598 too, by computation. This proofs the Theorem 1.2. Also,
an straight computation yields the following simpler bound for n > 12602987,

— 380537
T 1 log1
(n) <lognloglogn + 17966

logn + 1.

This proofs the Corollary 1.3.

2.2. Lower Bounds. Using the right hand side of (1.6) and (1.3), we have

(22) > 3 (B0 - ) i) = (o) - Salo)

log p

p<n

where S;(n) has been introduced in (2.1), and

logn " d -1
2. 1 Hzx)— | —— | dx.
(2:3) Z logp logn + ogn/2 (x)dx ( 21’) v

2.2.1. Lower Approximation of S1(n). Because dd <( —L ) > (, considering (1.4), we have

z—1)logx

[ 0015 (e =mgs) o> T + 6t e

/” 12002 — 756522 — 2744x — 407
9 1200(z — 1)*log x

where

IQ(”) = d$7

and
833710g 2 — 3965 log 2 — 1586

600 log® 2

Cs = ~ —1.645482755,
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and &E(n) = —giz)) with D(n) = 1200(n — 1)3log®n, and

Cn)

n

= 1200n2log?n — 2379 n%logn — 1586n% + 1565n1og* n
+ 3172nlogn + 3172n + 407 log® n — 793 1logn — 1586.

Easily lim &;(n)logn = —1. The function ;(n) takes its minimum vale at n &~ 28.85589912.

Thus for every n > 2, we have

53(n) > m1n{€3(28), 53(29)} = 83(29)

29(131874log” 29 — 238693 l0g 20 — 155428
I °8 i ) ~ 1236613745,
3292800 log” 29

In the other hand, we have

T(n) /” 120023 — 756522 — 27442 — 407dm Lo
n) =
? . 1200(z — 1)*log = o
where
€ 120023 — 2 2744x — 4
Co = / 0027 — 706507 — 2THx = 407, g 600279758,
9 1200(x — 1)*log x
So,
" 12002 — 756522 — 27442 — 407
Zo(n) > /e 120001 log 2 dx + ¢ = loglogn + &E4(n) + ¢,
where
1513 343 407
=——Fi (1,1 — Fi (1,21 —— Fi (1,31
and
1513 343 407
=c— | —FEi(1,1)+ —Ei(1,2) + —= Ei(1,3) | = —10.09955739.
= (240 B D)+ 150 BHL2) + 356 Bi (L, ))
Note that, £&(n) = —(240115211?(’%” + 1503??%” + 1200;11%710%) < 0 and nllj& Ei(n) = 0. Thus, for
every n > 2, we have £(n) > 0. Therefore, we obtain
9
(2.4) Si(n) > ) + (n —1)loglogn + cs(n — 1),

logn
where cg = 5+ ¢ + E3(29) ~ —11.86870152. Considering (1.5), we get the following explicit
lower bound for every n > 2

n 1717433n
logn log’n

Si1(n) > (n—1)loglogn + cg(n — 1) +
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2.2.2. Lower Approzimation of Sa(n). Because % (

o2 ) > 0, considering (1.4), we have

" d [ —1 " 200 log® z — 793 1607 [ dx
I(z)— d dr = —— R
/2 (x)dx <log2 x) v /2 100log® = ¥ 2400 o logz TRin) +

where
1607n 1607n 793n 793n

- + + ,
2400logn  2400log®n  1200log®n ~ 400log*n
and ¢g = —R1(2) ~ —16.42613005. Now, considering (1.2), and a simple calculation, yields

that
n 5
/2 log T kz:

Applying this bound, we obtain
" d -1 2n 6n 1607n
HNe)— | —— | dz > + + +c
/2 ( )dZE <log2 :L‘) logn  log*n = 100log®n

¥(n) 2n 6n 1607n
e ot st 1
logn ~ logn  log®n  100log™n

Rl (n) = —

(n > 563.74).

Therefore,

SQ (Tl) >

+ cglogn (n > 564),

and considering (1.5), we obtain

n 2n 6n 1607n 1717433n

+ + —
logn  logn  log®n = 100log*n log® n

Sa(n) > + cglogn (n > 564).

2.2.3. Upper Approzimation of Sy(n). Again, considering the relations - (10;213) > 0 and

dx
(1.4), we have

n d 1 " 2001log? = + 793 3193 (™ dx
I(z)— d de = —— R
/2 <x>dx (log x) T < /2 100" 2 =500 | Togz + Ra(n) + ¢,

where
3193n 3193n 793n 793n

24001logn  2400log>n  1200logn  400log’n’
and c19g = —R2(2) ~ 30.52238614. Now, an easy computation yields that

Rz(n) = —

4
" 51n
€+ n > 2 and € ~ 0.144266447).

/2 1ogm kz log" log n (nz )

Thus, for every n > 2 we have

/”19( )d < -1 )d - 2n n 6n N 54281n n
€T)— —_— T C .
9 dx \ log® z log®n  log*n  800log’n 0
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Therefore,

J(n) 2n 6n 54281n

2.5 Ss(n) < +
(2:5) 2(n) logn  logZn log®n = 800log'n

+ ¢10logn,

and considering (1.5), we obtain

- n n 2n n 6n n 54281n 1717433n 4ol
1o logn.
logn  log’n log’n = 800log*n log® n 10708

S2 (n)

Therefore, considering the relations (2.2), (2.4) and (2.5), for every n > 2 we obtain
2n 6n 54281n

T(n) > — — — —
(n) m(n) logn  log®n  800log*n

+ (n—1)loglogn + cs(n — 1) — ¢19logn,

and considering (1.8), we get

n 16381n 6n 54281n
logn 5000 logn a log®n 800 log'n
This completes the proof of the Theorem 1.4. Dividing both sides of above inequality by

T(n) > (n—1)loglogn + cs(n — 1) — — ¢19 log n.

7(n) and using (1.8), we obtain

T(n) (= D lognloglogn + Ll 172% L 51)%?2?71 - 106;;71
54281k,  ciokn log®n
T 800logn  n
where
. 5000 logn

~ 6381 + 5000logn’
This gives the proof of the Theorem 1.5.

3. SOME QUESTIONS AND ANSWERS

3.1. Approximately, at which prime Y(n) appear? To answer this, we have to solve

the equation Y(n) = v,(n!) approximately, according to p. Using the relation (1.6), we have
(3.1) vy(nl) = Ll +O(logn).
p p—

Putting this and the relation Y(n) = lognloglogn + O(logn) in the approximate equation

T(n) = vy(n!), we obtain

n
_ 1 O( ) ~ .
P lognloglogn T logn lognloglogn (n = o)
If we let p to be (approximately) the k™ prime, then considering PNT we have

n
——— ~ klogk :
lognloglogn ©8 (n = o0)
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Solving this approximate equation according to k, we obtain

n

(n — o00).

k ~/ n
log nloglogn W (fop)

where W is the Lambert W function, defined by W (x)e"®) = g for z € [—e!, +00), and it
known [3] that W (x) ~ logz when  — oo. Therefore

k? ~ n
log nloglogn log (m)

This means that Y(n) appears approximately at &' prime with above obtained k.

3.2. What is the Order of Geometric Mean of v,(n!)’s? We studied T(n), which was

arithmetic mean of v,(n!)’s. To study geometric mean of them, define

YTa(n) = H vp(nl).

p<n
Considering (3.1), we have

YTa(n) = H <2% + O(logn)) = H ]ﬁ + O( H T;l(igln).

p<n p<n p<n—1

Consider Merten’s formula [6]

H L _ e logn + O(1),
p—1
p<n

where v &~ 0.5772156649 is Euler’s constant. Also, we have

1 1
= = 0™
d(n
pSnp e’
Thus, we obtain
e logn nr(n=1) 10g1+7r(n—1) n (nlog n)ﬁ
Yaln) = g + O ) <

Also, we obtain
Te(n) = Yo(n)=@ = O(nlogn).

This gives the main O-term of the order of geometric mean of v,(n!)’s.
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3.3. What is the Order of Harmonic Mean of v,(n!)’s? We set

Ty(n) = ; m and Ty(n) =

Using the right hand side of (1.6), we have
Tr(n) = Si(n),

with Si(n) at the relation (2.1). Using the result of the Subsection 2.2.1, for every n > 2 we

obtain

n 1717433n
Ty(n) > (n—1)loglogn + cs(n — 1) + —
m(n) 2 ( ) loglog s( ) logn log® n
and consequently, by (1.8) we get
~ m(n)
(n —1)loglogn + cs(n — 1) + 2 — %
n 6381
< logn <1 + 500010gn> 1
- (n—l)loglogn—i—cg(n—l)qtﬁ—% lognloglogn’

as n — o0o. Thus, we have
1

T _
n(n) < lognloglogn

This gives the main term of the order of harmonic mean of v,(n!)’s.
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