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ON SOME INEQUALITIES FOR CONVEX FUNCTIONS WITH
APPLICATIONS IN NORMED SPACES

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Some inequalities for convex functions defined on convex subsets in
linear spaces with applications for the p—mean absolute deviation of a sequence
of vectors are given, in a normed linear space.

1. INTRODUCTION

Jensen’s inequality is pivotal in the Theory of Inequalities because it implies at
once many other classical inequalities including the Holder, Minkowski, Beckenbach-
Dresher and Young inequalities, the arithmetic mean - geometric mean inequality,
the generalised triangle inequality.

Let C be a convex subset of the real linear space X and f : C — R a convex
function on C. If z; € C and p; € (0,1) with Y. , p; = 1, then the following
well-known form of Jensen’s discrete inequality holds:

(1.1) f (ZPJ&) < Zpif(fﬂi)-

In [2], the authors proved, amongst other results, the following refinement of
Jensen’s inequality in the general setting of linear spaces:

(1.2) Zpif(xi) -f (sz$z>
i=1 i=1

Pi%i + T

> ) . . N — (p: . > 0.
- 1§r?<33?(STL {plf <xl> +p]f (CEJ) (pz +pJ) f ( pi +Dj > } =0

In particular, if p; = %, 1€ {1,...,n}, then we get the following refinement of the

unweighted Jensen inequality:

(13) iZf(M—f(ich)
> 1 {70+ 1) -2 (252} 2o

n 1<i<j<n
As a natural and important application of the above result (1.2), the authors of
[2] considered the case of normed linear spaces (X, ||-||) and the convex function
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f(x)=]z|", r > 1, obtaining refinements of the generalised triangle inequality:

n
> vl —
i=1

> e {pi il + g sl = s p)' 7 lpis + s} 2 0
1<i<j<n

(L

and

1 1< |
(1.5) - Z lzi|l” — Hn Zﬂii
=1 =1

1 ~ )
>~ max [l oy |7 = 247 [l a7} > 0.

More recently, the second author [1] has proved the following result:

(1.6) 112?<Xn{ } ZQJ (z;) Z%gjj
> pif (@) = f | Y pe
j=1
i {2} oo (S0

provided f : C' — R is convex on the convex subset C' of the linear space X and
Di, @iy © € {1,...,n} are probability sequences with ¢; > 0 for each i € {1,...,n}.

In particular, from (1.6) the following is obtained that compares the weighted
and unweighted Jensen differences:

1o I
(1.7) n max {pi} gzgf(zj)*f g;xj
Jj= Jj=
> ijf(xj) —f Zp]frj
Jj=1 j=1
1 n
anglig {pi} EZ; ny
]:

The above inequalities (1.6) and (1.7) have some nice applications for the gener-
alised triangle inequality in normed linear spaces:

(1.8) llgfgcn{ } qu 1" = (1> 52
j=1

r

n
> il - me
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T

n
= lr<nzl£n{ ; } qu HIJH ;qjxj (>0),

and
P
n n
P — pl-p .
(1.9) 11234<X {pi} ZHIJH n ij
j=1 j=1
P
n n
> " pi sl = |D ] piw;
— =
P
n
P_ o l-
> min {pi} Zn%n "] | =0,
j=
respectively.

In this paper some new inequalities for convex functions defined on linear spaces
are given. Applications for the p—mean absolute deviation of a sequence of vectors
in a normed linear space with given probabilities are also provided.

2. THE MAIN RESULTS

Theorem 1. Let C be a convex subset in the linear space X, f: C — R a convex
function on C, x; € C, p; € (0,1),j€{l,...,n}, n>2 and Z?lej =1.1If

(2.1) Zn:pja?j =0 and pkpil cxp € C for each ke {l,...,n},
then,
I SR, (25 m)]
> f(0).
In particular, if
(2.3) jilszo and %-xkec for each ke {l,...,n},
then,
S O e [ R |
nj:1 n ke{l,...,n} n—1
> £(0).
Proof. Firstly, since C' is convex and zy, p:ﬁl ~xp € Cfor k€ {1,...,n}, then,

Pk$k+(lpk)< Ph 'ﬂfk> =0eC,
pr—1

and by the convexity of f,

pf o)+ (1-p) f (G2 0) 2 7 0)
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for each k € {1,...,n}, which proves the last part of (2.2).
Since >_7_, pjz; = 0, we have,

n

n
P —1
PrZp = — Z}?ﬂj = ‘ ijxj
j=1 j=1

ek =~ P %
J#k

for each k € {1,...,n}, which implies,

Dk 1 -
(2.5) — k= — . ijxj,
p; iz

Ing

—~ Ak
ik
for each k € {1,...,n}.

Applying the Jensen inequality, we have from (2.5) that,

Dk - 1 -
f(pk_l'zk) =f| = ‘;Pﬂj

=~ ik
i#k
> pif (25) .
< ﬁ;;lc . Z_j:l pjf(xj) —pif (xk)
= n v - 1— D ’
Gk
from which it is obvious that,
p n
(2.6) prf (zr) + (1 —pi) f (pk i T '%) <Y pif ()
j=1

for each k € {1,...,n}.

Taking the maximum in (2.6) over k € {1,...,n}, we deduce the first part of
(2.2). 1

The following result can be useful for applications.

Corollary 1. Let f : C — R be a convex function on the conver set C' and
g; €(0,1),j€{1,...,n} with 2?21 g; =1 Ifv; € X, i€ {1,...,n} are such that,

(2.7) v — ;qlvl, 1 quk <; qu — vk> € C foreach ke{l,...,n},
then,
(28) > qf (Uj -3 qwz)

j=1 1=1

n q n
> ke?llf}?in} {Qkf (Uk - ;qm) + (1 —qu)f [1 _qu <; quy — 'Uk>‘| }

> f(0).
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In particular, if,

(2.9) kafz v, < wa)EC for each ke {1,...,n},

=1

then,

(2.10) % Z f (vj - Zw)

1 n
> B _
n keg,a.‘.}.(,n} { ( Uk ZUZ) n b [n —

> f(0).

The proof follows by Theorem 1 on choosing x; = v;
je{l,...,n}.

130}

— Y=, qu and p; = gj,

Corollary 2. Let f : C — R be a conver function on the conver set C and
x; € {1,...,n} such that, for y1 := 1 — Tpn, Y2 := Ta — T1,.. ., Yn—1 ‘= Tp—1 —

Tp_2,Yn = Tpn — Tn_1, We have Y, 72-yr € C for each k € {1,...,n}. It follows
that,

%[f(:cl—:cn)+f(x2—x1)+---+f(xn_1—wn_2)+f(xn—xn_1)]

>Tllmax{f(x1—xn)+(n—1)f{ il(xl_xn)]a'“a
f(xn*xn—l)“i’(n*l)f |:’I’Lil (xnxn—l)]}

> f(0).

The proof is obvious by the second part of Theorem 1.
A different result is incorporated in the following.

Theorem 2. Let C be a convez set in the linear space X and f : C'— R be a convex
function on C. If z; € C, p; € (0,1), j € {1,...,n} are such that 2?21 p; =1 and

(2.11) —T, 2pkxk € C foreach ke {l,...,n},
— Pk

then,

(2.12) z:: [1734—]”()]

Pk Pk DiTh
=)
> f(0).

In particular, if,

—Tp, ijkeC for each ke{l,...,n},
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then
2 13 ﬁ g M > E ke?ll,ax’n} {2f (*‘Tk) + (QTl — ].) f <2nnfk1> }
> £(0).

Proof. For any k € {1,...,n} we have,

n n
Zpixi =prTk + ijxjv
=t Pt

which gives,

n n
Pk = 3 _piwi+ Y p; (—;)
=1 j

J
J#k
zpzmzp]( n)

Z Di + Z p] i=1 ;;glc
j=1
j#k
n n
dYopiwi+ Y pj(—x;)
i=1 j=1
2k
= P J n (1 + 1 — pk) .
Y pit+ Y pj
i=1 j=1
Ak

This obviously implies,

> pixi+ 3 pj (—x)
=1

i=1 Jj=
(2.14) pkxk _ J#k
92— Dl n n
2pit P
i=1 i=1
Jj#k

for each k € {1,...,n}.
Applying Jensen’s inequality, we have from (2.14) that,

leil‘i + Zl p; (—x5)
1= JI=

PrTr \ i#k
2—-pr) ! - -
Ypit 2D

J
s
> pif (zi) + Z:l pif (=)
. =1 Tk
- 14+1—pg

sz[ (zi) + f (=2:)] = prf (1)

- )

2 — pg




INEQUALITIES FOR CONVEX FUNCTIONS 7

which is clearly equivalent to,

for each k € {1,...,n}.

Taking the supremum over k € {1,...,n} in (2.15) produces the first inequality
in (2.12).

By the convexity of f we also have:

B (-5)0(355) 2[5 o 0-5) 25

and the last part of (2.12) is also established. I

3. APPLICATIONS FOR NORMED SPACES

Let (X, |]-]]) be a normed space over the real or complex number field K.

For the probability sequence p = (p1,...,pn), ¢ € {1,...,n}, the sequence of
vectors x = (z1,...,%,) € X" and a real number p > 1, we define the p—mean
absolute deviation of x with probability p by:

n
ZTj— Zpll'l
=1
For the uniform probability u = (%, e %) we have K, (u,x) = K, (x), where,
1 n
Ti—— Y T

The following result concerning upper and lower bounds for the p—mean absolute
deviation can be stated:

p

(31) K, (p.x) = Yy

n

(32) Ky () =2

Jj=1

Proposition 1. With the above, we have,

n P
Ty — E b
=1

(3.3) max

> K
ke{l,...,n} = p(p,X)

p
> [ P — 1‘1’} ,
> ke?ﬁ.}.{,n} { e+ ) (1 —pr)

n
Ty — E ?T]
=1

for anyx € X™ p>1 and p a probability sequence.
In particular,

P
1 n
3.4 a - - > K
( ) ke?ll,x,n} T n ;xl = p(x)
1 1< |
>7[1+ n—llfp} ma T — — x
el R PV o n; :

forallx e X™ and p > 1.

Proof. The first inequality in (3.3) is obvious, the second follows by Corollary 1
applied for the convex function f : X — R, f (z) = ||z||” . The details are omitted. I



8 N.S. BARNETT AND S.S. DRAGOMIR

Remark 1. The case p = 1 produces the inequalities,

3.5 max T — mx|| > K (p,x
5) s =3 (p.x)
n
> 2 —
>2, max {pk x, ;pm }
and
(3.6) ma x 1zn:x > K (x)
. X - =
ke{l,...,n} k Tll:1 o=
2 1 &
> 2 R
= nke?ll??in} Tk n;m ’

where K (p,x) = K; (p,x) and K (x) = K; (x).
If 02 (p,x) = K» (p,X), where o2 (p,x) denotes the variance of X with the prob-
ability p, then we have,

n
Ty — E P
=1

2

(3.7 max

> o2 ,X
ke{l,...,n} = (p.x)

2

Pk
>  max
ke{l,..n} | pr— 1

)

n
Tg — E Pz
=1

for any x € X™ and p a probability density.
Also, if 0% (x) = Ky (x),

n
1
Ty — — g Zy
n
=1

(3.8) max

> 2
ke{l,...,n} =9 (X)

1 2

T — —2
n

> max
n— 1 ke{l,...,n}

We notice that if X = H, H an inner product space, then o (p,x) and o (x) can
be represented as,

1
2 2

n n
2
o (p.x) = | D_pillal® = D pjw ;
j=1 j=1

while
1
2 2

1 — 1 <
2
o ()= | =D llal* ~ || =D
j=1 j=1

Since the lower bound for K, (p,x) may be difficult to use in applications, we
provide the following coarse but perhaps more useful bound.
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Corollary 3. If p,, := . %Illin }pk, pm € (0,1), then
€1,...,n

n P

Tk — szwl

(39)  Kp(.%) = [pm+ph (1= pp)' 7] max
’ =1

forallx € X™.

Proof. For p > 1, consider the function hy : [0,1) — R, hy, (t) :=t+t? (1 — P,
The function h, is differentiable on [0,1) and

1 1— _
h, () =1+ptP (1—t) "+ (@-1)t"(1-1t)"" >0,
for any ¢ € [0, 1), showing that h,, is strictly increasing on [0, 1). It follows that,

min +p (1 - 17p:|:m+m1_m17p7
pe i [pk Py (1 —pr) Pm + b, (1 = pim)

which together with (3.3) provides the desired bound (3.9). 1

Remark 2. In particular, we have,

3.10 K > 2Dm —
(3.10) (p,x) > 2p keﬂllax Tk szwz
and
" 2
pT}'L
3.11 o? P,xX) > max Ty — [k
( ) ( ) 1 —pm ke{1,..., 1 IZ:;

From a different perspective, we can state the following inequalities as well.
Proposition 2. Let (X,||-||) be a normed linear space, x = (x1,...,2,) € X",
p>1andp; € (0,1) with >\ p; =1, then,

P D 1-p P
(3.12) sz ol = 5, max ot (2= )"l

for any x,p and p as above.
In particular,

1
= P> _ 1-p P
(3.13) E ol = 5 |1+ (20— 1) }kem{lf}f”}{llwk\l }

for any x € X™.

The proof is obvious by Theorem 2 applied for the convex function f: X — Ry,
f(x) =||z|”. The details are omitted.

Remark 3. The case p = 2 gives the simple inequalities:

.14 Soplel’ 2, o [ ]

and

.1 — i
(3.15) an I° 2 g e ol
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As pointed out before, for applications, the lower bound for the quantity > .-, p; ||z ||2
may not be as useful as one where the p;’s and x;’s are separate. This can be
achieved, however, by the following coarser result:

Corollary 4. If p,, == . {min }pk, Pm € (0,1), then,
c{l,....n

yeus

- 1 1
3.16 ixip>f[m+fn2—m Pl ma zi|?,
10 Snlell = s s, p) ] sl

for any x € X"

Proof. Consider the function g, : [0,1) — R, g, (¢t) =t +t7(2— )P which is
differentiable on [0,1) and

G =1+p 2= P+ (-1 (2-1) " >0
for any t € [0,1), showing that g, is strictly increasing on [0, 1). Therefore,

' 2= ) ] = P (2= p)'
pepn [pk P (2 =) Pm + P (2 = pm)

which, together with (3.12), provides the desired result (3.16). I

Remark 4. In particular,

n
Pm 2
3.17 Nail? > ma
(3.17) 2ol 2 g0 max el

for any x € X™.
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