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SHARP INEQUALITIES OF OSTROWSKI TYPE FOR CONVEX
FUNCTIONS DEFINED ON LINEAR SPACES AND

APPLICATIONS

EDER KIKIANTY, S.S. DRAGOMIR, AND P. CERONE

Abstract. An Ostrowski type inequality for general convex functions defined
on linear spaces is generalised. Some inequalities which improve the Hermite-
Hadamard type inequality for convex functions defined on linear spaces are
derived using the obtained result. The results in normed linear spaces are
used to obtain some inequalities which are related to the given norm and
associated semi-inner products, and prove the sharpness of the constants in
those inequalities.

1. Introduction

In 1938, A. Ostrowski (see [23, p. 226]) considered the problem of estimating
the deviation of a function from its integral mean. If a function f defined on the
interval [a, b] ⊂ R is continuous, then the deviation of f at a point x ∈ [a, b] from
its integral mean 1

b−a

∫ b

a
f(x)dx can be approximated by the difference between its

maximum and minimum value. Furthermore, if f is differentiable on (a, b), and
its derivative is bounded on (a, b), that is, |f ′(x)| ≤ M for all x ∈ (a, b), then the
difference between the maximum and minimum value does not exceed (b − a)M
(however, it may reach this value) and the absolute deviation of f(x) from its
integral mean does not exceed 1

2 (b− a)M . If x is the midpoint of the interval (that
is x = a+b

2 ), then the absolute deviation is bounded by the value 1
4 (b−a)M . To be

precise, for any continuous function f on [a, b] ⊂ R which is differentiable on (a, b)
and |f ′(x)| ≤ M for all x ∈ (a, b), the inequality

(1)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2

(b− a)2

]
(b− a)M,

holds for every x ∈ [a, b] (see [23, p. 226–227] for the complete proof). This is then
known as the Ostrowski inequality (see [21, p. 468]). The first factor on the right
hand side of (1) reaches the value of 1

4 at the midpoint and monotonically increases
to 1

2 which is attained at both endpoints [23, p. 226]. It implies that the constant 1
4

is best possible, that is, it cannot be replaced by a smaller quantity (see also [1, p.
3775–3776], for an alternative proof).

Numerous developments, extensions and generalisations of Ostrowski inequality
have been carried out in various directions. One way to extend this result is to
consider other classes of integrable functions. The case for absolutely continuous
functions, where the derivative exists almost everywhere, has been considered in

1991 Mathematics Subject Classification. 26D15, 46C50.
Key words and phrases. Ostrowski type inequality, Hermite-Hadamard type inequality, semi-

inner product, convex function.
1



2 E. KIKIANTY, S.S. DRAGOMIR, AND P. CERONE

[10,11,16] and [18, p. 2], while the case where the functions are of bounded variation
can be found in [9], [14, p. 374] and [18, p. 3–4]. The case of Hölder continuous
functions and Lipschitzian functions have also been pointed out [18, p. 3] (see [3–8]
for other possible directions).

Another possibility of generalising Ostrowski inequality is to consider the case of
real convex functions. Since any convex function is locally Lipschitzian (hence it is
locally absolutely continuous), thus it can be connected to the previous mentioned
cases (see [14,16]).

For any convex function, we can also consider another well-known inequality:
the Hermite-Hadamard inequality. It was first introduced by Ch. Hermite in 1881
in the journal Mathesis (see [20]). Hermite mentioned that the following inequality
holds for any convex function f defined on R

(2) (b− a)f
(

a + b

2

)
<

∫ b

a

f(x)dx < (b− a)
f(a) + f(b)

2
, a, b ∈ R.

But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result [25]. E.F. Beckenbach, a leading expert on the
history and the theory of complex functions, wrote that this inequality was proven
by J. Hadamard in 1893 [2]. In 1974, D.S. Mitrinović found Hermite’s note in
Mathesis [20]. Since (2) was known as Hadamard’s inequality, the inequality is now
commonly referred as the Hermite-Hadamard inequality [25].

Various developments and generalisations have been pointed out in many di-
rections (see [17]). Dragomir in [14, p. 378–379] obtained some inequalities which
improve the Hermite-Hadamard inequalities (see also [12,13]). These results can be
derived from an Ostrowski type inequality for real convex functions (see also [16, p.
15–17]). In [12,13], Dragomir examined a generalisation of the Hermite-Hadamard
inequality by considering convex functions defined on linear spaces. As an appli-
cation in normed linear spaces, some inequalities which are related to semi-inner
product were obtained. However, the sharpness of the constants in these inequali-
ties was not considered.

In this paper, we generalise the Ostrowski type inequality which has been pointed
out in [14] to general convex functions defined on linear spaces. Using this result,
we derive some inequalities which improve the Hermite-Hadamard type inequalities
for convex functions on linear spaces, as mentioned in [12, 13]. In a normed linear
spaces, we obtain some inequalities related to the given norm and associated semi-
inner products which are more general than those in [12,13] and provide the proof of
the sharpness for the constants in those inequalities. We also revisit the inequalities
which were previously suggested in [12, 13], by considering some particular cases
from the general one, and prove the sharpness of the constants.

2. Definitions and Preliminary Results

Let X be a vector space, x, y ∈ X, x 6= y. Define the segment [x, y] := {(1 −
t)x + ty, t ∈ [0, 1]}. We consider the function f : [x, y] → R and the associated
function g(x, y) : [0, 1] → R, g(x, y)(t) := f [(1− t)x + ty], t ∈ [0, 1]. Note that f is
convex on [x, y] if and only if g(x, y) is convex on [0, 1].
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For any convex function defined on a segment [x.y] ⊂ X, we have the Hermite-
Hadamard integral inequality (see [12, p. 2], [13, p. 2])

(3) f

(
x + y

2

)
≤

∫ 1

0

f [(1− t)x + ty]dt ≤ f(x) + f(y)
2

,

which can be derived from the classical Hermite-Hadamard inequality (2) for the
convex function g(x, y) : [0, 1] → R.

We consider the Gâteaux lateral derivatives for any x, y ∈ X and any function
f defined on X, as

(5+f(x))(y) := lim
t→0+

f(x + ty)− f(x)
t

,

(5−f(x))(y) := lim
t→0−

f(x + ty)− f(x)
t

,

if the above limits exist.
Assume that (X, ‖ · ‖) is a normed space. The function f0(x) = 1

2‖x‖2 (x ∈ X)
is convex and the following limits

〈x, y〉s := (5+f0(y))(x) = lim
t→0+

‖y + tx‖2 − ‖y‖2
2t

,

〈x, y〉i := (5−f0(y))(x) = lim
t→0−

‖y + tx‖2 − ‖y‖2
2t

,

exist for any x, y ∈ X. They are called the superior and inferior semi-inner products
associated to the norm ‖ · ‖ (see [15, p. 27–39] for further properties).

The function fp(x) = ‖x‖p (x ∈ X and 1 ≤ p < ∞) is also convex. Therefore,
the following limits, which are related to superior (inferior) semi-inner products,

(5+fp(y))(x) = lim
t→0+

‖y + tx‖p − ‖y‖p

t
= p‖y‖p−2〈x, y〉s,(4)

(5−fp(y))(x) = lim
t→0−

‖y + tx‖p − ‖y‖p

t
= p‖y‖p−2〈x, y〉i,(5)

exist for all x, y ∈ X whenever p ≥ 2; otherwise, they exist for any x ∈ X and
nonzero y ∈ X. In particular, if p = 1, then the following limits

(5+f1(y))(x) = lim
t→0+

‖y + tx‖ − ‖y‖
t

=
〈

x,
y

‖y‖
〉

s

,

(5−f1(y))(x) = lim
t→0−

‖y + tx‖ − ‖y‖
t

=
〈

x,
y

‖y‖
〉

i

,

exist for x, y ∈ X and y 6= 0.
Since f(x) = ‖x‖p (x ∈ X and 1 ≤ p < ∞) is a convex function, we have the

following norm inequality from (3) (see [24, p. 106])

(6)
∥∥∥∥

x + y

2

∥∥∥∥
p

≤
∫ 1

0

‖(1− t)x + ty‖pdt ≤ ‖x‖p + ‖y‖p

2
,

for any x, y ∈ X. Particularly, if p = 2, then

(7)
∥∥∥∥

x + y

2

∥∥∥∥
2

≤
∫ 1

0

‖(1− t)x + ty‖2dt ≤ ‖x‖2 + ‖y‖2
2

,
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holds for any x, y ∈ X. We also get the following refinement of the triangle inequal-
ity when p = 1 (see [22, p. 485])

(8)
∥∥∥∥

x + y

2

∥∥∥∥ ≤
∫ 1

0

‖(1− t)x + ty‖dt ≤ ‖x‖+ ‖y‖
2

.

3. The Results

A generalisation of the classical Ostrowski inequality by considering the class
of real convex functions has been obtained in [14, 16]. The following result is a
generalisation of an Ostrowski type inequality in [14] for convex functions defined
on linear spaces.

Theorem 1. Let X be a vector space, Ik : 0 = s0 < s1 < · · · < sk−1 < sk = 1
be a division of the interval [0, 1], αi (i = 0, . . . , k + 1) be k + 2 points such that
α0 = 0, αi ∈ [si−1, si], (i = 1, . . . , k) and αk+1 = 1. If f : [x, y] ⊂ X → R is a
convex function on the segment [x, y], then we have

1
2

k−1∑

i=0

{(si+1 − αi+1)2 5+ f [(1− αi+1)x + αi+1y](y − x)

−(αi+1 − si)2 5− f [(1− αi+1)x + αi+1y](y − x)}

≤
k∑

i=0

(αi+1 − αi)f [(1− si)x + siy]−
∫ 1

0

f [(1− t)x + ty]dt(9)

≤ 1
2

k−1∑

i=0

{(si+1 − αi+1)2 5− f [(1− si+1)x + si+1y](y − x)

−(αi+1 − si)2 5+ f [(1− si)x + siy](y − x)}.
The constant 1

2 is sharp in both inequalities.

Proof. Under the above assumption, we may apply the Ostrowski type inequality
which has been obtained in [14] (see Theorem 3) for any convex function h defined
on [0, 1]:

1
2

k−1∑

i=0

[(si+1 − αi+1)2h′+(αi+1)− (αi+1 − si)2h′−(αi+1)]

≤
k∑

i=0

(αi+1 − αi)h(si)−
∫ 1

0

h(t)dt(10)

≤ 1
2

k−1∑

i=0

[(si+1 − αi+1)2h′−(si+1)− (αi+1 − si)2h′+(si)],

where h′+(−) denotes the right-(left-)sided derivative.
Consider the function h(t) = g(x, y)(t) = f [(1−t)x+ty] defined on [0, 1]. Since f

is a convex function on [x, y], then h is also convex on [0, 1], therefore, we may apply
the above inequality to h. Now, the right-(left-)sided derivative can be computed
as follows:

h′±(t) = g′±(x, y)(t) = (5±f [(1− t)x + ty])(y − x), t ∈ [0, 1].
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We obtained the desired result by writing the inequality (10) for h(t) = g(x, y)(t).
The sharpness of the constants follows by some particular cases which will be con-
sidered later. ¤

Corollary 2. Let X be a vector space, x, y ∈ X, x 6= y and f : [x, y] ⊂ X → R
be a convex function on the segment [x, y]. Then for any s ∈ (0, 1) one has the
inequality

1
2
[(1− s)2(5+f [(1− s)x + sy])(y − x)

−s2(5−f [(1− s)x + sy])(y − x)]

≤ (1− s)f(x) + sf(y)−
∫ 1

0

f [(1− t)x + ty]dt(11)

≤ 1
2
[(1− s)2(5−f(y))(y − x)− s2(5+f(x))(y − x)].

The constant 1
2 is sharp in both inequalities.

Proof. The result can be obtained by choosing k = 1 and s0 = α0 = 0, α1 = s ∈
(0, 1), and s1 = α2 = 1 in Theorem 1. The sharpness of the constants will be proven
later by considering some particular cases. An alternative proof can be found in
Theorem 2.4 of [13]. However the sharpness of the constants was not considered in
that paper. ¤

The following result provides an improvement for the second Hermite-Hadamard
inequality (see also [13]).

Remark 3. A particular case that can be considered is by letting s = 1
2 in (11).

We obtain
1
8

[(
5+f

(
x + y

2

))
(y − x)−

(
5−f

(
x + y

2

))
(y − x)

]

≤ f(x) + f(y)
2

−
∫ 1

0

f [(1− t)x + ty]dt(12)

≤ 1
8
[(5−f(y))(y − x)− (5+f(x))(y − x)],

which provides bounds for the distance between the last two terms in the Hermite-
Hadamard integral inequality (3). The constant 1

8 is sharp (the proof follows by a
particular case which will be proven later).

Corollary 4. Let X be a vector space, x, y ∈ X, x 6= y and f : [x, y] ⊂ X → R
be a convex function on the segment [x, y]. Then for any s ∈ (0, 1) one has the
inequality

1
2
[(1− s)2(5+f [(1− s)x + sy])(y − x)

−s2(5−f [(1− s)x + sy])(y − x)]

≤
∫ 1

0

f [(1− t)x + ty]dt− f [(1− s)x + sy](13)

≤ 1
2
[(1− s)2(5−f(y))(y − x)− s2(5+f(x))(y − x)].
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The constant 1
2 is sharp in both inequalities.

Proof. Apply Theorem 1 and choose k = 2, 0 = s0 < s1 = s < s2 = 1. Let
α0 = 0, α1 = a ∈ (0, s], α2 = b ∈ [s, 1) and α3 = 1. By the fact that f is a
convex function, which implies that 5±f is a nondecreasing function, we have the
following

(s− a)2(5+f(x))(y − x) ≤ (s− a)2(5+f((1− a)x + ay))(y − x)

and − (b− s)2(5−f(y))(y − x) ≤ −(b− s)2(5−f((1− b)x + by))(y − x),

for any a ∈ (0, s], b ∈ [s, 1).
Thus, we have

1
2

[
(s− a)2(5+f(x))(y − x)− a2(5−f((1− a)x + ay))(y − x)

+(1− b)2(5+f((1− b)x + by))(y − x)− (b− s)2(5−f(y))(y − x)
]

≤ 1
2

[
(s− a)2(5+f((1− a)x + ay))(y − x)− a2(5−f((1− a)x + ay))(y − x)

+(1− b)2(5+f((1− b)x + by))(y − x)− (b− s)2(5−f((1− b)x + by))(y − x)
]

≤ af(x) + (b− a)f [(1− s)x + sy] + (1− b)f(y)−
∫ 1

0

f [(1− t)x + ty]dt

≤ 1
2

[
(s− a)2(5−f((1− s)x + sy))(y − x)− a2(5+f(x))(y − x)

+(1− b)2(5−f(y))(y − x)− (b− s)2(5+f((1− s)x + sy))(y − x)
]
.

Let a → 0+ and b → 1−, then we obtain
1
2
[s2(5+f(x))(y − x)− (1− s)2(5−f(y))(y − x)]

≤ f [(1− s)x + sy]−
∫ 1

0

f [(1− t)x + ty]dt

≤ 1
2
[s2(5−f((1− s)x + sy))(y − x)− (1− s)2(5+f((1− s)x + sy))(y − x)].

By multiplying the above inequality with −1, we obtain the desired result. The
sharpness of the constants will be proven later by considering some particular cases.
An alternative proof can be found in Theorem 2.4 of [12]. However, the sharpness
of the constants was not considered in that paper. ¤

The following result provides an improvement for the first Hermite-Hadamard
inequality (see also [12]).

Remark 5. One particular case that can be considered is by choosing s = 1
2 in

(13). We obtain

1
8

[(
5+f

(
x + y

2

))
(y − x)−

(
5−f

(
x + y

2

))
(y − x)

]

≤
∫ 1

0

f [(1− t)x + ty]dt− f

(
x + y

2

)
(14)

≤ 1
8
[(5−f(y))(y − x)− (5+f(x))(y − x)],
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which provides bounds for the distance between the first two terms in the Hermite-
Hadamard integral inequality (3). The constant 1

8 is sharp (the proof follows by a
particular case which will be proven later).

4. Applications for Semi-Inner Products

Let (X, ‖ · ‖) be a normed linear space. We obtain the following inequalities for
the semi-inner products 〈·, ·〉s and 〈·, ·〉i.
Proposition 6. Let Ik : 0 = s0 < s1 < · · · < sk−1 < sk = 1 be a division of
the interval [0, 1] and αi (i = 0, . . . , k + 1) be k + 2 points such that α0 = 0, αi ∈
[si−1, si], (i = 1, . . . , k) and αk+1 = 1. Assume that 1 ≤ p < ∞. Then

1
2
p

k−1∑

i=0

‖(1− αi+1)x + αi+1y‖p−2[(si+1 − αi+1)2〈y − x, (1− αi+1)x + αi+1y〉s(15)

−(αi+1 − si)2〈y − x, (1− αi+1)x + αi+1y〉i]

≤
k∑

i=0

(αi+1 − αi)‖(1− si)x + siy‖p −
∫ 1

0

‖(1− t)x + ty‖pdt

≤ 1
2
p

k−1∑

i=0

[(si+1 − αi+1)2‖(1− si+1)x + si+1y‖p−2〈y − x, (1− si+1)x + si+1y〉i

−(αi+1 − si)2‖(1− si)x + siy‖p−2〈y − x, (1− si)x + siy〉s],
holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for linearly independent
x, y ∈ X.
The constant 1

2 is sharp in both inequalities.

Proof. Apply Theorem 1 to the convex function fp(x) = ‖x‖p, where x ∈ X, and
1 ≤ p < ∞ (see (4) and (5)). The sharpness of the constants will be proven later
by considering some particular cases. ¤

Corollary 7. Let x and y be any two vectors in X, σ ∈ (0, 1) and 1 ≤ p < ∞.
Then

1
2
p‖(1− σ)x + σy‖p−2[(1− σ)2〈y − x, (1− σ)x + σy〉s

−σ2〈y − x, (1− σ)x + σy〉i]

≤ (1− σ)‖x‖p + σ‖y‖p −
∫ 1

0

‖(1− t)x + ty‖pdt(16)

≤ 1
2
p[(1− σ)2‖y‖p−2〈y − x, y〉i − σ2‖x‖p−2〈y − x, x〉s],

holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for linearly independent
x, y ∈ X.
The constant 1

2 is sharp in both inequalities.
We also have two particular cases that are of interest, namely

(1− σ)2〈y − x, (1− σ)x + σy〉s − σ2〈y − x, (1− σ)x + σy〉i
≤ (1− σ)‖x‖2 + σ‖y‖2 −

∫ 1

0

‖(1− t)x + ty‖2dt(17)

≤ (1− σ)2〈y − x, y〉i − σ2〈y − x, x〉s,
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for any x, y ∈ X and
1
2

[
(1− σ)2

〈
y − x,

(1− σ)x + σy

‖(1− σ)x + σy‖
〉

s

− σ2

〈
y − x,

(1− σ)x + σy

‖(1− σ)x + σy‖
〉

i

]
(18)

≤ (1− σ)‖x‖+ σ‖y‖ −
∫ 1

0

‖(1− t)x + ty‖dt

≤ 1
2

[
(1− σ)2

〈
y − x,

y

‖y‖
〉

i

− σ2

〈
y − x,

x

‖x‖
〉

s

]
,

for any linearly independent x, y ∈ X. The constants in (17) and (18) are sharp.

Proof. Choose k = 1, s0 = α0 = 0, α1 = σ ∈ (0, 1), and s1 = α2 = 1 in
Proposition 6. As an alternative proof, this result can be obtained by choosing
f(x) = ‖x‖p, (1 ≤ p < ∞) and s = σ in Corollary 2. Take p = 2 and p = 1 in (16)
to obtain (17) and (18) (see also [13, Proposition 3.1 and Proposition 3.2]). The
sharpness of the constants will be proven later by considering some particular cases
(in [13], the sharpness of the constants was not considered). ¤

Corollary 8. Let x and y be any two vectors in X, σ ∈ (0, 1) and 1 ≤ p < ∞.
Then

1
2
p‖(1− σ)x + σy‖p−2[(1− σ)2〈y − x, (1− σ)x + σy〉s

−σ2〈y − x, (1− σ)x + σy〉i]

≤
∫ 1

0

‖(1− t)x + ty‖pdt− ‖(1− σ)x + σy‖p(19)

≤ 1
2
p[(1− σ)2‖y‖p−2〈y − x, y〉i − σ2‖x‖p−2〈y − x, x〉s],

holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for linearly independent
x, y ∈ X.
The constant 1

2 is sharp in both inequalities.
We also have two following particular cases of interest

(1− σ)2〈y − x, (1− σ)x + σy〉s − σ2〈y − x, (1− σ)x + σy〉i
≤

∫ 1

0

‖(1− t)x + ty‖2dt− ‖(1− σ)x + σy‖2(20)

≤ (1− σ)2〈y − x, y〉i − σ2〈y − x, x〉s,
for any x, y ∈ X and

1
2

[
(1− σ)2

〈
y − x,

(1− σ)x + σy

‖(1− σ)x + σy‖
〉

s

− σ2

〈
y − x,

(1− σ)x + σy

‖(1− σ)x + σy‖
〉

i

]
(21)

≤
∫ 1

0

‖(1− t)x + ty‖dt− ‖(1− σ)x + σy‖

≤ 1
2

[
(1− σ)2

〈
y − x,

y

‖y‖
〉

i

− σ2

〈
y − x,

x

‖x‖
〉

s

]
,

for any linearly independent x, y ∈ X. The constants in (20) and (21) are sharp.

Proof. Choose k = 2 in Proposition 6, then perform a similar steps as in the proof
of Corollary 4 for s0 = 0 < s1 = σ < 1 = s2, α0 = 0, α1 = a ∈ (0, σ], α2 = b ∈ [σ, 1)
and α3 = 1. As an alternative proof, this result can be obtained by choosing
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f(x) = ‖x‖p, (1 ≤ p < ∞) and s = σ in Corollary 4. Take p = 2 and p = 1 in (19)
to obtain (20) and (21) (see also [12, Proposition 3.1 and Proposition 3.2]). The
sharpness of the constants will be proven later by considering some particular cases
(in [12], the sharpness of the constants was not considered). ¤

5. Some Particular Cases and the Best Constants

The following cases follow from the previous section and provide an improvement
for the Hermite-Hadamard inequalities (6), (7) and (8). Some of the results have
been obtained before in [12] and [13], but the sharpness of the constants was not
considered. Here, we provide the proof for the sharpness of the constants.

Proposition 9. Let (X, ‖ · ‖) be a normed linear space and 1 ≤ p < ∞. Then,

0 ≤ 1
8
p

∥∥∥∥
y + x

2

∥∥∥∥
p−2 [〈

y − x,
y + x

2

〉

s

−
〈

y − x,
y + x

2

〉

i

]

≤ ‖x‖p + ‖y‖p

2
−

∫ 1

0

‖(1− t)x + ty‖pdt(22)

≤ 1
8
p[‖y‖p−2〈y − x, y〉i − ‖x‖p−2〈y − x, x〉s],

holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for linearly independent
x, y ∈ X. The above inequality provides bounds for the distance between the last
two terms in (6).
The constant 1

8 is sharp.
In particular, we have

0 ≤ 1
8
[〈y − x, y + x〉s − 〈y − x, y + x〉i]

≤ ‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt(23)

≤ 1
4
[〈y − x, y〉i − 〈y − x, x〉s],

for any x, y ∈ X and

0 ≤ 1
8

[〈
y − x,

y+x
2

‖y+x
2 ‖

〉

s

−
〈

y − x,
y+x

2

‖y+x
2 ‖

〉

i

]

≤ ‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt(24)

≤ 1
8

[〈
y − x,

y

‖y‖
〉

i

−
〈

y − x,
x

‖x‖
〉

s

]
,

for any linearly independent x, y ∈ X.
The constants in (23) and (24) are sharp.

Proof. We obtain (22) by taking σ = 1
2 in (16). We may also obtain (22) by taking

f(x) = ‖x‖p (1 ≤ p < ∞) in Remark 3. Then, (23) and (24) follow by taking
p = 2 and p = 1, respectively, in (22). Note that we may also obtain (23) from (17)
and (24) from (18) by letting σ = 1

2 . The sharpness of the constants in (22) would
follow by the sharpness of the constants in (23) and (24) as its particular cases.
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We will now prove the sharpness of the constants in (23). Assume that the above
inequality holds for constants A,B > 0 instead of 1

8 and 1
4 respectively, that is,

0 ≤ A[〈y − x, y + x〉s − 〈y − x, y + x〉i]

≤ ‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt

≤ B[〈y − x, y〉i − 〈y − x, x〉s].
Note that in the space (l1, ‖ · ‖1), we have the following semi-inner products for

any x, y (see [15,19])

〈x, y〉s(i) = ‖y‖1


∑

yi 6=0

yi

|yi|xi ±
∑
yi=0

|xi|

 .

Taking (X, ‖ · ‖) = (R2, ‖ · ‖1), we have the inequality

2A‖y + x‖1
∑

yi+xi=0

|yi − xi|

≤ ‖x‖21 + ‖y‖21
2

−
∫ 1

0

‖(1− t)x + ty‖21dt

≤ B


‖y‖1


∑

yi 6=0

yi

|yi| (yi − xi)−
∑
yi=0

|yi − xi|



−‖x‖1


 ∑

xi 6=0

xi

|xi| (yi − xi) +
∑
xi=0

|yi − xi|




 .

Take x =
(− 1

n , n
)

and y =
(

1
n , n

)
, for any n ∈ N, then we have the following

8A ≤ 3n2 + 2
3n2

≤ 4B

(
1
n2

+ 1
)

,

from the previous inequality. Taking n →∞, we get

8A ≤ 1 ≤ 4B,

that is, A ≤ 1
8 in the first inequality, and B ≥ 1

4 in the second inequality. Thus, both
the constants 1

8 and 1
4 are sharp in the first and second inequality respectively. This

implies that the constants in (9), (11), (12), (15), (16), (17), and (22) are sharp.
Now, we will prove the sharpness of the constants in (24). Assume that the

above inequality holds for constants C, D > 0 instead of 1
8 , that is

0 ≤ C

[〈
y − x,

y+x
2

‖y+x
2 ‖

〉

s

−
〈

y − x,
y+x

2

‖y+x
2 ‖

〉

i

]

≤ ‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt

≤ D

[〈
y − x,

y

‖y‖
〉

i

−
〈

y − x,
x

‖x‖
〉

s

]
.
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Take (X, ‖ · ‖ = (R2, ‖ · ‖1), we have the following inequality

0 ≤ 2C
∑

yi+xi=0

|yi − xi|

≤ ‖x‖1 + ‖y‖1
2

−
∫ 1

0

‖(1− t)x + ty‖1dt

≤ D


∑

yi 6=0

yi

|yi| (yi − xi)−
∑
yi=0

|yi − xi| −
∑

xi 6=0

xi

|xi| (yi − xi)−
∑
xi=0

|yi − xi|

 ,

for any linearly independent x and y.
Now, take x = (1, 0) and y = (−1, 1). Clearly x and y are linearly independent,

therefore the above inequality holds for these vectors. We have

4C ≤ 1
2
≤ 4D,

that is, C ≤ 1
8 in the first inequality and D ≥ 1

8 in the second inequality. Thus, the
constant 1

8 is sharp in both inequalities. This implies that the constants in (18) are
also sharp. ¤

Remark 10 (The case of inner product spaces). Let X be an inner product space,
with the inner product 〈·, ·〉, in Proposition 9. Then,

0 ≤ ‖x‖p + ‖y‖p

2
−

∫ 1

0

‖(1− t)x + ty‖pdt(25)

≤ 1
8
p〈y − x, y‖y‖p−2 − x‖x‖p−2〉,

holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for nonzero x, y ∈ X.
Particularly, for p = 2, we have

0 ≤ ‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt

≤ 1
4
[〈y − x, y〉 − 〈y − x, x〉] =

1
4
‖y − x‖2,

for any x, y ∈ X. The constant 1
4 is not the best possible constant in this case,

since we always have

‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt =
1
6
‖y − x‖2.

If p = 1, then

0 ≤ ‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt

≤ 1
8

〈
y − x,

y

‖y‖ −
x

‖x‖
〉

,

for any nonzero x, y ∈ X. We obtain a nontrivial equality by choosing X = R and
multiplication for its inner product (which induces the absolute value for its norm),
x = 1 and y = −1. Thus, the constant 1

8 is sharp.
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Conjecture 11. We conjecture that the constant 1
8 in (25) is not sharp for any

p > 1. Utilizing Maple for the real-valued functions

Fp(x, y) :=
|x|p + |y|p

2
−

∫ 1

0

|(1− t)x + ty|pdt,

Gp(x, y) :=
1
8
p(y − x)(y|y|p−2 − x|x|p−2),

for (x, y) ∈ R2, we observe that for several values of p > 1, the equation Fp(x, y) =
Gp(x, y) = k 6= 0 has no solution in R2 (see Figure 1 for the plot of these functions
with the choice of p = 3). Therefore, the constant 1

8 is not sharp for these values
of p, since we have no nontrivial equality. However, we do not have an analytical
proof for this claim.
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Figure 1. Plot of F3 and G3

Proposition 12. Let (X, ‖ · ‖) be a normed linear space and 1 ≤ p < ∞. Then

0 ≤ 1
8
p

∥∥∥∥
y + x

2

∥∥∥∥
p−2 [〈

y − x,
y + x

2

〉

s

−
〈

y − x,
y + x

2

〉

i

]

≤
∫ 1

0

‖(1− t)x + ty‖pdt−
∥∥∥∥

x + y

2

∥∥∥∥
p

(26)

≤ 1
8
p[‖y‖p−2〈y − x, y〉i − ‖x‖p−2〈y − x, x〉s],

holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for linearly independent
x, y ∈ X. The above inequality provides bounds for the distance between the first
two terms in (6).
The constant 1

8 is sharp.
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In particular, we have

0 ≤ 1
8
[〈y − x, y + x〉s − 〈y − x, y + x〉i]

≤
∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

(27)

≤ 1
4
[〈y − x, y〉i − 〈y − x, x〉s],

for any x, y ∈ X and

0 ≤ 1
8

[〈
y − x,

y+x
2

‖y+x
2 ‖

〉

s

−
〈

y − x,
y+x

2

‖y+x
2 ‖

〉

i

]

≤
∫ 1

0

‖(1− t)x + ty‖dt−
∥∥∥∥

x + y

2

∥∥∥∥(28)

≤ 1
8

[〈
y − x,

y

‖y‖
〉

i

−
〈

y − x,
x

‖x‖
〉

s

]
,

for any linearly independent x, y ∈ X.
The constants in (27) and (28) are sharp.

Proof. We obtain (26) by taking σ = 1
2 in (19). We may also obtain (26) by taking

f(x) = ‖x‖p (1 ≤ p < ∞) in Remark 5. Then, (27) and (28) follow by taking
p = 2 and p = 1, respectively, in (26). Note that we may also obtain (27) from (20)
and (28) from (21) by letting σ = 1

2 . The sharpness of the constants in (26) would
follow by the sharpness of the constants in (27) and (28) as its particular cases.

We will now prove the sharpness of the constants in (27). Assume that the above
inequality holds for constants E,F > 0 instead of 1

8 and 1
4 respectively, that is

0 ≤ E[〈y − x, y + x〉s − 〈y − x, y + x〉i]

≤
∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

≤ F [〈y − x, y〉i − 〈y − x, x〉s].
Now, take (X, ‖ · ‖) = (R2, ‖ · ‖1), we obtain

2E‖y + x‖1
∑

yi+xi=0

|yi − xi|

≤
∫ 1

0

‖(1− t)x + ty‖21dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

1

≤ F


‖y‖1


∑

yi 6=0

yi

|yi| (yi − xi)−
∑
yi=0

|yi − xi|



−‖x‖1


 ∑

xi 6=0

xi

|xi| (yi − xi) +
∑
xi=0

|yi − xi|




 .

Choose x =
(− 1

n , n
)

and y =
(

1
n , n

)
, for any n ∈ N and we have the following

8E ≤ 3n2 + 1
3n2

≤ 4F

(
1
n2

+ 1
)

.
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Taking n →∞, we get
8E ≤ 1 ≤ 4F,

that is, E ≤ 1
8 in the first inequality, and F ≥ 1

4 in the second inequality. Thus, both
the constants 1

8 and 1
4 are sharp in the first and second inequality respectively. This

implies that the constants in (9), (13), (14), (15), (19), (20), and (26) are sharp.
Now, we will prove the sharpness of the constants in (28). Assume that the

inequality holds for G,H > 0 instead of 1
8 , that is,

0 ≤ G

[〈
y − x,

y+x
2

‖y+x
2 ‖

〉

s

−
〈

y − x,
y+x

2

‖y+x
2 ‖

〉

i

]

≤
∫ 1

0

‖(1− t)x + ty‖dt−
∥∥∥∥

x + y

2

∥∥∥∥

≤ H

[〈
y − x,

y

‖y‖
〉

i

−
〈

y − x,
x

‖x‖
〉

s

]
.

Again, take (X, ‖ · ‖) = (R2, ‖ · ‖1), we have the following inequality

0 ≤ 2G
∑

yi+xi=0

|yi − xi|

≤
∫ 1

0

‖(1− t)x + ty‖1dt−
∥∥∥∥

x + y

2

∥∥∥∥
1

≤ H


∑

yi 6=0

yi

|yi| (yi − xi)−
∑
yi=0

|yi − xi| −
∑

xi 6=0

xi

|xi| (yi − xi)−
∑
xi=0

|yi − xi|

 ,

for any linearly independent x, y ∈ X.
Choose x = (1, 0) and y = (−1, 1) and we obtain

4G ≤ 1
2
≤ 4H,

that is, G ≤ 1
8 in the first inequality and H ≥ 1

8 in the second inequality. Therefore
the constant 1

8 is sharp in both inequalities. This implies that the constants in (21)
are also sharp. ¤

Remark 13 (The case of inner product spaces). Let X be an inner product space,
with the inner product 〈·, ·〉, in Proposition 12. Then,

0 ≤
∫ 1

0

‖(1− t)x + ty‖pdt−
∥∥∥∥

x + y

2

∥∥∥∥
p

(29)

≤ 1
8
p〈y − x, y‖y‖p−2 − x‖x‖p−2〉,

holds for any x, y ∈ X whenever p ≥ 2; otherwise, it holds for nonzero x, y ∈ X.
Particularly, for p = 2, we have

0 ≤
∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

≤ 1
4
[〈y − x, y〉 − 〈y − x, x〉] =

1
4
‖y − x‖2,
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for any x, y ∈ X. The constant 1
4 is not the best possible constant in this case,

since we always have
∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

=
1
12
‖y − x‖2.

If p = 1, we have

0 ≤
∫ 1

0

‖(1− t)x + ty‖dt−
∥∥∥∥

x + y

2

∥∥∥∥

≤ 1
8

〈
y − x,

y

‖y‖ −
x

‖x‖
〉

,

for any nonzero x, y ∈ X. By choosing X = R and multiplication for its inner
product (which induces the absolute value for its norm), x = 1 and y = −1, we
obtain a nontrivial equality. Thus, the constant 1

8 is sharp.

Conjecture 14. We conjecture that the constant 1
8 in (29) is not sharp for any

p > 1. Utilizing Maple for the real-valued functions

Φp(x, y) :=
∫ 1

0

|(1− t)x + ty|pdt−
∣∣∣∣
x + y

2

∣∣∣∣
p

,

Ψp(x, y) :=
1
8
p(y − x)(y|y|p−2 − x|x|p−2),

for (x, y) ∈ R2, we observe that for several values of p > 1, the equation Φp(x, y) =
Ψp(x, y) = k 6= 0 has no solution in R2 (see Figure 2 for the plot of these functions
with the choice of p = 3). Therefore, the constant 1

8 is not sharp for these values
of p, since we have no nontrivial equality. However, we do not have an analytical
proof for this claim.
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Figure 2. Plot of Φ3 and Ψ3
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21. D.S. Mitrinović and J.E. Pečarić and A.M. Fink, Inequalities Involving Functions

and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.



INEQUALITIES OF OSTROWSKI TYPE FOR CONVEX FUNCTIONS ON LINEAR SPACES17
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