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SUMS OF POWERS AND MAJORIZATION

PENG GAO

Abstract. We study certain sequences involving sums of powers of positive integers and in con-
nection with this, we give examples to show that power majorization does not imply majorization.

1. Introduction

Estimations of sums of powers of positive integers have important applications in the study of
lp norms of weighted mean matrices, we leave interested readers the recent papers [11] and [7] for
more details in this direction by pointing out here that an essential ingredient in [11] is the following
lemma of Levin and Stečkin [12, Lemma 1-2, p.18]:

Lemma 1.1. For an integer n ≥ 1,
n∑

i=1

ir ≥ 1
r + 1

n(n + 1)r, 0 ≤ r ≤ 1,(1.1)

n∑
i=1

ir ≥ r

r + 1
nr(n + 1)r

(n + 1)r − nr
, r ≥ 1.(1.2)

Inequality (1.2) reverses when −1 < r ≤ 1.

We note here that in the case r = 0, the expression on the right-hand side of (1.2) should be
interpreted as the limit of r → 0 of the non-zero cases and only the case r ≥ 0 for (1.2) was proved
in [12] but one checks easily that the proof extends to the case r > −1.

What we are interested in this paper is to study certain sequences involving sums of powers of
positive integers. Let a = {ai}∞i=1 be an increasing sequence of positive real numbers. We define
for any integer n ≥ 1 and any real number r,

Rn(r;a) =

(
1
n

n∑
i=1

ar
i

/
1

n + 1

n+1∑
i=1

ar
i

)1/r

, r 6= 0; Rn(0;a) =
n
√∏n

i=1 ai

n+1

√∏n+1
i=1 ai

.

For a = {i}∞i=1 being the sequence of positive integers, we write Pn(r) for Rn(r; {i}∞i=1) and we note
that for r > 0, we have the following

(1.3)
n

n + 1
= lim

r→+∞
Pn(r) < Pn(r) < Pn(0) =

n
√

n!
n+1
√

(n + 1)!
.

The left-hand side inequality above is known as Alzer’s inequality [2], and the right-hand side
inequality above is known as Martins’ inequality [14]. We refer the readers to [3], [15] and [9] for
extensions and refinements of (1.3). We point out here Alzer considered inequalities satisfied by
Pn(r) for r < 0 in [3] and he showed [3, Theorem 2.3]:

(1.4) Pn(0) ≤ Pn(r) ≤ lim
r→−∞

Pn(r) = 1.
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Bennett [6] proved that for r ≥ 1,

(1.5) Pn(r) ≤ Pn(1) =
n + 1
n + 2

with the above inequality reversed when 0 < r ≤ 1. This inequality and inequalities (1.3)-(1.4)
seem to suggest that Pn(r) is a decreasing function of r. It is the goal of this paper to prove this for
r ≤ 1. We will in fact establish this more generally for all r for Rn(r;a) under certain conditions
on the sequence. We will show that the sequence a = {i}∞i=1 satisfies the condition for r ≤ 1 and
moreover, Pn(r) ≥ Pn(r′) for r′ > r, r ≤ 1. The special case r = 0 is essentially Martins’ inequality.

Our main tool in this paper is the theory of majorization and we recall that for two positive real
finite sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), x is said to be majorized by y if for
all convex functions f , we have

(1.6)
n∑

j=1

f(xj) ≤
n∑

j=1

f(yj).

We write x ≤maj y if this occurs and the majorization principle states that if (xj) and (yj) are
decreasing, then x ≤maj y is equivalent to

x1 + x2 + . . . + xj ≤ y1 + y2 + . . . + yj (1 ≤ j ≤ n− 1),
x1 + x2 + . . . + xn = y1 + y2 + . . . + yn (n ≥ 0).

We refer the reader to [4, Sect. 1.30] for a simple proof of this.
As a weaker notation, we say that x is power majorized by y if

∑n
i=1 xp

i ≤
∑n

i=1 yp
i for all real

p 6∈ [0, 1] and
∑n

i=1 xp
i ≥

∑
yp

i for p ∈ [0, 1]. We denote power majorization by x ≤p y. Clausing
[10] asked whether x ≤p y implies x ≤maj y. Although this is true for n ≤ 3, it is false in general
and counterexamples have been given in [5], [1] and [8]. Our study of Pn(r) will also allow us to
give counterexamples to Clausing’s question, which will be done in Section 3.

2. The Main Theorem

Lemma 2.1 ([13, Theorem 2.4]). If αi > 0, 1 ≤ i ≤ n and β1 ≥ β2 ≥ . . . ≥ βn > 0 and β1/α1 ≤
. . . ≤ βn/αn, then (b1, . . . , bn) ≤maj (a1, . . . , an), where ai = αi/

∑n
j=1 αj , bi = βi/

∑n
j=1 βj , 1 ≤ i ≤

n.

We now use this to establish the following

Lemma 2.2. Let r > 0 and let a = {ai}∞i=1 be an increasing sequence of positive real numbers. If
for any integer n ≥ 2, a satisfies

(2.1) (n− i)
ar

n+1−i

ar
n−i

+ 1 ≤ (n− i + 1)
ar

n+2−i

ar
n+1−i

, 1 ≤ i ≤ n− 1.

Then on writing αi = (n+1− i)ar
n+2−i + iar

n+1−i, βi = ar
n+1−i, 1 ≤ i ≤ n, we have (c1, . . . , cn) ≤maj

(b1, . . . , bn), where bi = αi/
∑n

j=1 αj , ci = βi/
∑n

j=1 βj , 1 ≤ i ≤ n.
If a satisfies

(2.2) (i + 1)
ar

i+1

ai+2
≤ 1 + i

ar
i

ar
i+1

, 1 ≤ i ≤ n− 1,

Then on writing γi = (n + 1 − i)a−r
i + ia−r

i+1, δi = a−r
i , 1 ≤ i ≤ n, we have (e1, . . . , en) ≤maj

(d1, . . . , dn), where di = γi/
∑n

j=1 γj , ei = δi/
∑n

j=1 δj , 1 ≤ i ≤ n.

Proof. As the proofs are similar, we will only prove the first assertion of the lemma here. It is
easy to check that αi > 0, 1 ≤ i ≤ n and β1 ≥ β2 ≥ . . . ≥ βn > 0. Hence it suffices to show that
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β1/α1 ≤ . . . ≤ βn/αn so that our assertion here follows from Lemma 2.1. Now for 1 ≤ i ≤ i+1 ≤ n,
we have

βi

αi
=

ar
n+1−i

(n + 1− i)ar
n+2−i + iar

n+1−i

,
βi+1

αi+1
=

ar
n−i

(n− i)ar
n+1−i + (i + 1)ar

n−i

.

From this and our assumption on the sequence, we see that βi/αi ≤ βi+1/αi+1 hold for 1 ≤ i ≤
i + 1 ≤ n and this completes the proof. �

We note here for any r > 0, there exists a sequence a so that either the condition (2.1) or (2.2)
is satisfied. For example, any positive constant sequence will work. A non-trivial example is given
in the following

Corollary 2.1. Let a = {i}∞i=1, then the first assertion of Lemma 2.2 holds for 0 < r ≤ 1 and the
second assertion of Lemma 2.2 holds for any r > 0.

Proof. As the proofs are similar, we will only prove the first assertion of the corollary here. It
suffices to check for 0 < r ≤ 1,

(2.3) (n− i)
(n + 1− i)r

(n− i)r
+ 1 ≤ (n− i + 1)

(n + 2− i)r

(n + 1− i)r
, 1 ≤ i ≤ n− 1.

Equivalently, on setting x = n− i, it suffices to show f(x + 1)− f(x) ≥ 1 for x ≥ 1 with

f(x) = x
(
1 +

1
x

)r
.

By Cauchy’s mean value theorem, we have f(x + 1)− f(x) = f ′(ξ) with x < ξ < x + 1, where

f ′(x) =
(
1 +

1
x

)r−1(
1 +

1− r

x

)
.

It is easy to see via Taylor expansion that for 0 < r ≤ 1, x > 0,(
1 +

1
x

)1−r
≤
(
1 +

1− r

x

)
.

We then deduce that f ′(x) ≥ 1 for x > 0 which completes the proof. �

Now, we are ready to prove the following

Theorem 2.1. Let r 6= 0 be any real number and let a = {ai}∞i=1 be an increasing sequence of
positive real numbers. For any positive integer n ≥ 1, let xn(n+1) to be an n(n + 1)-tuple, formed
by repeating n + 1 times each term of the n-tuple: ( ar

1
(n+1)

∑n
i=1 ar

i
, . . . , ar

n
(n+1)

∑n
i=1 ar

i
) and yn(n+1) an

n(n+1)-tuple, formed by repeating n times each term of the (n+1)-tuple: ( ar
1

n
∑n+1

i=1 ar
i

, . . . ,
ar

n+1

n
∑n+1

i=1 ar
i

),

then if a satisfies (2.1), xn(n+1) ≤maj yn(n+1) for r > 0 and if a satisfies (2.2), xn(n+1) ≤maj yn(n+1)

for r < 0.

Proof. As the proofs are similar, we will only prove the case r > 0 here. We note first that here

xn(n+1) =
(
xi(n+1)+j

)
0≤i≤n−1;1≤j≤n+1

, xi(n+1)+j =
ar

n−i

(n + 1)
∑n

i=1 ar
i

;

yn(n+1) =
(
yin+j

)
0≤i≤n;1≤j≤n

, yin+j =
ar

n+1−i

n
∑n+1

i=1 ar
i

.

It is easy to see that
∑n(n+1)

i=1 xi =
∑n(n+1)

i=1 yi and we need to show that for 1 ≤ k ≤ n(n + 1)− 1,

(2.4)
k∑

i=1

xi ≤
k∑

i=1

yi.
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It follows from Lemma 2.2 that inequality (2.4) holds for k = (n + 1)i, 1 ≤ i ≤ n. Now suppose
that there exists a k0 with (n + 1)(j − 1) < k0 < (n + 1)j for some 1 ≤ j ≤ n such that inequality
(2.4) holds for all (n + 1)(j − 1) < k < k0 but fails to hold for k0, then one must have xk0 > yk0 ,
but then one checks easily that this implies xk > yk for all k0 ≤ k ≤ (n+1)j, which in turn implies
that (2.4) fails to hold for k = (n + 1)j, a contradiction and this means such k0 doesn’t exist and
inequality (2.4) holds for every k and this completes the proof. �

Corollary 2.2. Let a = {ai}∞i=1 be an increasing sequence of positive real numbers. If it satisfies
the relation (2.1), then the function r 7→ Rn(r;a) is decreasing for r ≥ 0. If it satisfies the relation
(2.2), then the function r 7→ Rn(r;a) is decreasing for r ≤ 0.

Proof. As the proofs are similar, we will only prove the first assertion here. In this case, we may
further assume r > 0 here as the case r = 0 follows from a limiting process. Let r′ > r > 0 be fixed
and let xn(n+1) and yn(n+1) be two sequences defined as in Theorem 2.1. One then applies (1.6)
for the convex function f(u) = ur′/r to conclude that Rn(r;a) ≥ Rn(r′;a). As r, r′ are arbitrary,
this completes the proof. �

It now follows from Corollary 2.1 and 2.2 that

Corollary 2.3. The function r 7→ Pn(r) is a decreasing function of r for r ≤ 1. Moreover,
Pn(r) ≥ Pn(r′) for r′ > r, r ≤ 1.

We note here the limit case as r → 0 of Corollary 2.3 allows one to obtain Pn(0) ≥ Pn(r′), which
is essentially Martins’ inequality.

3. Power Majorization and Majorization

Our goal in this section is to give counterexamples to Clausing’s question mentioned at the end
of Section 1. To achieve this, we note here that one can easily deduce from the proof of Corollary
2.1 that inequality (2.3) reverses when r > 1, which means, if we use the notations in Lemma 2.2,
that instead of having (c1, . . . , cn) ≤maj (b1, . . . , bn), we will have (b1, . . . , bn) ≤maj (c1, . . . , cn),
where b, c are constructed as in Lemma 2.2 with respect to a = {i}∞i=1. This further implies that
for the sequences xn(n+1),yn(n+1) constructed as in Theorem 2.1 with respect to a = {i}∞i=1, we no
longer have xn(n+1) ≤maj yn(n+1) for n ≥ 2. However, if Pn(r) is a decreasing function for all r,
then xn(n+1) ≤p yn(n+1) for all n ≥ 1, which supplies counterexamples to Clausing’s question.

It therefore remains to show that there is at least one r > 1 such that Pn(r) ≥ Pn(r′) for r′ > r
and Pn(r) ≤ Pn(r′) for r′ ≤ r. To motivate our approach here, we want to first mention a further
evidence that supports Pn(r) being a decreasing function for all r. We note a result of Bennett [7,
Theorem 12], which we shall present here in a slightly general form that asserts for real numbers
α ≥ 1, β ≥ 1 and any integer n ≥ 1,

(3.1)

(∑n
i=1 iα

)(∑n
i=1 iβ

)
∑n

i=1 iα+β+1
≥

(∑n+1
i=1 iα

)(∑n+1
i=1 iβ

)
∑n+1

i=1 iα+β+1

with the above inequality reversed for α ≤ 1, β ≤ 1. One can easily supply a proof of the above
result following that of [7, Theorem 12] and we shall leave it to the reader. Bennett’s result
corresponds to the case α = β = r, or explicitly, for r ≥ 1, n ≥ 1,(∑n

i=1 ir
)2∑n

i=1 i2r+1
≥

(∑n+1
i=1 ir

)2

∑n+1
i=1 i2r+1

with the above inequality reversed for r ≤ 1.
Now for α ≥ 1, β ≥ 1, we recast inequality (3.1) as

(3.2) Pα
n (α)P β

n (β)Pn(∞) ≥ Pα+β+1
n (α + β + 1), n ≥ 1,
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where we define
Pn(∞) =

n

n + 1
.

In the case α = β = r, we note that it follows from Alzer’s inequality (the left-hand side inequality
of (1.3)) that Pn(∞) ≤ Pn(r). We then deduce from this and (3.2) that Pn(r) ≥ Pn(2r + 1) for
r ≥ 1.

Bennett’s result above motivates one to ask in general what can we say about the monotonicities
of the sequences (∑n

i=1 ir
)α

∑n
i=1 iα(r+1)−1

, n = 1, 2, 3, . . . ,

with α, r being any real numbers?
We now discuss a simple case here which in turn will allow us to achieve our initial goal in this

section. Before we proceed, we note that Bennett used what he called “the Ratio Principle” to
obtain his result above. For our purpose in this paper, one can regard “the Ratio Principle” as
being equivalent to the following lemma in [15]:

Lemma 3.1 ([15, Lemma 2.1]). Let {Bn}∞n=1 and {Cn}∞n=1 be strictly increasing positive sequences
with B1/B2 ≤ C1/C2. If for any integer n ≥ 1,

Bn+1 −Bn

Bn+2 −Bn+1
≤ Cn+1 − Cn

Cn+2 − Cn+1
.

Then Bn/Bn+1 ≤ Cn/Cn+1 for any integer n ≥ 1.

As an application of Lemma 3.1, we now show the following

Proposition 3.1. For α ≥ β ≥ 1 and any integer n ≥ 1,

P β
n (β)Pα−β

n (∞) ≤ Pα
n (α).

Proof. We need to show for any integer n ≥ 1,

nα−β
∑n

i=1 iβ

(n + 1)α−β
∑n+1

i=1 iβ
≤
∑n

i=1 iα∑n+1
i=1 iα

.

It is easy to check that the above inequality holds for n = 1. Hence by Lemma 3.1, it suffices to
show for n ≥ 1,

(n + 1)α +
(
(n + 1)α−β − nα−β

)∑n
i=1 iβ

(n + 2)α +
(
(n + 2)α−β − (n + 1)α−β

)∑n+1
i=1 iβ

≤ (n + 1)α

(n + 2)α
.

Equivalently, we need to show for n ≥ 1,(
(n + 1)α−β − nα−β

)∑n
i=1 iβ(

(n + 2)α−β − (n + 1)α−β
)∑n+1

i=1 iβ
≤ (n + 1)α

(n + 2)α
.

As β ≥ 1 here, we now apply inequality (1.5) to conclude that the above inequality will follow from
the following inequality:

(n + 1)α−β − nα−β

(n + 2)α−β − (n + 1)α−β
· n

n + 1
≤ (n + 1)α−β

(n + 2)α−β
.

We can recast the above inequality as f(1/n) ≤ f(1/(n + 1)) where

f(x) =
1
x

(
1−

( 1
1 + x

)α−β)
.
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Hence it suffices to show that f(x) is a decreasing function for 0 < x ≤ 1. Differentiation shows
that

x2f ′(x) =
(
1 + (α− β)

x

x + 1

)(
1− x

x + 1

)α−β
− 1 ≤ 0.

The last inequality follows from the observation that by Taylor expansion,(
1− x

x + 1

)β−α
≥ (α− β)

x

x + 1
.

This now completes the proof. �

It follows from Proposition 3.1 on taking α = 2r + 1 and β = s with r ≥ 1, 2r ≤ s ≤ 2r + 1 and
from (3.2) on taking α = β = r ≥ 1 that for any integer n ≥ 1,

P 2r
n (r)Pn(∞) ≥ P 2r+1

n (2r + 1) ≥ P s
n(s)P 2r−s+1

n (∞).

Similar to our discussions above, we deduce from this that Pn(r) ≥ Pn(s) for 2r ≤ s ≤ 2r+1, r ≥ 1.
As another application of Lemma 3.1, we now prove

Theorem 3.1. The sequence (∑n
i=1 i

)α∑n
i=1 i2α−1

, n = 1, 2, 3, . . . ,

is increasing for α ≥ 2 and decreasing for 1 < α < 2.

Proof. We need to show now for n ≥ 1, α ≥ 2,(∑n
i=1 i

)α∑n
i=1 i2α−1

≥

(∑n+1
i=1 i

)α

∑n+1
i=1 i2α−1

,

with the above inequality reversed when 1 < α < 2. We now use Lemma 3.1 to establish this.
When n = 1, this is equivalent to show that

g(α) = 1 + 22α−1 − 3α

is greater than or equal to 0 for α ≥ 2 and less than or equal to 0 for 1 < α < 2. It is easy to see
that g′′(α) ≥ 0 for α ≥ 1, this combined with the observation that g(1) = g(2) = 0 now establishes
our assertion above.

We now prove the theorem for the case α ≥ 2 and the case 1 < α < 2 can be proved similarly.
By Lemma 3.1, it suffices to show for α ≥ 2,

(3.3)
(n + 2)α − nα

(n + 1)α−1
≥ (n + 3)α − (n + 1)α

(n + 2)α−1
.

We define for x > 0,

f(x) =
(x + 2)α − xα

(x + 1)α−1
,

so that

f ′(x) =
α
(
(x + 2)α−1 − xα−1

)
(x + 1)− (α− 1)

(
(x + 2)α − xα

)
(x + 1)α

.

By Hadamard’s inequality, which asserts that for a continuous convex function h(x) on [a, b],

(3.4) h(
a + b

2
) ≤ 1

b− a

∫ b

a
h(x)dx ≤ h(a) + h(b)

2
,

we have for α ≥ 2,

α(x + 1)
α− 1

≤ α

α− 1
1

(x + 2)α−1 − xα−1

∫ (x+2)α−1

xα−1

x
1

α−1 dx =
(x + 2)α − xα

(x + 2)α−1 − xα−1
.
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This implies that f(x) is a decreasing function for x > 0, so that f(n) ≥ f(n + 1), which is just
(3.3) and this completes the proof. �

We note here as
n∑

i=1

i3 =
( n∑

i=1

i
)2

,

it follows from this and Theorem 3.1 that

Corollary 3.1. The sequence (∑n
i=1 i3

)α∑n
i=1 i4α−1

, n = 1, 2, 3, . . . ,

is increasing for α ≥ 1 and decreasing for 1/2 < α < 1.

As one deduces Pn(r) ≥ Pn(2r + 1) for r ≥ 1 from (3.2), it follows from Corollary 3.1 that
Pn(3) ≥ Pn(r) for r ≥ 3 and Pn(3) ≤ Pn(r′) for 1 < r′ < 3. This combined with Corollary 2.3
implies Pn(3) ≤ Pn(r′) for r′ < 3. Now our discussions above immediately imply that, for example,

x6 =
1

3(1 + 23)
(1, 1, 1, 23, 23, 23) ≤p

1
2(1 + 23 + 33)

(1, 1, 23, 23, 33, 33) = y6,

and x6 ≤maj y6 does not hold, a counterexample to Clausing’s question.

4. Further Discussions

We note here that Alzer’s inequality (the left-hand side inequality of (1.3)) can be rewritten as

(4.1)
n∑

i=1

ir ≥ n1+r(n + 1)r

(n + 1)1+r − n1+r
, r > 0.

When 0 < r ≤ 1, inequality (4.1) follows from (1.1). In fact, one checks easily via the mean value
theorem that the right-hand side expression in (1.1) is greater than or equal to the right-hand side
expression in (4.1). Similarly, when r ≥ 1, inequality (4.1) follows (1.2).

Recently, Bennett [7, Theorem 2] has shown that the sequence{ 1
n

n∑
i=1

ir
}∞

n=1

is convex for r ≥ 1 or r ≤ 0 and concave for 0 ≤ r ≤ 1. Equivalently, this is amount to assert that
[7, Theorem 10] for r ≥ 1,

n∑
i=1

ir ≥
nr(n + 1)r

(
(n + 2)r − (n + 1)r

)
nr(n + 1)r − 2nr(n + 2)r + (n + 1)r(n + 2)r

,

with the above inequality reversed when −1 < r ≤ 1, r 6= 0. He then used this to deduce that [7,
Corollary 1] for r ≥ 1,

n∑
i=1

ir ≥
nr(n + 1

2)(n + 1)r

(n + 1)r+1 − nr+1
,

with the above inequality reversed when −1 < r ≤ 1. We note that the above inequality is weaker
than inequality (1.2) for r > −1. As an example, we show here for r ≥ 1,

r

r + 1
nr(n + 1)r

(n + 1)r − nr
≥

nr(n + 1
2)(n + 1)r

(n + 1)r+1 − nr+1
.
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The above inequality now follows from Hadamard’s inequality (3.4) as

(n + 1)r+1 − nr+1

(n + 1)r − nr
=

r + 1
r

1
(n + 1)r − nr

∫ (n+1)r

nr

x
1
r dx ≥ r + 1

r
(n +

1
2
).
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1984.

[11] P. Gao, A note on Hardy-type inequalities, Proc. Amer. Math. Soc., 133 (2005), 1977-1984.
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