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THE BEESACK-DARST-POLLARD INEQUALITIES AND
APPROXIMATIONS OF THE RIEMANN-STIELTJES INTEGRAL

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Utilising the Beesack version of the Darst-Pollard inequality, some
error bounds for approximating the Riemann-Stieltjes integral are given. Some
applications related to the trapezoid and mid-point quadrature rules are pro-
vided.

1. INTRODUCTION

In 1970, R. Darst and H. Pollard [3] obtained the following inequality for the
Riemann-Stieltjes integral:

b b
(L1) / h(t)dg (1) < inf h(t)g(b) — g (a)] + S (g:0,b) \/ (h)

t€la,b]

where \/Z (h) denotes the total variation of h on [a,b] and

(1.2) S(g;a,b):= sup [g(B)—g(a)]

a<la<fB<b

under the assumption that & is of bounded variation and ¢ is continuous on [a, ] .
As P.R. Beesack observed in [1] that, by replacing g with (—g) in (1.1), we can
also obtain the “dual” Darst-Pollard inequality

b b
(1.3) /h(t)dg(t)> inf £ (t)[g(b) — g (a)] +5(g;0,0) \/ ()

T t€la,d]
where

(1.4) s(g;a,b) :== agigfﬁéb[g (B) —g(a)].

Beesack also showed that the inequalities (1.1) and (1.4) remain valid even if g is
not continuous on [a, b], provided only that ¢ is bounded on [a, b] and f; h(t)dg (t)
exists.

In a recent paper [6], in order to approximate the Riemann-Stieltjes integral

f; f () du (t) by the quadrature rule

m+ M
L [ (6) — w (o)
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where m < f(t) < M for each t € [a,b], the second author defined the error
functional

A(f,u,m, M:a,b) ::/ F(8) du (t) — m;M[u(b)—u(a)]

and showed that

b
3 (M —m)V, (u)
if u is of bounded variation;

(15) ‘A(fvuam7M7a7b)‘S %(M_m)L(b_a’>
if f is L — Lipschitzian;
b
Jo If (8 = =52 du (t)
if w is monotonic nondecreasing.

The constant % is the best possible in both inequalities. The last inequality in (1.5)
is also sharp.
In the same paper [6], in order to approximate the integral f; f(t) du (¢) in terms

of the generalised trapezoid rule

-5 0+ [P - u@) rw),

the second author introduced the error functional

V(i = [ - SN e [N @] r@- [ rwa,

where —oo <n < wu(t) < N < oo for t € [a,b] and showed that

LN =n) V2 (f)

if f is of bounded variation;

(16) |V(f7u7n7N7a7b)|§ %(N—n)K(b—a)
if f is K — Lipschitzian;
Jo T (8) = =55 df (1)

if f is monotonic nondecreasing.

The constant % is the best possible in (1.6) and the last inequality is sharp.

In this paper, by use of the Beesack-Darst-Pollard inequalities (1.1) and (1.3),
we provide other error bounds for the functionals A and V. Applications for the
generalised trapezoid and Ostrowski inequalities are also given.

2. THE RESULTS

We can state the following result concerning the error bounds for the error func-
tional A (f,u,m, M;a,b).

Theorem 1. Let f : [a,b] — R be a function of bounded variation and assume that

(2.1) —co<m= inf f(t), sup f(t)=M < oo.
t€[avb] tG[a,b]
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If u is bounded and the Riemann-Stieltjes integral f; f (&) du(t) exists, then
b

@m|Ammmﬂmmmgnm{Vstmm@_

a

1 b
L —m)fu 8 = u (@] =V () uab}

b
\/ (u;a,b) — s (u;a,b)].

SO —m)[u(b) ~ ua)],

l\DM—l

The constant % 1s the best possible and the inequalities are sharp.

Proof. If we apply the inequality (1.3) for h (t) = f (t), g (t) = u (¢), we can write,
b

(2.3) /f@wwzmw®—U@HﬂmeVU%

If we apply the same inequality (1.3) for h(t) = M — f (¢) and g (t) = u (t), we get
b

b
(2.4) wumm—uwﬂ—/”fmdwﬂZSWWwﬂ¢ﬁ>
)

a

since, obviously, \/Z (M-f)=
The inequalities (2.3) and (2
interest:

b
25)  Mu®-u@]-stab) > [ f@dul)
>mu(b) —u(a)] + s(u;a,b).

Now, if we subtract from all terms the same quantity

M+m
T fu () — u (@)

Vo (f
4

) give the following double inequality that is of

we get

(2.6) % (M —m)[u() —u(a)] —s(u;a,b)

z/fmm@—M;mM@—Mm

> —%(M—m) [u(b) —u(a)] + s (u;a,b),

which is equivalent to
(2.7) |A(f,u,m, M;a,b)| < %(M*m) [u(b) —u(a)] — s (u;a,b).
On utilising (1.1) we can also prove in a similar way that

b
(28) A um M) <\ ()8 (w5a,8) 5 (M —m) [u(®) ~ u(a)].
These show that the first inequality in (2.2) is valid. The second part is obvious
since for any «, 8 € R, min (o, 8) < O‘THB
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For the sharpness of the inequality, we assume that u (t) = ¢, ¢ € [a, ] . Since for
this selection of u we have
S (u;a,b) =b—a and s (u;a,b) =0,
hence the inequality (2.3) becomes
b

f(#) du(t) -

(2.9)

If we consider the function fj : [a,b] — R,
0 if te€la,bl;

fo(t) =
k if t=0,

where k > 0, then obviously m = 0, M = k, f fo(t)dt =0, \/° (fo) = k and in all
parts of (2.9) we get the same quantity 2k (b—a). |

The following corollary that provides error bounds for the error functional V (f,u,n, N;a,b)
can be stated as well.

Corollary 1. Let u: [a,b] — R be a function of bounded variation such that there
exist the constants n, N with

(2.10) —oo<n= inf u(t), sup u(t)=N <oo.
tela,b] t€la,b]

If f is bounded and the Riemann-Stieltjes integral f: f (&) du(t) exists, then
b

(2.11) [V (f,u,n,N;a,b)| < min{\/(u)S(f;avb) - % (N =n)[f () = f(a)],

a

1 b
Lm0 - F @ -V W f,ab}

1 b
<5V @IS (fia.0) = 5(f5a,0)].

The constant % 1s the best possible and the inequalities are sharp.

Proof. Follows by Theorem 1 on utilising the identity

ro s -5 o [ - w@] - [ o

2

:/b[u n+N}df()
- [voao-"N o s
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The details are omitted. I

The following particular cases of Theorem 1 may be of interest in applications.

Corollary 2. Assume that f : [a,b] — R is as in Theorem 1. If u : [a,b] — R is of
the r — H—Hoélder type, i.e.,

(2.12) lu(t) —u(s)| < H|t—s|" forany t,s€ [a,b],
where H > 0 and s € (0,1] are given, then
(2.13) |A(f,u,m, M;a,b)

<H(®b-a)

m<e~
=

Proof. For any a < a < f < b we have, by (2.12), that
~H@B-a) <u(B)—u(s)<H@B-a).
This implies that
S(ab) < s [H(B—a)]=H(b-a)

a<la<pB<b
and
ca,b)> inf [~H(B—a)]=— H(3—a)
s(wab)z i [[FH({E-a)]== s [H(-a)]
=—-H(b—-a) .

Utilising (2.2) we deduce the desired inequality (2.13). I

Corollary 3. Assume that f is asin Theorem 1. Ifu : [a,b] — R is monotonic non-
decreasing and such that the Riemann-Stieltjes integral ff f () du(t) exists, then

(2.14) |A(f, u,m, M;a,b)|

o b 1 1
< min \/(f)*g(M*m)@(M*m) [u(b) —u(a)]

a

<

[N

b
[w(0) —u (@] \/ (£)-

The proof is obvious by Theorem 1 on taking into account that for the monotonic
nondecreasing function u : [a,b] — R we have:

S (u;a,b) = u(b) —u(a)

and
s (u;a,b) = 0.
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3. APPLICATIONS

The following inequality obtained in [2] is known as the trapezoid inequality for
functions of bounded variation:

b b
P [ s TOLI0] 1y,

where the constant % is best possible in the sense that it cannot be replaced by a
smaller constant.

The following trapezoid inequality for the larger class of Riemann integrable
functions can be stated:

(3.1)

Proposition 1. Let f : [a, b] — R be Riemann integrable on [a,b], then:

bi /f )+f()

gmm{sqmwy—iuw»—fwm

(3.2)

1
510~ 7 (@) = s(fia.0)}

<3S b) = s(fiab)].

Proof. We use the following identity holding for the Riemann integrable function
fila, b = R:

b b
(3.3) ﬂmw—m+ﬂ@u—@—/fmﬁ:/XFmMNw

for any x € [a,b], see [2].

We observe that sup,e(, ) (t —2) = b —a, inficfap (t —2) = a —z, for z € [a,b]
and, applying Theorem 1 for the Stieltjes integral f{f (t—ax)df (t), x € [a,b], we
obtain:

(3.4 [a-nao- (3 -2)rw-s@

b
gmm{vc—xwmﬁmm—éw—amﬂm—fm»

a

b
;wamﬂwmeVc@sumwﬁ

a

N)M—\

b
<=\ (=2)[S(f;a,b) - s(f;a,b)].

On utilising the identity (3.3) and the fact that \/Z (- — 2) = b— a, we deduce from
(3.4) the desired result (3.2). I

n [5], S.S. Dragomir obtained the following Ostrowski type inequality for func-
tions of bounded variation:
/ £ (t)dt

| _ a+b‘

i ]YU%

(3.5)
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for any « € [a,b]. The constant % is the best possible in (3.5).
The best inequality one can obtain from (3.5) is the mid-point inequality:

() - [ rwa <1V,

a
for which % is also the best possible constant.
In order to extend (3.5) to the larger class of Riemann integrable functions, we
can state:

(3.6)

Proposition 2. Let f : [a,b] — R be Riemann integrable on [a,b], then:

f@ﬂ_<x_a+b),ﬂmfaw_bialfﬂ@m

(3.7 > —_

<min {8 (fiah) = 51 0) = @] 5100~ f @] - 5(ia)}

< SIS (Fra.b) s (fia,0)].

Proof. We use the Montgomery type identity [5] for the Riemann integrable function
fila, b — R:

b b
[reoae=f@e-a- [ foa
for any x € [a, b] , where the kernel p : [a, b]2 — R is defined by

t—a if t€a,x],

p(tﬂ‘r) =
t—0b if tE(.’L‘,b].

For any fixed x € [a,b], the function p (-, z) is of bounded variation, and

b T b
\/p('7x) = \/p(~,$) + \/p("'r)
=rx—a+b—x=>b—a.
Also, observe that

sup p(t,z)=x—a  and inf p(t,z)=2—b
t€la,b] t€la,b]

for any x € [a,b].
Now, applying Theorem 1 for the Riemann-Stieltjes integral f:p (t,z)df (t), we
can write that

l%@wwﬁm(zagﬂ-U@>ﬂ@]

< (b—a)min{s(f;aab)_

1 1
S0~ 7@ 510~ @] = s(fian)}
S8 (a0 =5 (fia,)],

which is clearly equivalent to (3.2). I

IN

The following mid-point inequality holds.
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Corollary 4. Let f be as in Proposition 2, then

(3.8) f(a;b>—bla/:f(t)dt
1

(1]
(2]
(3]
(4]
(5]

[6]

[7]

< min{s<f;a,b> SO~ @] 51 0~ @) - s(f;a,w}
< 318 (fsa,0) = s (fia.).
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