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ON SOME INEQUALITIES OF
CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE AND

APPLICATIONS

S.S. DRAGOMIR AND A. SOFO

Abstract. Some discrete inequalities of Cauchy-Bunyakovsky-Schwarz type
for complex numbers with applications for the maximal deviation of a sequence

from its weighted mean are given.

1. Introduction

The following result for complex numbers ak, bk, k ∈ {1, . . . , n} is well known in
the literature as the Cauchy-Bunyakovsky-Schwarz (CBS) inequality :

(1.1)

∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣
2

≤
n∑

k=1

|ak|2
n∑

k=1

|bk|2 ,

with equality if and only if there is a complex number c ∈ C such that ak = cbk for
each k ∈ {1, . . . , n} , and bk is the complex conjugate of bk.

A simple proof of this statement can be achieved by utilising the following La-
grange identity for complex numbers (see [2, p. 3])

n∑
k=1

|ak|2
n∑

k=1

|bk|2 −

∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣
2

=
1
2

n∑
k,l=1

|akbl − albk|2 .

If pk, k ∈ {1, . . . , n} are positive weights, then the weighted version of (1.1) can
be stated as

(1.2)

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

≤
n∑

k=1

pk |ak|2
n∑

k=1

pk |bk|2 .

In [4], the following result connecting the unweighted version of the (CBS) in-
equality with the weighted one has been established (see also [2, p. 67 – 69]):

(1.3)

(
n∑

k=1

|xk|2
n∑

k=1

|yk|2
) 1

2

−

∣∣∣∣∣
n∑

k=1

xkyk

∣∣∣∣∣
= sup

p∈Sn(1)

{
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2 −

∣∣∣∣∣
n∑

k=1

pkxkyk

∣∣∣∣∣
}

,

where Sn (1) = {p = (p1, . . . , pn) |0 ≤ pk ≤ 1 for each k ∈ {1, . . . , n}} .
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In the same paper the authors also established the following result concerning
the length of summation in the CBS inequality:

(1.4)

(
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2
) 1

2

−

∣∣∣∣∣
n∑

k=1

pkxkyk

∣∣∣∣∣
= sup

I⊆{1,...,n}

(∑
k∈I

pk |xk|2
∑
k∈I

pk |yk|2
) 1

2

−

∣∣∣∣∣
n∑

k=1

pkxkyk

∣∣∣∣∣


and

(1.5)

(
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2
) 1

2

−

∣∣∣∣∣
n∑

k=1

pkxkyk

∣∣∣∣∣
≥ max

1≤k<l≤n

{[
pk |xk|2 + pl |xl|2

] 1
2
[
pk |yk|2 + pl |yl|2

] 1
2 − |pkxkyk + plxlyl|

}
,

for any xk, yk ∈ C, k ∈ {1, . . . , n} .
For some historical facts on CBS inequality, see [9] and [2]. Refinements of this

inequality are provided in [1], [6], [8] and in the Chapter 2 of [2]. Other results
related to CBS inequality may be found in [5] and [7].

The aim of the present paper is to establish some inequalities of CBS type under
the supplementary assumption that either

∑n
k=1 xkyk = 0 or

∑n
k=1 pkxkyk = 0,

when the weighted version is considered. Applications that provide upper bounds
for the maximal deviation of a sequence xk from the weighted mean

∑n
j=1 pjxj ,

namely, for the quantity

(1.6) max
k∈{1,...,n}

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣ ,
where xk ∈ C, pk ≥ 0, k ∈ {1, . . . , n} ,

∑n
k=1 pk = 1, are also given.

2. The Results

The following result holds:

Theorem 1. Let ak, bk ∈ C, k ∈ {1, . . . , n} , n ≥ 2 with the property that

(2.1)
n∑

k=1

akbk = 0.

Then

(2.2) max
i∈{1,...,n}

{|aibi|} ≤
1
2

(
n∑

k=1

|ak|2
) 1

2
(

n∑
k=1

|bk|2
) 1

2

.

The constant 1
2 in (2.2) is best possible in the sense that it cannot be replaced by a

smaller constant.

Proof. For any i ∈ {1, . . . , n} , we have

(2.3) aibi = −
n∑

k=1
k 6=i

akbk.
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Taking the modulus in (2.3) we have

|aibi| =

∣∣∣∣∣∣∣
n∑

k=1
k 6=i

akbk

∣∣∣∣∣∣∣ ≤
 n∑

k=1
k 6=i

|ak|2


1
2
 n∑

k=1
k 6=i

|bk|2


1
2

(2.4)

=

(
n∑

k=1

|ak|2 − |ai|2
) 1

2
(

n∑
k=1

|bk|2 − |bi|2
) 1

2

,

for any i ∈ {1, . . . , n} , where we used the Cauchy-Bunyakovsky-Schwarz inequality
to state the required inequality in (2.4).

Utilising the elementary inequality for real numbers(
α2 − β2

) 1
2
(
γ2 − δ2

) 1
2 ≤ αγ − βδ,

provided α, β, γ, δ > 0 and α ≥ β, γ ≥ δ, we have(
n∑

k=1

|ak|2 − |ai|2
) 1

2
(

n∑
k=1

|bk|2 − |bi|2
) 1

2

(2.5)

=


( n∑

k=1

|ak|2
) 1

2
2

− |ai|2


1
2

( n∑

k=1

|bk|2
) 1

2
2

− |bi|2


1
2

≤

(
n∑

k=1

|ak|2
) 1

2
(

n∑
k=1

|bk|2
) 1

2

− |aibi| ,

for each i ∈ {1, . . . , n} .
Now, on making use of (2.4) and (2.5) we get the desired inequality (2.2).
To prove the sharpness of the constant, we assume that the inequality (2.2) holds

true for a constant C > 0, i.e.,

(2.6) max
i∈{1,...,n}

|aibi| ≤ C

(
n∑

k=1

|ak|2
) 1

2
(

n∑
k=1

|bk|2
) 1

2

,

provided ak, bk, k ∈ {1, . . . , n} (n ≥ 2) are complex numbers such that
∑n

k=1 akbk =
0.

Now, for n = 2, choose a1 = a, a2 = −b, b1 = b, b2 = −a with a, b > 0. Then
a1b1 + a2b2 = 0, |a1b1| = |a2b2| = ab and by (2.6) we get

(2.7) ab ≤ C
(
a2 + b2

)
for a, b > 0.

Choosing in (2.7) a = b = 1, we deduce C ≥ 1
2 and the proof is complete.

The following corollary is of interest.

Corollary 1. Let xk ∈ C, k ∈ {1, . . . , n} and pk, k ∈ {1, . . . , n} be a probabil-
ity sequence, i.e., pk ≥ 0, k ∈ {1, . . . , n} and

∑n
k=1 pk = 1. Then we have the
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inequality:

max
i∈{1,...,n}

pi

∣∣∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣∣∣
 ≤ 1

2

(
n∑

k=1

p2
k

) 1
2

 n∑
k=1

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣
2


1
2

(2.8)

=
1
2

(
n∑

k=1

p2
k

) 1
2


n∑

k=1

|xk|2 + n

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

− 2 Re

( n∑
k=1

xk

) n∑
j=1

pjxj


1
2

.

Proof. If we choose ak = pk, bk := xk −
∑n

j=1 pjxj , then

n∑
k=1

akbk =
n∑

k=1

pk

xk −
n∑

j=1

pjxj

 = 0

and the condition (2.1) is satisfied.
Applying the inequality (2.2), we obtain

max
i∈{1,...,n}

pi

∣∣∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣∣∣


≤ 1
2

(
n∑

k=1

p2
k

) 1
2

 n∑
k=1

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣
2


1
2

=
1
2

(
n∑

k=1

p2
k

) 1
2

 n∑
k=1

|xk|2 − 2 Re

 n∑
k=1

xk ·
n∑

j=1

pjxj

+ n

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2


1
2

and the inequality (2.8) is obtained.

Remark 1. If mini∈{1,...,n} pi = pm > 0, then from (2.8) we can obtain a coarser
and perhaps more useful inequality, providing some upper bounds for the maximal
deviation of xk from the weighted mean

∑n
j=1 pjxj , namely,

(2.9) max
k∈{1,...,n}

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤ 1
2pm

(
n∑

k=1

p2
k

) 1
2


∣∣∣∣∣∣xk −

n∑
j=1

pjxj

∣∣∣∣∣∣
2


1
2

.

The following weighted version of Theorem 1 may be stated as well:

Theorem 2. Let xk, yk ∈ C, k ∈ {1, . . . , n} and pk, k ∈ {1, . . . , n} be a probability
sequence with the property that

(2.10)
n∑

k=1

pkxkyk = 0.
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Then

(2.11) max
i∈{1,...,n}

{pi |xiyi|} ≤
1
2

(
n∑

k=1

pk |xk|2
) 1

2
(

n∑
k=1

pk |yk|2
) 1

2

.

The constant 1
2 in (2.11) is best possible in (2.11).

Proof. It follows from Theorem 1 on choosing ak =
√

pkxk, bk =
√

pkyk.

Remark 2. One should notice that Theorem 1 and Theorem 2 are equivalent in
the sense that one implies the other.

The above result provides the opportunity to obtain a different bound for the
maximal deviation of xk from the weighted mean.

Corollary 2. With the assumptions in Corollary 1, we have the inequality:

max
i∈{1,...,n}

pi

∣∣∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣∣∣
 ≤ 1

2

 n∑
k=1

pk

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣
2


1
2

(2.12)

=
1
2

 n∑
k=1

pk |xk|2 −

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2


1
2

.

Proof. Follows by Theorem 2 on choosing yk = 1, k ∈ {1, . . . , n} .

Remark 3. If mini∈{1,...,n} pi = pm > 0, then

(2.13) max
i∈{1,...,n}

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤ 1
2pm

 n∑
k=1

pk

∣∣∣∣∣∣xk −
n∑

j=1

pjxj

∣∣∣∣∣∣
2


1
2

.

Remark 4. It is natural to ask which of the bounds for the maximal deviation

max
i∈{1,...,n}

pi

∣∣∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣∣∣


provided by (2.8) and (2.12) are better and when, respectively?
For n = 2, let p1 = p, p2 = 1 − p, p ∈ [0, 1] , x1 = x, x2 = y, then we have the

specific case of

B1 (p, x, y) :=
1
2

[
p2 + (1− p)2

] 1
2
[
(x− px− (1− p) y)2 + (y − px− (1− p) y)2

] 1
2

=
1
2

[
p2 + (1− p)2

] 1
2
[
(1− p)2 (x− y)2 + p2 (x− y)2

] 1
2

=
1
2
·
[
p2 + (1− p)2

]
|x− y|
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and

B2 (p, x, y) :=
1
2

[
p (x− px− (1− p) y)2 + (1− p) (y − px− (1− p) y)2

] 1
2

=
1
2

[
p (1− p)2 (x− y)2 + (1− p) p2 (x− y)2

] 1
2

=
1
2
·
√

p (1− p) |x− y| .

Since p2 + (1− p)2 ≥
√

p (1− p) for p ∈ [0, 1] , we have that the bound (2.12) is
always better than (2.8) for n = 2.

Remark 5. For n = 3, p1 = p, p2 = q, p3 = r, x1 = x, x2 = y, x3 = z, we should
compare the bounds

B1 (p, q, r, x, y, z) =
1
2
(
p2 + q2 + r2

) 1
2 ×

[
p (x− px− qy − rz)2

+ q (y − px− qy − rz)2 + r (z − px− qy − rz)2
] 1

2

and

B1 (p, q, r, x, y, z) =
1
2

[
p (x− px− qy − rz)2

+ q (y − px− qy − rz)2 + r (z − px− qy − rz)2
] 1

2
.

The plot of the function

∆ (0.1, 0.5, 0.4, x, y,−4) = B1 (0.1, 0.5, 0.4, x, y,−4)−B2 (0.1, 0.5, 0.4, x, y,−4)

on the box [0, 6] × [8, 10] shows that one bound is not always better the other (see
Figure 1):

Remark 6. In the case of uniform distribution, i.e., when pi = 1
n , i ∈ {1, . . . , n} ,

we obtain from both inequalities (2.8) and (2.12) the same result:

max
k∈{1,...,n}

∣∣∣∣∣∣xk −
1
n

n∑
j=1

xj

∣∣∣∣∣∣ ≤ 1
2
√

n
n∑

k=1

∣∣∣∣∣∣xk −
1
n

n∑
j=1

xj

∣∣∣∣∣∣
2

(2.14)

=
1
2

n

n∑
k=1

|xk|2 −

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣
2
 1

2

.

3. Related Results

The following result may be stated as well.

Theorem 3. Let ak, bk ∈ C\ {0} , k ∈ {1, . . . , n} so that
∑n

k=1 akbk = 0. Then for
any probability sequence pk, k ∈ {1, . . . , n}, we have:

(3.1)

∑n
j=1 pj |aj |2∑n

k=1 |ak|2
+

∑n
j=1 pj |bj |2∑n

k=1 |bk|2
≤ 1.
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Figure 1. Plot of the difference ∆ (0.1, 0.5, 0.4, x, y,−4) showing
a transition from positive to negative

Proof. We know, from the proof of Theorem 1, that

|aibi|2 ≤

(
n∑

k=1

|ak|2 − |ai|2
)(

n∑
k=1

|bk|2 − |bi|2
)

=
n∑

k=1

|ak|2
n∑

k=1

|bk|2 − |ai|2 |bi|2 − |ai|2
n∑

k=1

|bk|2 − |bi|2
n∑

k=1

|ak|2 ,

which is clearly equivalent with

(3.2) |ai|2
n∑

k=1

|bk|2 + |bi|2
n∑

k=1

|ak|2 ≤
n∑

k=1

|ak|2
n∑

k=1

|bk|2

for each i ∈ {1, . . . , n} .
Now, if we multiply (3.2) by pi ≥ 0 and sum over i ∈ {1, . . . , n} , we deduce:

(3.3)
n∑

i=1

pi |ai|2
n∑

k=1

|bk|2 +
n∑

i=1

pi |bi|2
n∑

k=1

|ak|2 ≤
n∑

k=1

|ak|2
n∑

k=1

|bk|2

which is clearly equivalent with (3.1).

Corollary 3. With the assumptions of the above theorem, we have:

(3.4)
n∑

i=1

pi |ai|2
n∑

i=1

pi |bi|2 ≤
1
4

n∑
k=1

|ak|2
n∑

k=1

|bk|2 .

The constant 1
4 is best possible in (3.4).
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Proof. On utilising the inequality α2 + β2 ≥ 2αβ, α, β ∈ R+, we have

(3.5)
n∑

j=1

pj |aj |2
n∑

k=1

|bk|2 +
n∑

j=1

pj |bj |2
n∑

k=1

|ak|2

≥ 2

 n∑
j=1

pj |aj |2
n∑

j=1

pj |bj |2
 1

2 ( n∑
k=1

|ak|2
n∑

k=1

|bk|2
) 1

2

.

Now, by (3.3) and (3.5) we deduce the desired inequality (3.4).
To prove the sharpness of the constant, we assume that (3.4) holds true with a

D > 0, i.e.,
n∑

j=1

pj |aj |2
n∑

j=1

pj |bj |2 ≤ D
n∑

k=1

|ak|2
n∑

k=1

|bk|2 ,

provided
∑n

k=1 akbk = 0, n ≥ 2.
For n = 2, we choose a1 = a, a2 = −b, b1 = b, b2 = −a and p1 = p, p2 = 1 − p

to get:

(3.6)
[
pa2 + (1− p) b2

] [
pb2 + (1− p) a2

]
≤ D

[
a2 + b2

]2
.

If in (3.6) we choose p = 1
2 , then we get

1
4
(
a2 + b2

)2 ≤ D
(
a2 + b2

)2
,

which shows that D ≥ 1
4 .

Corollary 4. Let xk ∈ C, k ∈ {1, . . . , n} and pk, k ∈ {1, . . . , n} be a probability
sequence. Then:

n∑
k=1

pk |xk|2 −

∣∣∣∣∣
n∑

k=1

pkxk

∣∣∣∣∣
2

=
n∑

j=1

pj

∣∣∣∣∣xj −
n∑

l=1

plxl

∣∣∣∣∣
2

≤ 1
4
·
∑n

k=1 p2
k∑n

k=1 p3
k

n∑
k=1

∣∣∣∣∣xk −
n∑

l=1

plxl

∣∣∣∣∣
2

.

Proof. It is obvious by (3.4) on choosing ak = pk and bk = xk −
∑n

l=1 plxl, k ∈
{1, . . . , n} .

The following result that provides a refinement of Theorem 2 should be noted.

Theorem 4. Let xk, yk ∈ C, k ∈ {1, . . . , n} and pk, k ∈ {1, . . . , n} be a probability
sequence with the property that

(3.7)
n∑

k=1

pkxkyk = 0.
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Then

max
i∈{1,...,n}

{pi |xiyi|}(3.8)

≤ 1
2
·

max
i∈{1,...,n}

[
pi |xi|2

n∑
k=1

pk |yk|2 + pi |yi|2
n∑

k=1

pk |xk|2
]

(
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2
) 1

2

≤ 1
2
·

(
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2
) 1

2

.

Proof. As in the proof of Theorem 1, we have

pi |xiyi| ≤

(
n∑

k=1

pk |xk|2 − pi |xi|2
) 1

2
(

n∑
k=1

pk |yk|2 − pi |yi|2
) 1

2

,

which gives

p2
i |xiyi|2 ≤

(
n∑

k=1

pk |xk|2 − pi |xi|2
)(

n∑
k=1

pk |yk|2 − pi |yi|2
)

=
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2 + p2
i |xi|2 |yi|2 − pi |xi|2

n∑
k=1

pk |yk|2

− pi |yi|2
n∑

k=1

pk |xk|2 ,

i.e.,

(3.9) pi |xi|2
n∑

k=1

pk |yk|2 + pi |yi|2
n∑

k=1

pk |xk|2 ≤
n∑

k=1

pk |xk|2
n∑

k=1

pk |yk|2

for each i ∈ {1, . . . , n} .
Taking the maximum in (3.9) over i ∈ {1, . . . , n} , we get the second inequality

in (3.8).
The first inequality follows by the elementary fact that

pi |xi|2
n∑

k=1

pk |yk|2 + pi |yi|2
n∑

k=1

pk |xk|2

≥ 2pi |xi| |yi|

(
n∑

k=1

pk |xk|2
) 1

2
(

n∑
k=1

pk |yk|2
) 1

2

,

for each i ∈ {1, . . . , n} .

Remark 7. The inequality (3.8) is obviously a refinement of the inequality (2.11)
in Theorem 2. However, the inequality (3.8) is not apparently useful in deriving
upper bounds for the maximal deviation of xk from its weighted mean

∑n
j=1 pjxj ,

as the inequality (2.11).
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