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BOUNDS FOR THE r−WEIGHTED GINI MEAN DIFFERENCE
OF AN EMPIRICAL DISTRIBUTION

P. CERONE AND S.S. DRAGOMIR

Abstract. Various bounds for the r−weighted Gini mean difference of an

empirical distribution are established.

1. Introduction

The Gini mean difference of the sample a = (a1, . . . , an) ∈ Rn is defined by

G (a) =
1

2n2

n∑
j=1

n∑
i=1

|ai − aj | =
1
n2

∑
1≤i<j≤n

|ai − aj |

and

R (a) =
1
ā
G (a)

is the Gini index of a, provided the sample mean ā is not zero [6, p. 257].
The Gini index of a equals the Gini mean difference of the “scaled down” sample

ã =
(

a1
ā , . . . , an

ā

)
(ā 6= 0)

R (a1, . . . , an) =
1

2n2

n∑
i=1

n∑
j=1

∣∣∣ai

ā
− aj

ā

∣∣∣ .
The following elementary properties of the Gini index for an empirical distribution
of nonnegative data hold [6, p. 257]:

(i) Let (a1, . . . , an) ∈ Rn
+ with

∑n
i=1 ai > 0. Then

0 = R (ā, . . . , ā) ≤ R (a1, . . . , an) ≤ R

(
0, . . . , 0,

n∑
i=1

ai

)
= 1− 1

n
< 1,

R (βa1, . . . , βan) = R (a1, . . . , an) for every β > 0

and

R (a1 + λ, . . . , an + λ) =
ā

ā + λ
R (a1, . . . , an) for λ > 0.

(ii) R is a continuous function on Rn
+.
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These and other properties have been investigated in [6], [3] and [4].
For a = (a1, . . . , an) ∈ Rn and p = (p1, . . . , pn) a probability sequence, meaning

that pi ≥ 0 (i ∈ {1, . . . , n}) and
∑n

i=1 pi = 1, we considered in [1] the weighted Gini
mean difference defined by formula

(1.1) G (p,a) =
1
2

n∑
j=1

n∑
i=1

pipj |ai − aj | =
∑

1≤i<j≤n

pipj |ai − aj | ,

and proved that

(1.2)
1
2
K (p,a) ≤ G (p,a) ≤ inf

γ∈R

[
n∑

i=1

pi |ai − γ|

]
≤ K (p,a) ,

where K (p,a) is the mean absolute deviation, namely

(1.3) K (p,a) :=
n∑

i=1

pi

∣∣∣∣∣∣ai −
n∑

j=1

pjaj

∣∣∣∣∣∣ .
We have also shown that if more information on the sampling data a = (a1, . . . , an)

is available, i.e., there exists the real numbers a and A such that a ≤ ai ≤ A for
each i ∈ {1, . . . , n} , then

(1.4) G (p,a) ≤ (A− a) max
J⊆{1,...,n}

[PJ (1− PJ)]
(
≤ 1

4
(A− a)

)
,

where PJ :=
∑

j∈J pj . Also, we have shown that

(1.5) G (p,a) ≤
n∑

i=1

pi

∣∣∣∣ai −
A + a

2

∣∣∣∣ (
≤ 1

2
(A− a)

)
.

Notice that in general the bounds for the weighted Gini mean difference G (p,a)
provided by (1.4) and (1.5) cannot be compared to conclude that one is always
better than the other [1].

The main aim of this paper is to continue the study begun in [1] and provide
various bounds for the more general r−weighted Gini mean difference that has been
introduced in [1].

2. Bounds for the r−weighted Gini Mean Difference

For a = (a1, . . . , an) ∈ Rn and p = (p1, . . . , pn) a probability sequence, meaning
that pi ≥ 0 (i ∈ {1, . . . , n}) and

∑n
i=1 pi = 1, define the r−weighted Gini mean

difference, for r ∈ [1,∞), by the formula [1, 291]:

(2.1) Gr (p,a) :=
1
2

n∑
j=1

n∑
i=1

pipj |ai − aj |r =
∑

1≤i<j≤n

pipj |ai − aj |r .

For r = 1 we have the weighted Gini mean difference G (p,a) of (1.1) which be-
comes, for the uniform probability distribution p =

(
1
n , . . . , 1

n

)
the Gini mean

difference

G (a) :=
1

2n2

n∑
j=1

n∑
i=1

|ai − aj | =
1
n2

∑
1≤i<j≤n

|ai − aj | .
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For the uniform probability distribution p =
(

1
n , . . . , 1

n

)
we denote

Gr (a) := Gr (p,a) =
1

2n2

n∑
i=1

n∑
j=1

|ai − aj |r =
1
n2

∑
1≤i<j≤n

|ai − aj |r .

Now, if we define ∆ := {(i, j) |i, j ∈ {1, . . . , n}} , then we can simply write from
(2.1)

(2.2) Gr (p,a) =
1
2

∑
(i,j)∈∆

pipj |ai − aj |r , r ≥ 1.

The following result concerning upper and lower bounds for Gr (p,a) may be stated:

Theorem 1. For any pi ∈ (0, 1) , i ∈ {1, . . . , n} with
∑n

i=1 pi = 1 and ai ∈ R,
i ∈ {1, . . . , n} , we have the inequalities

(2.3)
1
2

max
(i,j)∈∆

{
pr

i p
r
j + pipj (1− pipj)

r−1

(1− pipj)
r−1 |ai − aj |r

}

≤ Gr (p,a) ≤ 1
2

max
(i,j)∈∆

|ai − aj |r ,

where r ∈ (0,∞) .

Proof. Observe that ∑
(i,j)∈∆

pipj (ai − aj) = 0.

Then, for any fixed (i, j) ∈ ∆ we have

(2.4) pipj (ai − aj) = −
∑

(k,l)∈∆\{(i,j)}

pkpl (ak − al) .

Taking the modulus in (2.4) and utilising the Hölder discrete inequality for multiple
indices and r > 1, 1

r + 1
q = 1

(
q = r

r−1

)
, we have successively:

pipj |ai − aj |(2.5)

=

∣∣∣∣∣∣
∑

(k,l)∈∆\{(i,j)}

pkpl (ak − al)

∣∣∣∣∣∣
≤

 ∑
(k,l)∈∆\{(i,j)}

pkpl

 1
q
 ∑

(k,l)∈∆\{(i,j)}

pkpl |ak − al|r
 1

r

=

 ∑
(k,l)∈∆

pkpl − pipj

 1
q

×

 ∑
(k,l)∈∆

pkpl |ak − al|r − pipj |ai − aj |r
 1

r

= (1− pipj)
r−1

r (2Gr (p,a)− pipj |ai − aj |r)
1
r

for each (i, j) ∈ ∆.
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Taking the power r in (2.5) we have

pr
i p

r
j |ai − aj |r ≤ (1− pipj)

r−1 (2Gr (p,a)− pipj |ai − aj |r) ,

giving [
pr

i p
r
j + pipj (1− pipj)

r−1
]
|ai − aj |r ≤ 2 (1− pipj)

r−1
Gr (p,a) ,

so that

(2.6)
1
2
·
pr

i p
r
j + pipj (1− pipj)

r−1

(1− pipj)
r−1 |ai − aj |r ≤ Gr (p,a)

for each (i, j) ∈ ∆.
Taking the maximum over (i, j) ∈ ∆ in (2.6), we deduce the first inequality in

(2.3).
The second inequality is obvious on observing that

Gr (p,a) ≤ 1
2

∑
(i,j)∈∆

pipj max
(i,j)∈∆

|ai − aj |r =
1
2

max
(i,j)∈∆

|ai − aj |r .

The proof is complete.

Remark 1. The case r = 2 is of interest, since

G2 (p,a) =
1
2

∑
(i,j)∈∆

pipj |ai − aj |2 =
n∑

i=1

pia
2
i −

(
n∑

i=1

piai

)2

,

for which we can obtain from Theorem 1 the following bounds:

(2.7)
1
2

max
(i,j)∈∆

{
pipj

1− pipj
(ai − aj)

2

}
≤ G2 (p,a) ≤ 1

2
max

(i,j)∈∆
(ai − aj)

2
.

Remark 2. Consider the function

hr (t) :=
tr + t (1− t)r−1

(1− t)r−1 = t + tr (1− t)1−r

defined for t ∈ [0, 1) and r > 1. Then

h′r (t) = 1 + rtr−1 (1− t)1−r + (r − 1) tr (1− t)−r

which shows that hr is strictly increasing on [0, 1).
Therefore

min
(i,j)∈∆

{
pr

i p
r
j + pipj (1− pipj)

r−1

(1− pipj)
r−1

}
= min

(i,j)∈∆
hr (pipj)

≥ hr

[
min

(i,j)∈∆
(pipj)

]
≥ hr

(
min

i∈{1,...,n}
pi · min

j∈{1,...,n}
pj

)
= hr

(
p2

m

)
=

p2r
m + p2

m

(
1− p2

m

)r−1

(1− p2
m)r−1 ,

where pm := mini∈{1,...,n} pi > 0.
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In conclusion, from Theorem 1 we can obtain a coarser but, perhaps, a more
useful lower bound for the r−weighted Gini mean difference, namely:

(2.8) Gr (p,a) ≥ 1
2
·
p2r

m + p2
m

(
1− p2

m

)r−1

(1− p2
m)r−1 · max

(i,j)∈∆
|ai − aj |r ,

where pm is defined above.
For r = 2, we then have:

(2.9) G2 (p,a) ≥ 1
2
· p2

m

1− p2
m

· max
(i,j)∈∆

(ai − aj)
2
.

The following result for the weighted Gini mean difference can be stated:

Theorem 2. For any pi ∈ (0, 1) , i ∈ {1, . . . , n} with
∑n

i=1 pi = 1 and ai ∈ R,
i ∈ {1, . . . , n} , we have the bounds:

(2.10)
1
2

max
(i,j)∈∆

pipj

1 +
1

max
(k,l)∈∆\{(i,j)}

{pkpl}

 · |ai − aj |


≤ G (p,a) ≤ 1

2
max

(i,j)∈∆
|ai − aj | .

Proof. As in the proof of Theorem 1 we have

pipj |ai − aj | =

∣∣∣∣∣∣
∑

(k,l)∈∆\{(i,j)}

pkpl (ak − al)

∣∣∣∣∣∣
≤ max

(k,l)∈∆\{(i,j)}
{pkpl} ·

∑
(k,l)∈∆\{(i,j)}

pkpl |ak − al|

= max
(k,l)∈∆\{(i,j)}

{pkpl}

 ∑
(k,l)∈∆

pkpl |ak − al| − pipj |ai − aj |


which gives:

pipj

[
1 + max

(k,l)∈∆\{(i,j)}
{pkpl}

]
|ai − aj | ≤ max

(k,l)∈∆\{(i,j)}
{pkpl}·

∑
(k,l)∈∆

pkpl |ak − al| .

That is

pipj

1 + max
(k,l)∈∆\{(i,j)}

{pkpl}

max
(k,l)∈∆\{(i,j)}

{pkpl}

 |ai − aj | ≤
∑

(k,l)∈∆

pkpl |ak − al| ,

which, by taking the maximum over (i, j) ∈ ∆ implies the first part of (2.10).
The second part is obvious.

Remark 3. Since

max
(k,l)∈∆\{(i,j)}

{pkpl} ≤ max
(k,l)∈∆

{pkpl} = p2
M ,

where pM := maxk∈{1,...,n} pk, hence

1 +
1

max
(k,l)∈∆\{(i,j)}

{pkpl}
≥ 1 +

1
p2

M
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and we get from Theorem 2 the following lower bounds for G (p,a)

G (p,a) ≥ 1
2

(
p2

M + 1
p2

M

)
max

(i,j)∈∆
{pipj |ai − aj |}(2.11)

≥ 1
2
p2

m

(
p2

M + 1
p2

M

)
max

(i,j)∈∆
|ai − aj | ,

where pm := mink∈{1,...,n} pk and pM := maxk∈{1,...,n} pk.

3. Related Results

The following result is due to Izumino and Pečarić [5] (see also [2, p. 174 - 175]):

Lemma 1. Let f be a convex even function defined on [m−M,M −m] (0 < m < M)
with f (0) = 0. Then for each n−tuple x = (x1, . . . , xn) satisfying the condition
m ≤ xk ≤ M (k = 1, . . . , n) and for each positive weight q = (q1, . . . , qn) we have∑

1≤i<j≤n

qiqjf (xi − xj) ≤ f (M −m) max
J⊆{1,...,n}

[QJ (1−QJ)](3.1)

≤ 1
4
f (M −m) ,

where Qj :=
∑

j∈J qj .

The following result holds concerning upper bounds for the r−weighted Gini
mean difference when some information on the size of the elements ai, i ∈ {1, . . . , n}
are available.

Theorem 3. For any pi ∈ (0, 1) , i ∈ {1, . . . , n} with
∑n

i=1 pi = 1 and ai ∈ R,
i ∈ {1, . . . , n} with the property that

(3.2) −∞ < a ≤ ai ≤ A < ∞ for each i ∈ {1, . . . , n} ,

we have the inequality:

(3.3) Gr (p,a) ≤ (A− a)r max
J⊆{1,...,n}

[PJ (1− PJ)]
(
≤ 1

4
(A− a)r

)
,

for r ≥ 1.

Proof. Without loss of generality, we may assume that a ≥ 0.
Now, if we apply Lemma 1 for f (x) = |x|r , xi = ai and qi = pi, i ∈ {1, . . . , n} ,

we get

Gr (p,a) =
1
2

∑
i,j=1

pipj |ai − aj |r ≤ |A− a|r max
J⊆{1,...,n}

[PJ (1− PJ)]

and the result is proved.

Finally, the following result that provides a connection between

G2 (p,a) =
n∑

i=1

pia
2
i −

(
n∑

i=1

piai

)2

,

and

G2 (a) =
1
n

n∑
i=1

a2
i −

(
1
n

n∑
i=1

ai

)2

,

can be stated.
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Theorem 4. If pi ∈ (0, 1) for i ∈ {1, . . . , n} with
∑n

i=1 pi = 1, then for any ai ∈ R
i ∈ {1, . . . , n} we have the inequality:

(3.4) G2 (p,a) ≤ n2

[
1−

(∑n
i=1 p3

i

)2
(
∑n

i=1 p2
i )

2

]
G2 (a) .

Proof. Utilising the Cauchy-Bunyakovsky-Schwarz inequality, we have that:

pipj |ai − aj |(3.5)

=

∣∣∣∣∣∣
∑

(k,l)∈∆\{(i,j)}

pkpl (ak − al)

∣∣∣∣∣∣
≤

 ∑
(k,l)∈∆\{(i,j)}

p2
kp2

l

 1
2
 ∑

(k,l)∈∆\{(i,j)}

|ak − al|2
 1

2

=

 ∑
(k,l)∈∆

p2
kp2

l − p2
i p

2
j

 1
2
 ∑

(k,l)∈∆

|ak − al|2 − |ai − aj |2
 1

2

=

( n∑
i=1

p2
k

)2

− p2
i p

2
j

 1
2
 ∑

(k,l)∈∆

|ak − al|2 − |ai − aj |2
 1

2

The square of (3.5) produces

p2
i p

2
j |ai − aj |2 ≤

( n∑
k=1

p2
k

)2

− p2
i p

2
j

 ∑
(k,l)∈∆

|ak − al|2 − |ai − aj |2
 ,

givingp2
i p

2
j +

(
n∑

k=1

p2
k

)2

− p2
i p

2
j

 |ai − aj |2

≤

( n∑
k=1

p2
k

)2

− p2
i p

2
j

 ∑
(k,l)∈∆

|ak − al|2

from which we get

(3.6) |ai − aj |2 ≤

[
1−

p2
i p

2
j

(
∑n

k=1 p2
k)2

] ∑
(k,l)∈∆

|ak − al|2 .

Now, if we multiply (3.6) with pipj ≥ 0 and sum over (i, j) ∈ ∆ then we get

(3.7) G2 (p,a) ≤ n2

[
1−

(∑n
i=1 p3

i

)2
(
∑n

i=1 p2
i )

2

]
G2 (a) ,

and the result is proved.
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Remark 4. It is obvious, by the definition of Gr (p,a) in (2.2) that for r = 2

G2 (p,a) =
1
2

∑
(i,j)∈∆

pipj |ai − aj |2 ≤
1
2

max
(i,j)∈∆

{pipj}
∑

(i,j)∈∆

|ai − aj |2(3.8)

= n2 max
(i,j)∈∆

{pipj}G2 (a) .

Then, it is natural to ask when comparing (3.7) and (3.8) the question, when is the
bound

B1 (p) := 1−
(∑n

i=1 p3
i

)2
(
∑n

i=1 p2
i )

2

better than
B2 (p) := max

(i,j)∈∆
{pipj} .

If we take n = 2 and p1 = p, p2 = 1− p, p ∈ (0, 1) then

B1 (p) = 1−

[
p3 + (1− p)3

p2 + (1− p)2

]2

and
B2 (p) = max

{
p2, p (1− p) , (1− p)2

}
.

The variation of the bounds B1 (p) and B2 (p) are depicted in Figure 1 and Figure
2, respectively. The plot of the difference D (p) := B1 (p) − B2 (p) shows that one
bound is not always better than the other (see Figure 3).

Figure 1. The plot of B1 (p) .
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Figure 2. The plot of B2 (p) .

Finally, the following result in comparing the weighted Gini mean difference
G (p,a) with the unweighted means Gr (a) may be stated:

Theorem 5. If pi ∈ (0, 1) for i ∈ {1, . . . , n} with
∑n

i=1 pi = 1, and q, r > 1 with
1
q + 1

r = 1, then for any ai ∈ R i ∈ {1, . . . , n} we have the inequality:

(3.9) G (p,a) ≤ 21/r−2n2/r+2

(
n∑

i=1

pq
i

)2/q

[Gr (a)]1/r
.

Proof. We use Hölder’s inequality for double sums to get

pipj |ai − aj | =

∣∣∣∣∣∣
∑

(k,l)∈∆\{(i,j)}

pkpl (ak − al)

∣∣∣∣∣∣(3.10)

≤

 ∑
(k,l)∈∆\{(i,j)}

pq
kpq

l

1/q ∑
(k,l)∈∆\{(i,j)}

|ak − al|r
1/r

≤

 ∑
(k,l)∈∆

pq
kpq

l − pq
i p

q
j

1/q ∑
(k,l)∈∆

|ak − al|r − |ai − aj |r
1/r

=

( n∑
k=1

pq
k

)2

− pq
i p

q
j

1/q (
2n2Gr (a)− |ai − aj |r

)1/r

for each (i, j) ∈ ∆.



10 P. CERONE AND S.S. DRAGOMIR

Figure 3. The plot of the difference D1 (p) .

Utilising the elementary inequality

(αr − βr)1/r (γq − δq)1/q ≤ αγ − βδ

provided α ≥ β, γ ≥ δ and q, r > 1 with 1
q + 1

r = 1, we can get that

pipj |ai − aj | ≤

(
n∑

i=1

pq
i

)2/q [
2n2Gr (a)

]1/r − pipj |ai − aj |

which gives

(3.11) 2pipj |ai − aj | ≤

(
n∑

i=1

pq
i

)2/q [
2n2Gr (a)

]1/r
,

for each (i, j) ∈ ∆.
Summing in the inequality (3.11) over (i, j) ∈ ∆ we deduce the desired result

(3.9).

Remark 5. The particular case q = r = 2 provides the follwing simple inequality

(3.12) G (p,a) ≤ 2−3/2n3

(
n∑

i=1

p2
i

)
[G2 (a)]1/2

.
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