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COMPLETE MONOTONICITY OF LOGARITHMIC MEAN

FENG QI

Abstract. In the article, the logarithmic mean is proved to be completely
monotonic and an open problem about the logarithmically complete mono-
tonicity of the extended mean values is posed.

1. Introduction

Recall [11, 28] that a function f is said to be completely monotonic on an interval
I if f has derivatives of all orders on I and (−1)nf (n)(x) ≥ 0 for x ∈ I and n ≥ 0.
Recall [2] that if f (k)(x) for some nonnegative integer k is completely monotonic
on an interval I, but f (k−1)(x) is not completely monotonic on I, then f(x) is
called a completely monotonic function of k-th order on an interval I. Recall also
[17, 18, 20] that a function f is said to be logarithmically completely monotonic
on an interval I if its logarithm ln f satisfies (−1)k[ln f(x)](k) ≥ 0 for k ∈ N on
I. It has been proved in [3, 10, 17, 18] and other references that a logarithmically
completely monotonic function on an interval I is also completely monotonic on I.
The logarithmically completely monotonic functions have close relationships with
both the completely monotonic functions and Stieltjes transforms. For detailed
information, please refer to [3, 10, 11, 21, 28] and the references therein.

For two positive numbers a and b, the logarithmic mean L(a, b) is defined by

L(a, b) =





b− a

ln b− ln a
, a 6= b;

a, a = b.
(1)

This is one of the most important means of two positive variables. See [4, 6, 12, 16]
and the list of references therein. It is cited on 13 pages at least in [4], see [4,
p. 532]. However, any complete monotonicity on mean values is not founded in the
authoritative book [4].

The main aim of this paper is to prove the complete monotonicity of the loga-
rithmic mean L.

Our main result is as follows.

Theorem 1. The logarithmic mean Ls,t(x) = L(x+s, x+ t) is a completely mono-
tonic function of first order in x > −min{s, t} for s, t ∈ R with s 6= t.

As by-product of the proof of Theorem 1, the following logarithmically com-
pletely monotonic property of the function (x+s)1−u(x+ t)u for s, t ∈ R with s 6= t
and u ∈ (0, 1) is deduced.
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Corollary 1. Let s, t ∈ R with s 6= t and u ∈ (0, 1). Then (x + s)1−u(x + t)u is
a completely monotonic function of first order in x > −min{s, t}. More strongly,
the function ∂[(x+s)1−u(x+t)u]

∂x =
(

x+t
x+s

)u[
1 + u(s−t)

x+t

]
is logarithmically completely

monotonic in x > −min{s, t}.
The extended mean values E(r, s; x, y) can be defined by

E(r, s;x, y) =
[
r

s
· ys − xs

yr − xr

]1/(s−r)

, rs(r − s)(x− y) 6= 0;

E(r, 0;x, y) =
[
1
r
· yr − xr

ln y − ln x

]1/r

, r(x− y) 6= 0;

E(r, r;x, y) =
1

e1/r

[
xxr

yyr

]1/(xr−yr)

, r(x− y) 6= 0;

E(0, 0;x, y) =
√

xy, x 6= y;

E(r, s;x, x) = x, x = y;

where x and y are positive numbers and r, s ∈ R. Its monotonicity, Schur-convexity,
logarithmic convexity, comparison, generalizations, applications and history have
been investigated in many articles such as [4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19,
22, 23, 24, 25, 26, 27, 29, 30, 31] and the references therein, especially the book [4]
and the expository paper [16].

For x, y > 0 and r, s ∈ R, let E
[1]
r,s;x,y(w) = E(r + w, s + w;x, y) with w ∈ R,

E
[2]
r,s;x,y(w) = E(r, s; x + w, y + w) and E

[3]
r,s;x,y(w) = E(r + w, s + w; x + w, y + w)

with w > −min{x, y}. Motivated by Theorem 1, it is natural to pose an open
problem: What about the (logarithmically) complete monotonicity of the functions
E

[i]
r,s;x,y(w) in w for 1 ≤ i ≤ 3?

2. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. In [4, p. 386], an integral representation of the logarithmic
mean L(a, b) for positive numbers a and b is given:

L(a, b) =
∫ 1

0

a1−ubu du. (2)

From this, it follows easily that

Ls,t(x) =
∫ 1

0

(x + s)1−u(x + t)u du (3)

and
dLs,t(x)

dx
=

∫ 1

0

(
x + t

x + s

)u
x + (1− u)t + us

x + t
du > 0. (4)

This means that the function Ls,t(x) is increasing, and then it is not completely
monotonic in x > −min{s, t}.

In [1, p. 230, 5.1.32], it is listed that

ln
b

a
=

∫ ∞

0

e−au − e−bu

u
du. (5)
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Taking logarithm on both sides of equation (4) and utilizing (5) yields

ln
∂[(x + s)1−u(x + t)u]

∂x
= u ln

x + t

x + s
+ ln

x + (1− u)t + us

x + t

= u

∫ ∞

0

e−(x+s)v − e−(x+t)v

v
dv +

∫ ∞

0

e−(x+t)v − e−[x+(1−u)t+us]v

v
dv

=
∫ ∞

0

ue−(x+s)v + (1− u)e−(x+t)v − e−[x+(1−u)t+us]v

v
dv.

Employing the well known Jensen’s inequality [4, p. 31, Theorem 12] for convex
functions and considering that the function e−x is convex gives

qs,t;u;v(x) , ue−(x+s)v + (1− u)e−(x+t)v − e−[x+(1−u)t+us]v > 0. (6)

Hence, for positive integer m ∈ N,

(−1)m ∂m

∂xm

{
ln

∂[(x + s)1−u(x + t)u]
∂x

}
=

∫ ∞

0

vm−1qs,t;u;v(x) dv > 0. (7)

This implies that the function ∂[(x+s)1−u(x+t)u]
∂x is logarithmically completely mono-

tonic in x > −min{s, t}. Further, since a logarithmically completely monotonic
function is also completely monotonic (see [3, 10, 11, 17, 18, 20, 21] and the ref-
erences therein), the function ∂[(x+s)1−u(x+t)u]

∂x is completely monotonic in x >
−min{s, t}. Therefore, the function

dLs,t(x)
dx

=
∫ 1

0

∂[(x + s)1−u(x + t)u]
∂x

du (8)

is completely monotonic in x > −min{s, t}. Theorem 1 is proved. ¤
Proof of Corollary 1. This follows from the proof of Theorem 1 directly. ¤
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(Communications in Studies on Inequalities) 12 (2005), no. 3, 251–257.

[28] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
[29] A. Witkowski, Convexity of weighted extended mean values, RGMIA Res. Rep. Coll. 7 (2004),

no. 2, Art. 10. Available online at http://rgmia.vu.edu.au/v7n2.html.
[30] A. Witkowski, Weighted extended mean values, Colloq. Math. 100 (2004), no. 1, 111–117.

RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 6. Available online at http:/rgmia.vu.edu.au/
v7n1.html.

[31] S.-L. Zhang, Ch.-P. Chen and F. Qi, Another proof of monotonicity for the extended mean
values, Tamkang J. Math. 37 (2006), no. 3, 207–209.

(F. Qi) Research Institute of Mathematical Inequality Theory, Henan Polytechnic
University, Jiaozuo City, Henan Province, 454010, China

E-mail address: qifeng@hpu.edu.cn, qifeng618@hotmail.com, qifeng618@msn.com, qifeng618@qq.com,

fengqi618@member.ams.org

URL: http://rgmia.vu.edu.au/qi.html

http://jipam.vu.edu.au/article.php?sid=97�
http://rgmia.vu.edu.au/v2n5.html�
http://rgmia.vu.edu.au/v2n5.html�
http://rgmia.vu.edu.au/v2n5.html�
http://rgmia.vu.edu.au/v4n4.html�
http://rgmia.vu.edu.au/v5n1.html�
http://rgmia.vu.edu.au/v5n1.html�
http://rgmia.vu.edu.au/v7n1.html�
http://rgmia.vu.edu.au/v3n3.html�
http://rgmia.vu.edu.au/v3n3.html�
http://rgmia.vu.edu.au/v7n1.html�
http://rgmia.vu.edu.au/v5n1.html�
http://rgmia.vu.edu.au/v7n2.html�
http:/rgmia.vu.edu.au/v7n1.html�
http:/rgmia.vu.edu.au/v7n1.html�
mailto: F. Qi <qifeng@hpu.edu.cn>�
mailto: F. Qi <qifeng618@hotmail.com>�
mailto: F. Qi <qifeng618@msn.com>�
mailto: F. Qi <qifeng618@qq.com>�
mailto: F. Qi <fengqi618@member.ams.org>�
http://rgmia.vu.edu.au/qi.html�

