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APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL VIA
SOME MOMENTS OF THE INTEGRAND

P. CERONE AND S.S. DRAGOMIR

Abstract. Error bounds in approximating the Riemann-Stieltjes integral in
terms of some moments of the integrand are given. Applications for p�convex
functions and in approximating the Finite Foureir Transform are pointed out
as well.

1. Introduction

In order to approximate the Riemann-Stieltjes integral
R b
a
f (t) du (t) with the

arguably simpler expression

(1.1)
u (b)� u (a)

b� a �
Z b

a

f (t) dt;

where
R b
a
f (t) dt is the Riemann integral, Dragomir and Fedotov [8] considered in

1998 the following Grüss type error functional:

(1.2) D (f; u; a; b) :=

Z b

a

f (t) du (t)� 1

b� a [u (b)� u (a)]
Z b

a

f (t) dt:

If the integrand f is Riemann integrable and �1 < m � f (t) � M < 1 for any
t 2 [a; b] while the integrator u is L�Lipschitzian, namely,
(1.3) ju (t)� u (s)j � L jt� sj for each t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
f (t) du (t) exists and the following bound

holds:

(1.4) jD (f; u; a; b)j � 1

2
L (M �m) (b� a) :

In (1.4) the constant 1
2 is best possible in the sense that it cannot be replaced

by a smaller quantity.
A di¤erent bound for the Grüss error functional D (f; u; a; b) in the case that f

is K�Lipschitzian and u is of bounded variation has been obtained by the same
authors in 2001, see [9], where they showed that

(1.5) jD (f; u; a; b)j � 1

2
K (b� a)

b_
a

(u) :

Here
Wb
a (u) denotes the total variation of u on [a; b] : The constant

1
2 is also best

possible.
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2 P. CERONE AND S.S. DRAGOMIR

For other results concerning di¤erent bounds for the functional D (f; u; a; b) un-
der various assumptions on f and u, see the recent papers [3], [4], [6] �[7], [13] and
the references therein.
The main aim of the present paper is to provide error bounds in approximating

the Riemann-Stieltjes integral
R b
a
f (t) du (t) with the following expression contain-

ing moments of the function f; namely the expression

p

(b� a)p

"
u (b) �

Z b

a

(t� a)p�1 f (t) dt� u (a) �
Z b

a

(b� t)p�1 f (t) dt
#
;

where p > 0 and the involved integrals exist.
Some inequalities for monotonic integrands and p�convex integrators as well as

where u is an integral of a given weight are provided. An application for approxi-
mating the Finite Fourier Transform is also given.
The case p = 1 reduces to the Grüss error functional and in this way some earlier

results are recaptured as well.

2. General Results

The following identity holds.

Lemma 1. Let f; u : [a; b]! R such that the Riemann-Stieltjes integral
R b
a
f (t) du (t)

and the Riemann integrals
R b
a
(t� a)p�1 f (t) dt;

R b
a
(b� t)p�1 f (t) dt for p > 0 ex-

ist. Then

(2.1)
Z b

a

f (t) du (t)

=
p

(b� a)p

"
u (b) �

Z b

a

(t� a)p�1 f (t) dt� u (a) �
Z b

a

(b� t)p�1 f (t) dt
#

+

Z b

a

�
(t� a)p u (b) + (b� t)p u (a)

(b� a)p � u (t)
�
df (t) :

Proof. Integrating by parts of the Riemann-Stieltjes integral, we haveZ b

a

�
(t� a)p u (b) + (b� t)p u (a)

(b� a)p � u (t)
�
df (t)

=

�
(t� a)p u (b) + (b� t)p u (a)

(b� a)p � u (t)
�
f (t)

����b
a

�
Z b

a

f (t) d

�
(t� a)p u (b) + (b� t)p u (a)

(b� a)p � u (t)
�

= [u (b)� u (b)] f (b)� [u (a)� u (a)] f (a)

�
"
pu (b)

(b� a)p
Z b

a

(t� a)p�1 f (t) dt

� pu (a)

(b� a)p
Z b

a

(b� t)p�1 f (t) dt�
Z b

a

f (t) du (t)

#
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= � pu (b)

(b� a)p
Z b

a

(t� a)p�1 f (t) dt+ pu (a)

(b� a)p
Z b

a

(b� t)p�1 f (t) dt

+

Z b

a

f (t) du (t) ;

which is equivalent with the desired identity (2.1). �

Remark 1. For p = 1 we get the identity:

(2.2)
Z b

a

f (t) du (t) =
u (b)� u (a)

b� a �
Z b

a

f (t) dt

+

Z b

a

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�
df (t)

that has been obtained in [5], see also [6].

In order to approximate the Riemann-Stieltjes integral
R b
a
f (t) du (t) by the quad-

rature

(2.3)
p

(b� a)p

"
u (b) �

Z b

a

(t� a)p�1 f (t) dt� u (a) �
Z b

a

(b� t)p�1 f (t) dt
#
;

we consider the error functional:

(2.4) F (f; u; p; a; b) :=

Z b

a

f (t) du (t)

� p

(b� a)p

"
u (b) �

Z b

a

(t� a)p�1 f (t) dt� u (a) �
Z b

a

(b� t)p�1 f (t) dt
#
:

The following result may be stated.

Theorem 1. Let f; u : [a; b]! R be as in Lemma 1. For p > 0; de�ne

(2.5) �p (u; t; a; b) :=
(t� a)p u (b) + (b� t)p u (a)

(b� a)p � u (t) ;

where t 2 [a; b] :
If F (f; u; p; a; b) is the error functional de�ned by (2.4), then:

(2.6) jF (f; u; p; a; b)j �

8>>>>>>>>>><>>>>>>>>>>:

sup
t2[a;b]

j�p (u; t; a; b)j
Wb
a (f)

if f is of bounded variation;

L
R b
a
j�p (u; t; a; b)j dt

if f is L� Lipschitzian;R b
a
j�p (u; t; a; b)j df (t)
if f is monotonic nondecreasing.



4 P. CERONE AND S.S. DRAGOMIR

Proof. It is well known that for the Riemann-Stieltjes integral
R b
a
w (t) dv (t) we

have the bounds

(2.7)

�����
Z b

a

w (t) dv (t)

����� �

8>>>>>>>>>><>>>>>>>>>>:

sup
t2[a;b]

jw (t)j
Wb
a (v)

if v is of bounded variation;

L
R b
a
jw (t)j dt

if v is L� Lipschitzian;R b
a
jw (t)j dv (t)
if v is monotonic nondecreasing.

Now, on utilising the representation (2.1) and applying (2.7) for w (t) := �p (u; t; a; b) ;
t 2 [a; b] and v = f; we deduce the desired result. �

Remark 2. For p = 1; by denoting

�(u; t; a; b) = �1 (u; t; a; b) =
(t� a)u (b) + (b� t)u (a)

b� a � u (t)

and

F (f; u; a; b) =

Z b

a

f (t) du (t)� u (b)� u (a)
b� a �

Z b

a

f (t) dt;

we get from (2.6)

(2.8) jF (f; u; a; b)j �

8>>>>>>>>>><>>>>>>>>>>:

sup
t2[a;b]

j�(u; t; a; b)j
Wb
a (f)

if f is of bounded variation;

L
R b
a
j�(u; t; a; b)j dt

if f is L� Lipschitzian;R b
a
j�(u; t; a; b)j df (t)
if f is monotonic nondecreasing.

The inequality (2.8) has been obtained in [5].

Remark 3. If u (t) =
R t
a
w (s) ds; t 2 [a; b] ; then from (2.1) we get the representa-

tion

(2.9)
Z b

a

f (t)w (t) dt =
p

(b� a)p
Z b

a

w (s) ds

Z b

a

(t� a)p�1 f (t) dt

+
1

(b� a)p �
Z b

a

"
(t� a)p

Z b

a

w (s) ds� (b� a)p
Z t

a

w (s) ds

#
df (t)

for any p > 0, provided that the involved integrals exist.
For p = 1; we obtain the identity due to Cerone in [2].

3. Further Bounds for Monotonic Integrands

In this section some bounds for the error functional F (f; u; p; a; b) where the
integrator f is monotonic nondecreasing are given.
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Theorem 2. Let f; u : [a; b] ! R be such that f is monotonic nondecreasing, u
satis�es the bounds:

(3.1) �1 < n � u (t) � N <1 for any t 2 [a; b]

and the Riemann-Stieltjes integral
R b
a
f (t) du (t) exists. Then

np

(b� a)p

"Z b

a

(b� t)p�1 f (t) dt�
Z b

a

(t� a)p�1 f (t) dt
#

(3.2)

� (N � n) [f (b)� f (a)]
� F (f; u; p; a; b)

� Np

(b� a)p

"Z b

a

(b� t)p�1 f (t) dt�
Z b

a

(t� a)p�1 f (t) dt
#

� (N � n) [f (b)� f (a)] ;

where F (f; u; p; a; b) is given by (2.4).

Proof. From (3.1) we obviously have:

n (t� a)p � u (b) � N (t� a)p ;
n (b� t)p � u (a) � N (b� t)p ;

�N (b� a)p � �u (t) (b� a)p � �n (b� a)p

for any t 2 [a; b] : Summing the above three inequalities, we have that

n � (t� a)
p
+ (b� t)p

(b� a)p �N � �p (u; t; a; b) � N � (t� a)
p
+ (b� t)p

(b� a)p � n

for any t 2 [a; b] :
Now, integrating over the monotonic nondecreasing function f we have

n

(b� a)p

"Z b

a

(t� a)p df (t) +
Z b

a

(b� t)p df (t)
#
�N [f (b)� f (a)](3.3)

� F (f; u; p; a; b)

� N

(b� a)p

"Z b

a

(t� a)p df (t) +
Z b

a

(b� t)p df (t)
#
� n [f (b)� f (a)] :

Integrating by parts, we also haveZ b

a

(t� a)p df (t) = (b� a)p f (b)� p
Z b

a

(t� a)p�1 f (t) dt

and Z b

a

(b� t)p df (t) = � (b� a)p f (a) + p
Z b

a

(b� t)p�1 f (t) dt:
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Then

n

(b� a)p

"Z b

a

(t� a)p df (t) +
Z b

a

(b� t)p df (t)
#
�N [f (b)� f (a)](3.4)

=
n

(b� a)p

(
(b� a)p [f (b)� f (a)] + p

"Z b

a

(b� t)p�1 f (t) dt

�
Z b

a

(t� a)p�1 f (t) dt
#)

�N [f (b)� f (a)]

=
np

(b� a)p

"Z b

a

(b� t)p�1 f (t) dt�
Z b

a

(t� a)p�1 f (t) dt
#

� (N � n) [f (b)� f (a)]
and

N

(b� a)p

"Z b

a

(t� a)p df (t) +
Z b

a

(b� t)p df (t)
#
� n [f (b)� f (a)](3.5)

=
N

(b� a)p

(
(b� a)p [f (b)� f (a)] + p

"Z b

a

(b� t)p�1 f (t) dt

�
Z b

a

(t� a)p�1 f (t) dt
#)

� n [f (b)� f (a)]

=
Np

(b� a)p

"Z b

a

(b� t)p�1 f (t) dt�
Z b

a

(t� a)p�1 f (t) dt
#

+ (N � n) [f (b)� f (a)] :

Now, on utilising (3.3) �(3.5) we deduce the desired result (3.2). �

Remark 4. In the particular case when p = 1; the inequality (3.2) reduces to

(3.6) jF (f; u; p; a; b)j � (N � n) [f (b)� f (a)] :

4. An Inequality for Integrators that are s�Convex in the Second
Sense

Following Hudzik and Maligranda [12] (see also [11, p. 286]) we say that the
function g : R+ ! R is p�convex in the second sense, where p > 0 is �xed, if:
(4.1) g (tu+ (1� t) v) � tpg (u) + (1� t)p g (v)
for any u; v � 0 and t 2 [0; 1] :
For di¤erent properties of this class of functions, see [12] and [11, pp. 286 �293].
The following inequality of Hermite-Hadamard type is due to Dragomir and

Fitzpatrick [10]:

Theorem 3. Let g be a p�convex function in the second sense on an interval
I � [0;1) with p 2 (0; 1] and let a; b 2 I with a < b: Then:

(4.2) 2p�1g

�
a+ b

2

�
� 1

b� a

Z b

a

g (t) dt � g (a) + g (b)

p+ 1
:
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We can state and prove now the following result about the Riemann-Stieltjes
integral:

Theorem 4. Let u be p�convex with p > 0; f be monotonic nondecreasing on
[a; b] and such that the Riemann-Stieltjes integral

R b
a
f (t) du (t) and the Riemann

integrals
R b
a
(t� a)p�1 f (t) dt;

R b
a
(b� t)p�1 f (t) dt exist. Then

(4.3)
Z b

a

f (t) du (t)

� p

(b� a)p

"
u (b)

Z b

a

(t� a)p�1 f (t) dt� u (a)
Z b

a

(b� t)p�1 f (t) dt
#
:

Proof. Since u is p�convex, then:

u (t) = u

�
t� a
b� a � b+

b� t
b� a � a

�
�
�
t� a
b� a

�p
u (b) +

�
b� t
b� a

�p
u (a) ;

which shows, upon using the notations of (2.5), that

�p (u; t; a; b) � 0 for any t 2 [a; b] :

Since f is monotonic nondecreasing on [a; b] ; we have thenZ b

a

�p (u; t; a; b) df (t) � 0;

which, via the representation (2.1), is equivalent with the desired inequality (4.3).
�

Remark 5. The case p = 1; i.e., where the function u is convex in the usual sense,
produces the following inequality

(4.4)
Z b

a

f (t) du (t) � u (b)� u (a)
b� a

Z b

a

f (t) dt;

where f is monotonic nondecreasing, which has been obtained in [5], see also [6].

5. Approximating the Finite Fourier Transform

The Fourier Transform is one of the most important mathematical tools in a
wide variety of �elds in science and engineering [1, p. xi].
Throughout this section f : [a; b] ! R will be a Riemann integrable function

de�ned on the �nite interval [a; b] and F (g) will be its Finite Fourier Transform.
That is,

F (f) (t) :=
Z b

a

f (s) e�2�itsds:

Consider also the exponential mean of two complex numbers z; w de�ned by

E (z; w) :=

8<:
ez�ew
z�w if z 6= w;

exp (w) if z = w;
z; w 2 C:
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Now, for w (s) = exp(�2�its); on applying the identity (2.9), which holds for
complex-valued functions as well, we get the following representation of the Finite
Fourier Transform

(5.1) F (f) (t) = p

(b� a)p�1
�E (�2�itb;�2�ita)�

Z b

a

(s� a)p�1 f (s) ds+R (f) (t) ;

where the remainder R (f) has the representation

R (f) (t) =
1

(b� a)p�1
Z b

a

(s� a)
h
(s� a)p�1E (�2�itb;�2�ita)

� (b� a)p�1E (�2�its;�2�ita)
i
df (s) :

In order to provide a composite rule in approximating the Finite Fourier Transform
in terms of moments for the function f; we consider a division In : a = x0 < x1 <
::: < xn�1 < xn = b and the quadrature rule

A (In; t) : =
n�1X
i=0

p

(xi+1 � xi)p�1
� E (�2�itxi+1;�2�itxi)(5.2)

�
Z xi+1

xi

(s� xi)p�1 f (s) ds

that has been obtained from (5.1) applied on each subinterval [xi; xi+1] and the
results were summed over i from 0 to n � 1: It is an open question as to whether
or not A (In; t) is uniformly convergent to F (f) (t) on [a; b] and what the order of
convergence is ?
The following numerical experiment obtained by implementing the quadrature

(5.2) for the function f(s) = s + 1 and p = 2 shows the behavior of the absolute
error value

(5.3) En (t) := jF (f) (t)�A (In; t)j ; t 2 [a; b] ;

for a division with 10 points (Figure 1) respectively 100 points (Figure 2).
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