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NEW UPPER BOUNDS IN THE SECOND KERSHAW’S DOUBLE
INEQUALITY AND ITS GENERALIZATIONS

FENG QI AND SENLIN GUO

ABSTRACT. In the paper, new upper bounds in the second Kershaw’s double
inequality and its generalizations involving the gamma, psi and polygamma

functions are established, some known results are refined.

1. INTRODUCTION

It is well known that

b—a
G(a,b) = Vab, L(a,b) = nb—Ina (1)
1 bb 1/(b—(l) a + b
rav =7 (%) Awt) = ©)

for positive numbers a and b with a # b are called respectively the geometric mean,
the logarithmic mean, the identric or exponential mean and the arithmetic mean

and that inequalities
G(a,b) < L(a,b) < I(a,b) < A(a,b) (3)

are valid. See [4, 20] and the references therein.

In [10], the following two double inequalities were established:

s\'"* Tx+1) 1 "
(++3) <r<ac+s><<9”2+ ”4) | v
exp[(l—s)w(x+\/§)]<m<exp {(1—s)¢<x+ 3;—1)}7 (5)

where 0 < s < 1, x > 1, T stands for the classical Euler’s gamma function, v

denotes the logarithmic derivative of ', and () for i € N are called the polygamma
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functions. Inequalities (4) and (5) are called in the literature the first and second
Kershaw’s double inequality respectively.

In [2, Theorem 2.7], the second Kershaw’s double inequality (5) was generalized
and extended as follows:

5 @l = )
T—y

—| D (A, ) > =[O (L (g2 (2,9)

, (6)

where x and y are positive numbers and n is a positive integer.
Recently, the following generalization, extension and refinement of the second
Kershaw’s double inequality (5)) was obtained in [16]: For s,t € R with s # ¢, the

function
[(z+ s) /(s=t) 1 .
T(x+1) O (L(s ) (7)

is decreasing in « > —min{s,t}. In particular, for s,t € R and = > —min{s, ¢}
with s # t,

L) F(m +5) < VAt (8)

I'(z+1)
where L(s,t;x) = L(x + s,z + t) and A(s,t;x) = A(x + s,z + t) for s,t € R and

] 1/(s—t)

x > —min{s,t} with s # t.

There have been a lot of literature about Kershaw’s two double inequalities and
their history, background, refinements, extensions, generalizations and applications.
For more information, please refer to [5} [7, 8, 9, [1T), 12| 13 14} 15} 21| 22 23] 24,
20, 28, 131), 133] and the references therein.

The aim of this paper is to refine the right hand side inequality in (8) and the
left hand side inequality in (6]). These results refine, extend and generalize the right
hand side inequality in the second Kershaw’s double inequality (5)).

The main results of this paper are the following theorems.

Theorem 1. For s,t € R with s #t and x > — min{s, t}, inequality

1/(s—t)
[z +5) < e¥U(s:t2) (9)
I(x+1t) -

holds, where I(s,t;x) = I(x + s,z + t).

Theorem 2. For s,t € R with s #t and x > — min{s, t}, inequality

()" [p" V(@ +5) — V(@ + 1)]
s—1

< (=)™ (I(s, t; ), (10)

holds, where I(s,t;x) = I(x + s,z +t) and n € N.
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In Section 2, a key and necessary lemma is presented. In Section 3, a simple
method and polished techniques are employed to verify Theorem 1/ and Theorem 2.
In Section |4, some remarks on Theorem 1/ and Theorem 2, the first and second Ker-
shaw’s double inequalities (4) and (5)), the (logarithmically) complete monotonicity

of mean values and two conjectures are given.

2. A LEMMA
In order to prove our theorems, the following lemma is key and necessary.

Lemma 1. For positive numbers a and b with a # b, inequality

E)l)a/a PO () du < (=1)9D (I(a, b)) (11)

is wvalid for all nonnegative integer i, where I(a,b) stands for the exponential or

identric mean.

Proof. Tt was obtained in [6] (see also [4, p. 274, Lemma 2]) that if ¢ is strictly

1

monotonic, f is strictly increasing and f o ¢g~! is convex (or concave, respectively)

on an interval I, then

o (i [owan) <7 (2 [ rwa) (12)

holds (or reverses, respectively) for s,t € I. It is easy to see that the functions

f(z) = (=1)"p@(z) for i > 0 and g(x) = Inz are strictly increasing and ¢~ (z) =

e”. Direct computation gives

gt ( = () du) — I(s,1), (13)

t—s

h(z) & fog™! () = (=1)"¢1 (e7) (14)

and
h”(x) — (_1)iez [,(/)(i+1) (ez) + ezw(i-&-Q) (ez)} — (_1)iu[w(i+l)<u) + uw(i+2)(u)}’

where u = e”. It was proved in [32] that the function x|y (z)| — a|y®(z)|
is completely monotonic in (0,00) if and only if 0 < o« < ¢ € N. This implies
h'(z) <0in (0,00). Consequently, the function h(z) is concave for all nonnegative
integers ¢ > 0. Thus, the conditions of the reversed inequality of (12) are satisfied
by taking f(z) = (=1)4®(z) and g(x) = Inz for i > 0. This leads to (11). The

proof of Lemma (1l is complete. O
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3. PROOFS OF THEOREMS

Now we are in a position to prove simply and elegantly our main results stated

in Section (1.
Proof of Theorem 1. Let

for s,t € R with s # ¢t and x > —min{s,¢}. Taking logarithm of F,(z) and using
the mean value theorem yields
- WnI(z+s)—InT(z+1)

s—t

/tsw(x+u) du.

InF, (z) =9 (I(s,t;x))

1
s—t

Applying inequality (11) to ¢ = 0 and both a =  + s and b = = + ¢ shows that
InFs;(x) > 0 and F4(z) > 1 which is equivalent to (9)). The proof of Theorem (1

is complete. [l

Proof of Theorem[2. Inequality (6) can be rewritten as

- t

which follows from inequality (11)). The proof of Theorem 2! is complete. ([

4. REMARKS

Remark 1. Since I(a,b) < A(a,b) for positive numbers a and b with a # b, in-
equality (9) refines the right hand side inequalities in (5) and (8)). This means that
Theorem (1] refines, extends and generalizes the right hand side inequality in the
second Kershaw’s double inequality (5)).

By the same argument, it is easy to see that inequality (10) refines the left hand
side inequality in (6)).

Remark 2. The case of n =1 in inequality (10)) is not included in [2, Theorem 2.7].

Remark 3. Recently, the following sufficient and necessary conditions are presented
in [28]: For real numbers a, b, ¢ and p = min{a, b, ¢}, the function

b—a F(JJ + a)

Hypeolx)=(x+c¢) m

(16)
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is logarithmically completely monotonic in = € (—p,00) if and only if (a,b,c) €
{(a,b,¢) : (b—a)(1 —a—b+2c) > 0}N{(a,b,c): (b—a)(la—b] —a—b+2c) >
0} \ {(a,b,¢) :a =c+1=>b+1}\{(a,b,c) : b =c+1 = a+ 1}, and the
function Hy 4 () is logarithmically completely monotonic in (—p, 0o) if and only if
(a,b,¢) € {(a,b,¢) : (b—a)(1—a—b+2¢c) < 0}N{(a,b,c) : (b—a)(la—b|—a—b+2c) <
0}\ {(a,b,¢) :b=c+1=a+1}\{(a,b,c) :a=c+1=0>b+1}. From this, the
best bounds in the first Kershaw’s double inequality (4) can be deduced.

Remark 4. Recall 25,127, 29] 30] that a function f is said to be logarithmically com-
pletely monotonic on an interval I if its logarithm In f satisfies (—1)%[In f(x)]®) > 0
for k € N on I. Recall also [I] that if f*)(z) for some nonnegative integer k is com-
pletely monotonic on an interval I, but f (kfl)(x) is not completely monotonic on
I, then f(z) is called a completely monotonic function of k-th order on an interval
I. Tt has been proved in [3, 17, 25| 27] that a logarithmically completely monotonic
function on an interval I must be completely monotonic on I. The logarithmically
completely monotonic functions have close relationships with both the completely
monotonic functions and Stieltjes transforms. For detailed information, please refer
to [3, [17, [18, [30, [34] and the references therein.

In [19], it was proved that the logarithmic mean L(s,¢; x) is a completely mono-
tonic function of first order in x > — min{s, ¢} for s,t € R with s # ¢. By standard
argument, it is easy to verify that the reciprocal of the identric mean I(s,t;x) is

logarithmically completely monotonic in > — min{s, ¢} for s,¢ € R with s # ¢.

Remark 5. Formula (13) gives an integral representation of the exponential or

identric mean I(s,t) for positive numbers s and ¢ as follows:

I(s,t) = exp <t_1s /: 1nudu> (17)

which is not found in the book [4]. From this, it is easy to obtain that the identric
mean I(s,t;x) for s,t € R and x > —min{s, t} is a completely monotonic function

of first order.

Remark 6. It is conjectured that the functions defined by (7) and (15) are loga-

rithmically completely monotonic in 2 > — min{s, ¢} for s,t € R with s # t.
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Remark 7. Let p € R and a and b be positive numbers with a # b. The generalized

logarithmic mean of order p of a and b is defined [4, p. 385] by

pp+l _ gpt1 1M/P
- - —1.0:
[(p+1><b—a>] PR
b—a
Lp(a,b) = m, p= —1, (18)
1 bb 1/(b—a)
() S

Let Ly(s,t;x) = Lp(z + s,z +t) for s,t € R and > —min{s,t} with s # ¢. It is

natural to ask for the best number p such that the function

1
. D(s+z)]*
P(Lyp(s,t;z))
c [F(t ¥ x)} (19)

is either decreasing, or increasing, or (logarithmically) completely monotonic in z.
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