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WENDEL-GAUTSCHI-KERSHAW’S INEQUALITIES AND
SUFFICIENT AND NECESSARY CONDITIONS THAT A CLASS
OF FUNCTIONS INVOLVING RATIO OF GAMMA FUNCTIONS

ARE LOGARITHMICALLY COMPLETELY MONOTONIC

FENG QI AND BAI-NI GUO

Abstract. In the article, sufficient and necessary conditions that a class of

functions involving ratio of Euler’s gamma functions and originating from
Wendel-Gautschi-Kershaw’s double inequalities are logarithmically completely
monotonic are presented. From this, Wendel-Gautschi-Kershaw’s double in-
equalities are refined, extended and sharpened.

1. Introduction

In order to establish the classical asymptotic relation limx→∞
Γ(x+a)
xaΓ(x) = 1 for

real a and x, using Hölder’s integral inequality, the following double inequality was
proved in [41]: (

x

x+ a

)1−a

≤ Γ(x+ a)
xaΓ(x)

≤ 1 (1)

for 0 < a < 1 and x > 0, where Γ(x) denotes the well known classical Euler’s
gamma function Γ defined for x > 0 as Γ(x) =

∫∞
0
e−ttx−1 dt. This inequality can

be rewritten for 0 < a < 1 and x > 0 as

(x+ a)1−a ≥ Γ(x+ 1)
Γ(x+ a)

≥ x1−a. (2)

In [11], along with another line, the following two double inequalities were es-
tablished for n ∈ N and 0 ≤ s ≤ 1:

exp[(1− s)ψ(n+ 1)] ≥ Γ(n+ 1)
Γ(n+ s)

≥ n1−s (3)

and

(n+ 1)1−s ≥ Γ(n+ 1)
Γ(n+ s)

≥ n1−s. (4)

It is clear that the upper bound in inequality (4) is not better and the range in
inequality (4) is not larger than the corresponding ones in (1) or (2).
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Motivated by the paper [11], among other things, the following double inequality
was showed for 0 < s < 1 and x ≥ 1 in [14]:(

x+
s

2

)1−s

<
Γ(x+ 1)
Γ(x+ s)

<

[
x− 1

2
+
(
s+

1
4

)1/2]1−s
. (5)

It is easy to see that inequality (5) refines inequalities (1), (2), (4) and the left
hand side inequality in (3).

Recall [4, 10, 23, 33, 40] that a function f is said to be completely monotonic
on an interval I if f has derivatives of all orders on I and (−1)nf (n)(x) ≥ 0 for
x ∈ I and n ≥ 0. Recall also [2, 31, 33, 34, 35] that a positive function f is
called logarithmically completely monotonic on an interval I if f has derivatives
of all orders on I and its logarithm ln f satisfies 0 ≤ (−1)k[ln f(x)](k) < ∞ for
all k ∈ N on I. It has been presented explicitly in [4, 22, 31, 33, 37] that a
logarithmically completely monotonic function must be completely monotonic, but
not conversely. In [4, Theorem 1.1] and [12] it is pointed out that the logarithmically
completely monotonic functions on (0,∞) can be characterized as the infinitely
divisible completely monotonic functions studied by Horn in [13, Theorem 4.4]. In
recent years, the notion “logarithmically completely monotonic function” has been
adopted in many articles such as [4, 7, 8, 9, 32, 12, 16, 17, 18, 19, 23, 28, 30, 34,
35, 38, 39, 42] and the references therein.

Inequality (5) has been investigated along with two directions.
A standard argument shows that inequality (5) can be rearranged as

s

2
<

[
Γ(x+ 1)
Γ(x+ s)

]1/(1−s)
− x <

√
s+

1
4
− 1

2
. (6)

Therefore, the first direction is to consider the monotonicity of the general function

zs,t(x) =


[

Γ(x+ t)
Γ(x+ s)

]1/(t−s)
− x, s 6= t

eψ(x+s) − x, s = t

(7)

in x ∈ (−α,∞), where s and t are two real numbers and α = min{s, t}. In
[6, 10, 20, 21, 27, 36], it was obtained that the function zs,t(x) is either convex and
decreasing for |t− s| < 1 or concave and increasing for |t− s| > 1.

The second direction is to consider the monotonicity, complete monotonicity or
logarithmically complete monotonicity of the function

Ha,b,c(x) = (x+ c)b−a
Γ(x+ a)
Γ(x+ b)

(8)

for x ∈ (−ρ,∞), where a, b and c are real numbers and ρ = min{a, b, c}. It is
clear that 1

Ha,b,c(x)
= Hb,a,c(x). In [5, Theorem 1 and Theorem 3] it was revealed

for a + 1 ≥ b > a that Hb,a,c(x) is completely monotonic in (max{−a,−c},∞) if
c ≤ a+b−1

2 and thatHa,b,c(x) is completely monotonic in (max{−b,−c},∞) if c ≥ a.
In [5, Theorem 7] it was demonstrated that H1,s,s/2(x) for 0 ≤ s ≤ 1 is completely
monotonic in (0,∞). In [5, Theorem 8], it was concluded that H

s,1,
√
s+1/4−1/2

(x)

for 0 < s < 1 is strictly decreasing in (0,∞). With the help of [24, Corollary 1]
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which iterated [24, Theorem 1] on monotonicity results of the function

qα,β(t) =


e−αt − e−βt

1− e−t
, t 6= 0

β − α, t = 0
(9)

for real numbers α and β with (α, β) 6∈ {(0, 1), (1, 0)} and α 6= β, the logarithmically
complete monotonicity of the function (8) were established in [18, Theorem 1] and
the references therein:

(1) Ha,b,c(x) is logarithmically completely monotonic in (−ρ,∞) if

(a, b, c) ∈
{
a+ b ≥ 1, c ≤ b < c+

1
2

}
∪
{
a > b ≥ c+

1
2

}
∪ {2a+ 1 ≤ a+ b ≤ 1, a < c} ∪ {b− 1 ≤ a < b ≤ c} \ {a = b+ 1 = c+ 1}, (10)

(2) Hb,a,c(x) is logarithmically completely monotonic in (−ρ,∞) if

(a, b, c) ∈
{
a+ b ≥ 1, c ≤ a < c+

1
2

}
∪
{
b > a ≥ c+

1
2

}
∪ {b < a ≤ c} ∪ {b+ 1 ≤ a, c ≤ a ≤ c+ 1}

∪ {b+ c+ 1 ≤ a+ b ≤ 1} \ {a = c+ 1, b = c} \ {b = c+ 1, a = c}. (11)

The monotonicity and logarithmic convexity of qα,β(t) have been researched
entirely in the papers [24, 25, 29, 36], since it was encountered occasionally when
studying the logarithmically complete monotonicity of some functions involving
gamma function Γ, the psi function ψ and the polygamma functions ψ(i) for i ∈ N.

The monotonicity of qα,β(t) in (0,∞) obtained in [24, Theorem 1] and referenced
in [29] can be restated accurately and simply in [25, Corollary 2] as follows.

Proposition 1 ([25, Corollary 2]). Let α and β be two real numbers satisfying
α 6= β and (α, β) 6∈ {(0, 1), (1, 0)} and t ∈ R. Then

(1) the function qα,β(t) defined by (9) is increasing in (0,∞) if and only if

(α, β) ∈ D1(α, β) , {(α, β) : (β − α)(1− α− β) ≥ 0,

(β − α)(|α− β| − α− β) ≥ 0}, (12)

(2) the function qα,β(t) defined by (9) is decreasing in (0,∞) if and only if

(α, β) ∈ D2(α, β) , {(α, β) : (β − α)(1− α− β) ≤ 0,

(β − α)(|α− β| − α− β) ≤ 0}. (13)

The (α, β)-domains D1(α, β) and D2(α, β) defined by (12) and (13) can be de-
scribed respectively by Figure 1 and Figure 2 below. These two figures show clearly
that the (α, β)-domains D1(α, β) and D2(α, β) are symmetric with respect to the
line β = α.

In this paper, with the aid of Proposition 1, the following sufficient and necessary
conditions such that Ha,b,c(x) is logarithmically completely monotonic in (−ρ,∞)
are established, which extend, generalize and sharpen [18, Theorem 1] and other
known results mentioned above.

Theorem 1. Let a, b and c be real numbers and ρ = min{a, b, c}. Then
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Figure 1. The (α, β)-domain D1(α, β)

(1) Ha,b,c(x) is logarithmically completely monotonic in (−ρ,∞) if and only if

(a, b, c) ∈ D1(a, b, c) , {(a, b, c) : (b− a)(1− a− b+ 2c) ≥ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b+ 2c) ≥ 0}

\ {(a, b, c) : a = c+ 1 = b+ 1} \ {(a, b, c) : b = c+ 1 = a+ 1}, (14)

(2) Hb,a,c(x) is logarithmically completely monotonic in (−ρ,∞) if and only if

(a, b, c) ∈ D2(a, b, c) , {(a, b, c) : (b− a)(1− a− b+ 2c) ≤ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b+ 2c) ≤ 0}

\ {(a, b, c) : b = c+ 1 = a+ 1} \ {(a, b, c) : a = c+ 1 = b+ 1}. (15)

As applications of monotonicity results of Ha,b,c(x) established by Theorem 1,
the following refinements and sharpenings of Wendel-Gautschi-Kershaw’s double
inequalities from (1) to (5) are deduced straightforwardly.

Theorem 2. Let a, b and c be real numbers, ρ = min{a, b, c}, and δ be a given
constant greater than −ρ. Then inequalities

(x+ c)a−b <
Γ(x+ a)
Γ(x+ b)

(16)

in x ∈ (−ρ,∞) and

Γ(x+ a)
Γ(x+ b)

≤ Γ(δ + a)
Γ(δ + b)

(
x+ c

δ + c

)a−b
(17)
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Figure 2. The (α, β)-domain D2(α, β)

in x ∈ [δ,∞) are valid if and only if (a, b, c) ∈ D1(a, b, c). The reversed inequalities
of (16) and (17) hold in (−ρ,∞) and [δ,∞) respectively if and only if (a, b, c) ∈
D2(a, b, c).

2. Remarks

Before verifying Theorem 1 and Theorem 2, we would like to give some remarks
on them and to compare them with Wendel-Gautschi-Kershaw’s double inequalities
from (1) to (5) and other known results.

Remark 1. The (a, b, c)-domains defined by (10) and (11) are respectively subsets
of D1(a, b, c) and D2(a, b, c) defined by (14) and (15). Therefore, Theorem 1 in this
paper extends [18, Theorem 1].

Remark 2. Taking a = 1, 0 < b < 1 and δ = 1 in (17) gives that inequality

Γ(x+ 1)
Γ(x+ b)

≤ 1
Γ(1 + b)

(
x+ c

1 + c

)1−b

(18)
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validates in [1,∞) if and only if

(b, c) ∈ D1(1, b, c) ∩ {0 < b < 1} ∩ {−ρ < 1}
= {−1 < c ≤ 0 < b < 1} ∪ {0 < 2c ≤ b < 1}.

In particular, for 0 < b < 1, inequality

Γ(x+ 1)
Γ(x+ b)

≤ 1
Γ(1 + b)

(
2x+ b

2 + b

)1−b

(19)

is sharp in x ∈ [1,∞).
Standard argument reveals that if[(

1 +
b

2

)
1−b
√

Γ(1 + b) − 1
]
x , xΛ(b)

≥

(
1
2
−
√
b+

1
4

)(
1 +

b

2

)
1−b
√

Γ(1 + b) +
b

2
, λ(b) (20)

then inequality (19) would be better than the right hand side inequality in (5). It
is easy to see that limb→1− Λ(b) = 1

2 and limb→1− λ(b) = 1
4

(
5− 3

√
5
)
< 0. This

means that inequality (19) refines the right hand side inequality in (5) at least when
b is closer enough to 1.

Remark 3. Let us take a = 1 and 0 < b < 1 in inequality (16). Then inequality

(x+ c)1−b <
Γ(x+ 1)
Γ(x+ b)

(21)

is valid in (−ρ,∞) if and only if

(b, c) ∈ D1(1, b, c) ∩ {0 < b < 1} = {c ≤ 0 < b < 1} ∪ {0 < 2c ≤ b < 1}.
This implies that, in particular, inequality(

x+
b

2

)1−b

<
Γ(x+ 1)
Γ(x+ b)

(22)

is sharp in
(
− b

2 ,∞
)

for 0 < b < 1. This means also that the left hand side inequality
in (5) is sharp. Moreover, inequality (22) extends the range of the argument x of
the left hand side inequality in (5).

Remark 4. Since

[Ha,b,c(x)]1/(a−b) =
1

x+ c

[
Γ(x+ a)
Γ(x+ b)

]1/(a−b)
=
zb,a(x) + x

x+ c
(23)

or
zb,a(x) = [Ha,b,c(x)]1/(a−b)(x+ c)− x, (24)

the monotonicity and convexity of zb,a(x) and the logarithmically complete mono-
tonicity of Ha,b,c(x) are connected.

Remark 5. It is clear that Theorem 1 of this paper and [18, Theorem 1] extend
and generalize [5, Theorem 1 and Theorem 3], the complete monotonicity of the
function H1,s,s/2(x) defined by [5, Theorem 7, 1.18], the decreasingly monotonicity
of the function H

s,1,
√
s+1/4−1/2

(x) defined by [5, Theorem 8, 1.20], some results in

[26] and [30, Theorem 1].
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Remark 6. Stimulated by the paper [11], the following double inequality was also
obtained in [14]:

exp
[
(1− s)ψ

(
x+

√
s
)]
<

Γ(x+ 1)
Γ(x+ s)

< exp
[
(1− s)ψ

(
x+

s+ 1
2

)]
(25)

for s ∈ (0, 1) and x ≥ 1. As a generalization of inequality (25), the function

Γ(x+ s)
Γ(x+ 1)

exp
[
(1− s)ψ

(
x+

s+ 1
2

)]
(26)

was proved in [5, Theorem 7] to be completely monotonic in (0,∞) for 0 ≤ s ≤ 1,
and the function

Γ(x+ 1)
Γ(x+ s)

exp
[
(s− 1)ψ

(
x+

√
s
)]

(27)

for x > 0 and 0 < s < 1 was proved in [5, Theorem 8] to be strictly decreasing. In
[36], the function [

Γ(x+ t)
Γ(x+ s)

]1/(s−t)
exp

[
ψ

(
x+

s+ t

2

)]
(28)

for s and t being nonnegative numbers and α = min{s, t} was verified to be loga-
rithmically completely monotonic in (−α,∞).

More generally, for a, b and c being real numbers and ρ = min{a, b, c}, let

Fa,b,c(x) =


[

Γ(x+ b)
Γ(x+ a)

]1/(a−b)
exp[ψ(x+ c)], a 6= b

exp[ψ(x+ c)− ψ(x+ a)], a = b 6= c

(29)

in x ∈ (−ρ,∞). In order to refine, extend and sharpen Gautschi-Kershaw’s double
inequality (25), the logarithmically complete monotonicity of Fa,b,c(x) has been
researched in [10, 17, 19, 28, 30] and the references therein.

Remark 7. Finally, it is remarked that there exist more other literatures about re-
finements, sharpenings, extensions of Wendel-Gautschi-Kershaw’s double inequali-
ties from (1) to (5) and Gautschi-Kershaw’s double inequality (25), for examples,
[3, 5, 10, 15, 12, 26, 36, 41] and the references therein.

3. Proofs of theorems

Now we are in a position to prove Theorem 1 and Theorem 2.

Proof of Theorem 1. In [1], the following two formulas are given: For x > 0 and
ω > 0,

1
xω

=
1

Γ(ω)

∫ ∞

0

tω−1e−xt dt. (30)

For k ∈ N and x > 0,

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt. (31)

By formulas (30) and (31), straightforward calculation gives

lnHa,b,c(x) = (b− a) ln(x+ c) + lnΓ(x+ a)− ln Γ(x+ b),

[lnHa,b,c(x)]′ =
b− a

x+ c
+ ψ(x+ a)− ψ(x+ b)
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=
b− a

x+ c
+
∫ ∞

0

e−bt − e−at

1− e−t
e−xt dt

= −
∫ ∞

0

[
e(c−a)t − e(c−b)t

1− e−t
+ (a− b)

]
e−(x+c)t dt

= −
∫ ∞

0

[qa−c,b−c(t) + (a− b)]e−(x+c)t dt

and, for k ∈ N,

(−1)k[lnHa,b,c(x)](k) =
∫ ∞

0

[qa−c,b−c(t) + (a− b)]tk−1e−(x+c)t dt,

where qα,β(t) is the function defined by (9).
From qα,β(0) = β − α and qa−c,b−c(0) = b − a, it is revealed that if qa−c,b−c(t)

is increasing (or decreasing respectively) in (0,∞) then qa−c,b−c(t) + (a − b) R 0
in t ∈ (0,∞) and (−1)k[lnHa,b,c(x)](k) R 0 in x ∈ (−ρ,∞) for k ∈ N. Combining
this with Proposition 1 demonstrates that Ha,b,c(x) ∈ L[(−ρ,∞)] if (a− c, b− c) ∈
D1(a − c, b − c) and [Ha,b,c(x)]−1 ∈ L[(−ρ,∞)] if (a − c, b − c) ∈ D2(a − c, b − c).
The sufficiency of Theorem 1 is proved.

If the functionHa,b,c(x) ∈ L[(−ρ,∞)], then [lnHa,b,c(x)]′ ≤ 0 which is equivalent
to

b− a

x+ c
+ ψ(x+ a)− ψ(x+ b) ≤ 0 (32)

in (−ρ,∞). This inequality can be rearranged as

c ≥ b− a

ψ(x+ b)− ψ(x+ a)
− x , χa,b(x) (33)

for b > a in (−ρ,∞).
Since limx→0+ ψ(x) = −∞, then limx→(−a)+ χa,b(x) = a ≤ c for b > a.
In [27, Theorem 2], it was established that the functions

δs,t(x) =


ψ(x+ t)− ψ(x+ s)

t− s
− 2x+ s+ t+ 1

2(x+ s)(x+ t)
, s 6= t

ψ′(x+ s)− 1
x+ s

− 1
2(x+ s)2

, s = t

(34)

for |t − s| < 1 and −δs,t(x) for |t − s| > 1 are completely monotonic in x ∈
(−α,∞), where s and t are two real numbers and α = min{s, t}. Consequently,
from limx→∞ δs,t(x) = 0, it is deduced that

c ≥ χa,b(x) ≥
2(x+ a)(x+ b)
2x+ a+ b+ 1

− x→ a+ b− 1
2

> a (35)

for b− a > 1 and

χa,b(x) ≤
2(x+ a)(x+ b)
2x+ a+ b+ 1

− x→ a+ b− 1
2

< a (36)

for b − a < 1 as x tends to ∞. The necessity of Ha,b,c(x) being logarithmically
completely monotonic in (−ρ,∞) follows.

The proof of necessity of Hb,a,c(x) being logarithmically completely monotonic
in (−ρ,∞) is same as above. The necessity of Theorem 1 is proved. �
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Proof of Theorem 2. For a and b being two constants, as x tends to∞, the following
asymptotic formula is given in [1, p. 257 and p. 259]:

xb−a
Γ(x+ a)
Γ(x+ b)

= 1 +
(a− b)(a+ b− 1)

2x
+O

(
1
x2

)
. (37)

By formula (37), it follows that

Ha,b,c(x) =
(

1 +
c

x

)b−a[
xb−a

Γ(x+ a)
Γ(x+ b)

]
=
(

1 +
c

x

)b−a[
1 +

(a− b)(a+ b− 1)
2x

+O

(
1
x2

)]
→ 1

as x→∞ for all real numbers a, b and c.
If (a, b, c) ∈ D1(a, b, c), then the function Ha,b,c(x) is decreasing in (−ρ,∞) and

Ha,b,c(x) > limx→∞ = 1 which can be rearranged as inequality (16). Further, if δ
is a constant greater than −ρ, then

Ha,b,c(x) ≤ Ha,b,c(δ) = (δ + c)b−a
Γ(δ + a)
Γ(δ + b)

in [δ,∞), which can be rewritten as (17) for x ∈ [δ,∞).
If (a, b, c) ∈ D2(a, b, c) and δ is a constant greater than −ρ, then the function

Ha,b,c(x) is increasing in (−ρ,∞), inequalities (16) and (17) are reversed respec-
tively. The proof of Theorem 2 is complete. �
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yǔ Rènsh́ı (Mathematics in Practice and Theory) 36 (2006), no. 6, 236–238. (Chinese)

(F. Qi) College of Mathematics and Information Science, Henan Normal University,
Xinxiang City, Henan Province, 453007, China; Research Institute of Mathematical In-

equality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010,

China
E-mail address: qifeng@hpu.edu.cn, fengqi618@member.ams.org, qifeng618@hotmail.com,

qifeng618@msn.com, 316020821@qq.com

URL: http://rgmia.vu.edu.au/qi.html

(B.-N. Guo) School of Mathematics and Informatics, Henan Polytechnic University,

Jiaozuo City, Henan Province, 454010, China
E-mail address: guobaini@hpu.edu.cn


