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THE BEESACK-DARST-POLLARD INEQUALITIES AND
APPROXIMATIONS OF THE RIEMANN-STIELTJES INTEGRAL

N.S. BARNETT AND S.S. DRAGOMIR

Abstract. Utilising the Beesack version of the Darst-Pollard inequality, some

error bounds for approximating the Riemann-Stieltjes integral are given. Some
applications related to the trapezoid and mid-point quadrature rules are pro-

vided.

1. Introduction

In 1970, R. Darst and H. Pollard [3] obtained the following inequality for the
Riemann-Stieltjes integral:

(1.1)
∫ b

a

h (t) dg (t) ≤ inf
t∈[a,b]

h (t) [g (b)− g (a)] + S (g; a, b)
b∨
a

(h)

where
∨b

a (h) denotes the total variation of h on [a, b] and

(1.2) S (g; a, b) := sup
a≤α<β≤b

[g (β)− g (α)]

under the assumption that h is of bounded variation and g is continuous on [a, b] .
As P.R. Beesack observed in [1] that, by replacing g with (−g) in (1.1), we can

also obtain the “dual” Darst-Pollard inequality

(1.3)
∫ b

a

h (t) dg (t) ≥ inf
t∈[a,b]

h (t) [g (b)− g (a)] + s (g; a, b)
b∨
a

(h)

where

(1.4) s (g; a, b) := inf
a≤α<β≤b

[g (β)− g (α)] .

Beesack also showed that the inequalities (1.1) and (1.4) remain valid even if g is
not continuous on [a, b], provided only that g is bounded on [a, b] and

∫ b

a
h (t) dg (t)

exists.
In a recent paper [6], in order to approximate the Riemann-Stieltjes integral∫ b

a
f (t) du (t) by the quadrature rule

m + M

2
[u (b)− u (a)]
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where m ≤ f (t) ≤ M for each t ∈ [a, b] , the second author defined the error
functional

∆ (f, u,m,M ; a, b) :=
∫ b

a

f (t) du (t)− m + M

2
[u (b)− u (a)]

and showed that

(1.5) |∆ (f, u,m,M ; a, b)| ≤



1
2 (M −m)

∨b
a (u)

if u is of bounded variation;

1
2 (M −m) L (b− a)

if f is L− Lipschitzian;∫ b

a

∣∣f (t)− m+M
2

∣∣ du (t)
if u is monotonic nondecreasing.

The constant 1
2 is the best possible in both inequalities. The last inequality in (1.5)

is also sharp.
In the same paper [6], in order to approximate the integral

∫ b

a
f (t) du (t) in terms

of the generalised trapezoid rule[
u (b)− n + N

2

]
f (b) +

[
n + N

2
− u (a)

]
f (a) ,

the second author introduced the error functional

∇ (f, u, n, N ; a, b) :=
[
u (b)− n + N

2

]
f (b)+

[
n + N

2
− u (a)

]
f (a)−

∫ b

a

f (t) du (t) ,

where −∞ < n ≤ u (t) ≤ N < ∞ for t ∈ [a, b] and showed that

(1.6) |∇ (f, u, n, N ; a, b)| ≤



1
2 (N − n)

∨b
a (f)

if f is of bounded variation;

1
2 (N − n) K (b− a)

if f is K − Lipschitzian;∫ b

a

∣∣u (t)− n+N
2

∣∣ df (t)
if f is monotonic nondecreasing.

The constant 1
2 is the best possible in (1.6) and the last inequality is sharp.

In this paper, by use of the Beesack-Darst-Pollard inequalities (1.1) and (1.3),
we provide other error bounds for the functionals ∆ and ∇. Applications for the
generalised trapezoid and Ostrowski inequalities are also given.

2. The Results

We can state the following result concerning the error bounds for the error func-
tional ∆ (f, u,m,M ; a, b) .

Theorem 1. Let f : [a, b] → R be a function of bounded variation and assume that

(2.1) −∞ < m = inf
t∈[a,b]

f (t) , sup
t∈[a,b]

f (t) = M < ∞.
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If u is bounded and the Riemann-Stieltjes integral
∫ b

a
f (t) du (t) exists, then

|∆ (f, u,m,M ; a, b)| ≤ min

{
b∨
a

(f) · S (u; a, b)− 1
2

(M −m) [u (b)− u (a)] ,(2.2)

1
2

(M −m) [u (b)− u (a)]−
b∨
a

(f) · s (u; a, b)

}

≤ 1
2
·

b∨
a

(f) [S (u; a, b)− s (u; a, b)] .

The constant 1
2 is the best possible and the inequalities are sharp.

Proof. If we apply the inequality (1.3) for h (t) = f (t) , g (t) = u (t) , we can write,

(2.3)
∫ b

a

f (t) du (t) ≥ m [u (b)− u (a)] + s (u; a, b)
b∨
a

(f) .

If we apply the same inequality (1.3) for h (t) = M − f (t) and g (t) = u (t) , we get

(2.4) M [u (b)− u (a)]−
∫ b

a

f (t) du (t) ≥ s (u; a, b)
b∨
a

(f)

since, obviously,
∨b

a (M − f) =
∨b

a (f) .
The inequalities (2.3) and (2.4) give the following double inequality that is of

interest:

M [u (b)− u (a)]− s (u; a, b) ≥
∫ b

a

f (t) du (t)(2.5)

≥ m [u (b)− u (a)] + s (u; a, b) .

Now, if we subtract from all terms the same quantity
M + m

2
[u (b)− u (a)]

we get
1
2

(M −m) [u (b)− u (a)]− s (u; a, b)(2.6)

≥
∫ b

a

f (t) du (t)− M + m

2
[u (b)− u (a)]

≥ −1
2

(M −m) [u (b)− u (a)] + s (u; a, b) ,

which is equivalent to

(2.7) |∆ (f, u, m,M ; a, b)| ≤ 1
2

(M −m) [u (b)− u (a)]− s (u; a, b) .

On utilising (1.1) we can also prove in a similar way that

(2.8) |∆ (f, u, m,M ; a, b)| ≤
b∨
a

(f) S (u; a, b)− 1
2

(M −m) [u (b)− u (a)] .

These show that the first inequality in (2.2) is valid. The second part is obvious
since for any α, β ∈ R, min (α, β) ≤ α+β

2 .
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For the sharpness of the inequality, we assume that u (t) = t, t ∈ [a, b] . Since for
this selection of u we have

S (u; a, b) = b− a and s (u; a, b) = 0,

hence the inequality (2.3) becomes∣∣∣∣∣
∫ b

a

f (t) du (t)− M + m

2
(b− a)

∣∣∣∣∣(2.9)

≤ min

{
(b− a)

b∨
a

(f)− 1
2

(M −m) (b− a) ,
1
2

(M −m) (b− a)

}

≤ 1
2

b∨
a

(f) (b− a) .

If we consider the function f0 : [a, b] → R,

f0 (t) =

 0 if t ∈ [a, b] ;

k if t = b,

where k > 0, then obviously m = 0, M = k,
∫ b

a
f0 (t) dt = 0,

∨b
a (f0) = k and in all

parts of (2.9) we get the same quantity 1
2k (b− a) .

The following corollary that provides error bounds for the error functional∇ (f, u, n, N ; a, b)
can be stated as well.

Corollary 1. Let u : [a, b] → R be a function of bounded variation such that there
exist the constants n, N with

(2.10) −∞ < n = inf
t∈[a,b]

u (t) , sup
t∈[a,b]

u (t) = N < ∞.

If f is bounded and the Riemann-Stieltjes integral
∫ b

a
f (t) du (t) exists, then

|∇ (f, u, n, N ; a, b)| ≤ min

{
b∨
a

(u) S (f ; a, b)− 1
2

(N − n) [f (b)− f (a)] ,(2.11)

1
2

(N − n) [f (b)− f (a)]−
b∨
a

(u) s (f ; a, b)

}

≤ 1
2

b∨
a

(u) [S (f ; a, b)− s (f ; a, b)] .

The constant 1
2 is the best possible and the inequalities are sharp.

Proof. Follows by Theorem 1 on utilising the identity

f (b)
[
u (b)− n + N

2

]
+ f (a)

[
n + N

2
− u (a)

]
−

∫ b

a

f (t) du (t)

=
∫ b

a

[
u (t)− n + N

2

]
df (t)

=
∫ b

a

u (t) df (t)− n + N

2
[f (b)− f (a)] .
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The details are omitted.

The following particular cases of Theorem 1 may be of interest in applications.

Corollary 2. Assume that f : [a, b] → R is as in Theorem 1. If u : [a, b] → R is of
the r −H−Hölder type, i.e.,

(2.12) |u (t)− u (s)| ≤ H |t− s|r for any t, s ∈ [a, b] ,

where H > 0 and s ∈ (0, 1] are given, then

|∆ (f, u,m,M ; a, b)|(2.13)

≤ min

{
H (b− a)r

b∨
a

(f)− 1
2

(M −m) [u (b)− u (a)] ,

1
2

(M −m) [u (b)− u (a)] + H (b− a)r
b∨
a

(f)

}

≤ H (b− a)r
b∨
a

(f) .

Proof. For any a ≤ α < β ≤ b we have, by (2.12), that

−H (β − α)r ≤ u (β)− u (s) ≤ H (β − α)r
.

This implies that

S (u; a, b) ≤ sup
a≤α<β≤b

[H (β − α)r] = H (b− a)r

and

s (u; a, b) ≥ inf
a≤α<β≤b

[−H (β − α)r] = − sup
a≤α<β≤b

[H (β − α)r]

= −H (b− a)r
.

Utilising (2.2) we deduce the desired inequality (2.13).

Corollary 3. Assume that f is as in Theorem 1. If u : [a, b] → R is monotonic non-
decreasing and such that the Riemann-Stieltjes integral

∫ b

a
f (t) du (t) exists, then

|∆ (f, u, m,M ; a, b)|(2.14)

≤ min

{
b∨
a

(f)− 1
2

(M −m) ,
1
2

(M −m)

}
[u (b)− u (a)]

≤ 1
2

[u (b)− u (a)]
b∨
a

(f) .

The proof is obvious by Theorem 1 on taking into account that for the monotonic
nondecreasing function u : [a, b] → R we have:

S (u; a, b) = u (b)− u (a)

and
s (u; a, b) = 0.
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3. Applications

The following inequality obtained in [2] is known as the trapezoid inequality for
functions of bounded variation:

(3.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− f (a) + f (b)
2

∣∣∣∣∣ ≤ 1
2

b∨
a

(f) ,

where the constant 1
2 is best possible in the sense that it cannot be replaced by a

smaller constant.
The following trapezoid inequality for the larger class of Riemann integrable

functions can be stated:

Proposition 1. Let f : [a, b] → R be Riemann integrable on [a, b] , then:∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− f (a) + f (b)
2

∣∣∣∣∣(3.2)

≤ min
{

S (f ; a, b)− 1
2

[f (b)− f (a)] ,
1
2

[f (b)− f (a)]− s (f ; a, b)
}

≤ 1
2

[S (f ; a, b)− s (f ; a, b)] .

Proof. We use the following identity holding for the Riemann integrable function
f : [a, b] → R:

(3.3) f (b) (b− x) + f (a) (x− a)−
∫ b

a

f (t) dt =
∫ b

a

(t− x) df (t)

for any x ∈ [a, b] , see [2].
We observe that supt∈[a,b] (t− x) = b− a, inft∈[a,b] (t− x) = a− x, for x ∈ [a, b]

and, applying Theorem 1 for the Stieltjes integral
∫ b

a
(t− x) df (t) , x ∈ [a, b] , we

obtain: ∣∣∣∣∣
∫ b

a

(t− x) df (t)−
(

a + b

2
− x

)
[f (b)− f (a)]

∣∣∣∣∣(3.4)

≤ min

{
b∨
a

(· − x) S (f ; a, b)− 1
2

(b− a) [f (b)− f (a)] ,

1
2

(b− a) [f (b)− f (a)]−
b∨
a

(· − x) s (f ; a, b)

}

≤ 1
2

b∨
a

(· − x) [S (f ; a, b)− s (f ; a, b)] .

On utilising the identity (3.3) and the fact that
∨b

a (· − x) = b− a, we deduce from
(3.4) the desired result (3.2).

In [5], S.S. Dragomir obtained the following Ostrowski type inequality for func-
tions of bounded variation:

(3.5)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
2

+

∣∣x− a+b
2

∣∣
b− a

]
b∨
a

(f) ,
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for any x ∈ [a, b] . The constant 1
2 is the best possible in (3.5).

The best inequality one can obtain from (3.5) is the mid-point inequality :

(3.6)

∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1
2

b∨
a

(f) ,

for which 1
2 is also the best possible constant.

In order to extend (3.5) to the larger class of Riemann integrable functions, we
can state:

Proposition 2. Let f : [a, b] → R be Riemann integrable on [a, b] , then:∣∣∣∣∣f (x)−
(

x− a + b

2

)
· f (b)− f (a)

b− a
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(3.7)

≤ min
{

S (f ; a, b)− 1
2

[f (b)− f (a)] ,
1
2

[f (b)− f (a)]− s (f ; a, b)
}

≤ 1
2

[S (f ; a, b)− s (f ; a, b)] .

Proof. We use the Montgomery type identity [5] for the Riemann integrable function
f : [a, b] → R: ∫ b

a

p (t, x) df (t) = f (x) (b− a)−
∫ b

a

f (t) dt

for any x ∈ [a, b] , where the kernel p : [a, b]2 → R is defined by

p (t, x) :=

 t− a if t ∈ [a, x] ,

t− b if t ∈ (x, b].

For any fixed x ∈ [a, b] , the function p (·, x) is of bounded variation, and
b∨
a

p (·, x) =
x∨
a

p (·, x) +
b∨
x

p (·, x)

= x− a + b− x = b− a.

Also, observe that

sup
t∈[a,b]

p (t, x) = x− a and inf
t∈[a,b]

p (t, x) = x− b

for any x ∈ [a, b] .
Now, applying Theorem 1 for the Riemann-Stieltjes integral

∫ b

a
p (t, x) df (t), we

can write that∣∣∣∣∣
∫ b

a

p (t, x) df (t)−
(

x− a + b

2

)
· [f (b)− f (a)]

∣∣∣∣∣
≤ (b− a)min

{
S (f ; a, b)− 1

2
[f (b)− f (a)] ,

1
2

[f (b)− f (a)]− s (f ; a, b)
}

≤ 1
2

[S (f ; a, b)− s (f ; a, b)] ,

which is clearly equivalent to (3.2).

The following mid-point inequality holds.
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Corollary 4. Let f be as in Proposition 2, then∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(3.8)

≤ min
{

S (f ; a, b)− 1
2

[f (b)− f (a)] ,
1
2

[f (b)− f (a)]− s (f ; a, b)
}

≤ 1
2

[S (f ; a, b)− s (f ; a, b)] .
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