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APPROXIMATION OF THE RIEMANN-STIELTJES INTEGRAL
WITH (l, L)-LIPSCHITZIAN INTEGRATORS

SEVER S. DRAGOMIR

Abstract. Sharp error estimates in approximating the Riemann-Stieltjes in-

tegral with (l, L)-Lipschitzian integrators and applications for the Čebyšev
functional are given. Some inequalities that complement the classical results

due to Čebyšev, Grüss, Ostrowski and Lupaş are also provided.

1. Introduction

In order to accurately approximate the Riemann-Stieltjes integral
∫ b

a
f (t) du (t)

with the simpler quantity

[u (a)− u (b)] · 1
b− a

∫ b

a

f (t) dt,

S.S. Dragomir and I. Fedotov introduced in [9] the following error functional

D (f ;u) :=
∫ b

a

f (t) du (t)− [u (a)− u (b)] · 1
b− a

∫ b

a

f (t) dt

provided the Riemann-Stieltjes integral
∫ b

a
f (t) du (t) and the Riemann integral∫ b

a
f (t) dt exist. In the same paper, the authors have shown that

(1.1) |D (f ;u)| ≤ 1
2
· L (M −m) (b− a) ,

provided that u is L−Lipschitzian, i.e., |u (t)− u (s)| ≤ L (t− x) for any t, s ∈ [a, b]
and f is Riemann integrable and bounded below by m and above by M. The
constant 1

2 is best possible in the sense that it cannot be replaced by a smaller
quantity.

In the follow-up paper [10], the same authors established a different result,
namely

(1.2) |D (f ;u)| ≤ 1
2
K (b− a)

b∨
a

(u) ,

provided that u is of bounded variation and f is K−Lipschitzian with a constant
K > 0. Here 1

2 is also best possible.
In [7], by the use of the following representation

(1.3) D (f ;u) =
∫ b

a

Φu (t) df (t) ,
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2 SEVER S. DRAGOMIR

where

(1.4) Φu (t) :=
1

b− a
[(t− a) u (b) + (b− t) u (a)]− u (t) , t ∈ [a, b] ,

the author has established the following inequality as well

(1.5) |D (f ;u)|

≤



sup
t∈[a,b]

|Φu (t)| ·
∨b

a (f) if u is continuous and f is of bounded variation;

L
∫ b

a
|Φu (t)| dt if u is Riemann integrable and f is L-Lipschitzian;∫ b

a
|Φu (t)| dt if u is continuous and f is monotonic nondecreasing.

If u is monotonic nondecreasing, then

(1.6) |D (f ;u)| ≤ 1
2
L (b− a) [u (b)− u (a)−K (u)] ≤ 1

2
L (b− a) [u (b)− u (a)] ,

where

K (u) :=
4

(b− a)2

∫ b

a

(
t− a + b

2

)
u (t) dt (≥ 0) ,

and f is L−Lipschitzian, and

(1.7) |D (f ;u)| ≤ [u (b)− u (a)−Q (u)] ·
b∨
a

(f) ≤ [u (b)− u (a)] ·
b∨
a

(f) ,

where

Q (u) :=
1

b− a

∫ b

a

u (t) sgn
(

t− a + b

2

)
dt (≥ 0) ,

and f is of bounded variation, The constant 1
2 in (1.6) and the first inequality in

(1.7) are sharp.
The main aim of the present paper is to provide other bounds for D (f ;u) in

the case where the integrator u is (l, L)−Lipschitzian (see Definition 1). Natural
applications for the Čebyšev functional that complement the classical results due
to Čebyšev, Grüss, Ostrowski and Lupaş are also given.

2. (l, L)-Lipschitzian Functions

We say that a function v : [a, b] → R is K−Lipschitzian with K > 0 if |v (t)− v (s)| ≤
K |t− s| for any t, s ∈ [a, b] . The following lemma may be stated:

Lemma 1. Let u : [a, b] → R and l, L ∈ R with L > l. The following statements
are equivalent:

(i) The function u− l+L
2 ·e, where e (t) = t, t ∈ [a, b] is 1

2 (L− l)−Lipschitzian;
(ii) We have the inequalities

(2.1) l ≤ u (t)− u (s)
t− s

≤ L for each t, s ∈ [a, b] with t 6= s;

(iii) We have the inequalities

(2.2) l (t− s) ≤ u (t)− u (s) ≤ L (t− s) for each t, s ∈ [a, b] with t > s.

Following [13], we can introduce the definition of (l, L)-Lipschitzian functions:
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Definition 1. The function u : [a, b] → R which satisfies one of the equivalent
conditions (i) – (iii) from Lemma 1 is said to be (l, L)-Lipschitzian on [a, b] .

If L > 0 and l = −L, then (−L,L)−Lipschitzian means L-Lipschitzian in the
classical sense.

Utilising Lagrange’s mean value theorem, we can state the following result that
provides examples of (l, L)-Lipschitzian functions.

Proposition 1. Let u : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) . If −∞ < l = inft∈[a,b] u

′ (t) and supt∈[a,b] u
′ (t) = L < ∞, then u is (l, L)-

Lipschitzian on [a, b] .

The following result holds.

Theorem 1. If u : [a, b] → R is (l, L)-Lipschitzian on [a, b] , then

(2.3) |Φu (t)| ≤ (L− l) (b− t) (t− a)
b− a

≤ 1
4

(L− l) (b− a)

for each t ∈ [a, b].
The inequalities are sharp and the constant 1

4 is best possible.

Proof. First of all, let us observe that

(2.4) Φu (t) = Φu− l+L
2 e (t) for each t ∈ [a, b] .

Now, if v : [a, b] → R is K−Lipschitzian, then by the definition of Φv we have

|Φv (t)| =
∣∣∣∣ (t− b) (v (t)− v (a)) + (t− a) (v (b)− v (t))

b− a

∣∣∣∣(2.5)

≤ (b− t) |v (t)− v (a)|+ (t− a) |v (b)− v (t)|
b− a

≤ 2K (b− t) (t− a)
b− a

,

for any t ∈ [a, b] .
Now, applying (2.5) for v = u− l+L

2 e which is 1
2 (L− l)−Lipschitzian, we deduce∣∣∣Φu− l+L

2 e (t)
∣∣∣ ≤ (L− l) (b− t) (t− a)

b− a
, t ∈ [a, b]

which together with (2.4) produces the first inequality in (2.3).
The second inequality in (2.3) is obvious.
For t = a+b

2 , we deduce from (2.3) the following inequality:

(2.6)
∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1
4

(L− l) (b− a) .

We will show that 1
4 is best possible in (2.6).

Consider the function u : [a, b] → R, u (t) =
∣∣t− a+b

2

∣∣ . Then u is (−1, 1)−Lipschitzian,
u (a) = u (b) = b−a

2 , u
(

a+b
2

)
= 0 and introducing these values in (2.6) we obtain

an equality with both terms 1
2 (b− a) .

Corollary 1. With the assumptions of Theorem 1, we have the inequality:

(2.7)
∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1
4

(L− l) (b− a) .

The constant 1
4 is best possible.
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3. Sharp Bounds for (l, L)-Lipschitzian Integrators

The following result can be stated:

Theorem 2. Let f, u : [a, b] → R be such that u is (l, L)-Lipschitzian and f is of
bounded variation, then

(3.1) |D (f ;u)| ≤ 1
4

(L− l) (b− a)
b∨
a

(f) .

The constant 1
4 is best possible in (3.1).

Proof. We use the following representation of the Grüss type functional D (f ;u)
that has been obtained in [7] (see also [5]):

(3.2) D (f ;u) =
∫ b

a

Φu (t) df (t) .

It is well known that if p : [α, β] → R is continuous and v : [α, β] → R is of
bounded variation, then the Riemann-Stieljtes integral

∫ β

α
p (t) dv (t) exists and∣∣∣∫ β

α
p (t) dv (t)

∣∣∣ ≤ supt∈[α,β] |p (t)|
∨β

α (v) .

Applying this property we then have

|D (f ;u)| =

∣∣∣∣∣
∫ b

a

Φu (t) df (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|Φu (t)|
b∨
a

(f) ≤ 1
4

(L− l) (b− a)
b∨
a

(f)

and the inequality (3.1) is obtained.
To prove the sharpness of the constant 1

4 , assume that there is a constant A > 0
so that

(3.3) |D (f ;u)| ≤ A (L− l) (b− a)
b∨
a

(f) ,

where u and f are as in the statement of the theorem.
Consider u, f : [a, b] → R, u (t) =

∣∣t− a+b
2

∣∣ and f (t) = sgn
(
t− a+b

2

)
. Then u is

(−1, 1)−Lipschitzian, f is of bounded variation with
∨b

a (f) = 2 and

D (f ;u) =
∫ a+b

2

a

(−1) · d
(

a + b

2
− t

)
+

∫ b

a+b
2

(+1) · d
(

t− a + b

2

)
= b− a

and the inequality (3.3) becomes b− a ≤ 4A (b− a) , which implies that A ≥ 1
4 .

The following result also holds:

Theorem 3. Let f, u : [a, b] → R be such that u is (l, L)−Lipschitzian and f is
K−Lipschitzian on [a, b] , then

(3.4) |D (f ;u)| ≤ 1
6
K (L− l) (b− a)2 .

Proof. It is known that, if p : [α, β] → R is Riemann integrable and v : [a, b] →
R is L−Lipschitzian, then the Riemann-Stieltjes integral

∫ β

α
p (t) dv (t) exists and∣∣∣∫ β

α
p (t) dv (t)

∣∣∣ ≤ L
∫ b

a
|v (t)| dt.
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If we apply this property to the integral
∫ b

a
Φu (t) df (t) and use the identity (3.2),

we then have

|D (f ;u)| =

∣∣∣∣∣
∫ b

a

Φu (t) df (t)

∣∣∣∣∣ ≤ K

∫ b

a

|Φu (t)| dt

≤ K (L− l)
b− a

∫ b

a

(b− t) (t− a) dt =
1
6
K (L− l) (b− a)2

and the inequality (3.4) is proved.

Remark 1. It is an open problem whether or not the constant 1
6 is the best possible

constant in (3.4).

The following result can be stated as well:

Theorem 4. Let f, u : [a, b] → R be such that u is (l, L)−Lipschitzian and f is
monotonic nondecreasing, then

|D (f ;u)| ≤ 2 · L− l

b− a

∫ b

a

(
t− a + b

2

)
f (t) dt(3.5)

≤



1
2 (L− l) max {|f (a)| , |f (b)|} (b− a) ;

1

(q+1)
1
q

(L− l) ‖f‖p (b− a)
1
q if p > 1, 1

p + 1
q = 1;

(L− l) ‖f‖1 ,

where ‖f‖p :=
(∫ b

a
|f (t)|p dt

) 1
p

, p ≥ 1 are the Lebesgue norms.

The constants 2 and 1
2 are best possible in (3.5).

Proof. It is well known that if p : [α, β] → R is continuous and v : [α, β] →
R is monotonic nondecreasing, then the Riemann-Stieltjes integral

∫ β

α
p (t) dv (t)

exists and
∣∣∣∫ β

α
p (t) dv (t)

∣∣∣ ≤ ∫ β

α
|p (t)| dv (t) . Then, on applying this property for

the integral
∫ b

a
Φu (t) df (t) , we have

|D (f ;u)| =

∣∣∣∣∣
∫ b

a

Φu (t) df (t)

∣∣∣∣∣ ≤
∫ b

a

|Φu (t)| df (t)(3.6)

≤ L− l

b− a

∫ b

a

(b− t) (t− a) df (t) ,

where, for the last inequality, we have used the inequality (2.3).
Integrating by parts in the Riemann-Stieltjes integral, we have∫ b

a

(b− t) (t− a) df (t) = f (t) (b− t) (t− a)
∣∣∣b
a
−

∫ b

a

[−2t + (a + b)] f (t) dt

= 2
∫ b

a

(
t− a + b

2

)
f (t) dt,

which together with (3.6) produces the first inequality in (3.5).
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The last part follows on utilising the Hölder inequality, namely∫ b

a

(
t− a + b

2

)
f (t) dt

≤



sup
t∈[a,b]

|f (t)|
∫ b

a

∣∣t− a+b
2

∣∣ dt

(∫ b

a
|f (t)|p dt

) 1
p

(∫ b

a

∣∣t− a+b
2

∣∣q dt
) 1

q

if p > 1, 1
p + 1

q = 1;

sup
t∈[a,b]

∣∣t− a+b
2

∣∣ ∫ b

a
|f (t)| dt

≤



1
4 max {|f (a)| , |f (b)|} (b− a)2 ;

1
2 ·

1

(q+1)
1
q
‖f‖p (b− a)1+

1
q if p > 1, 1

p + 1
q = 1;

1
2 ‖f‖1 (b− a) .

For the best possible constant, assume that there exists a B > 0 such that

(3.7) |D (f ;u)| ≤ B · L− l

b− a

∫ b

a

(
t− a + b

2

)
f (t) dt.

Consider u (t) :=
∣∣t− a+b

2

∣∣ and f (t) = sgn
(
t− a+b

2

)
. Then u is (−1, 1)−Lipschitzian,

f is monotonic nondecreasing, D (f ;u) = b − a,
∫ b

a

(
t− a+b

2

)
f (t) dt = (b−a)2

4 and
by (3.7) we get b− a ≤ B(b−a)

2 , which implies that B ≥ 2.

The fact that 1
2 is also the best constant follows likewise and we omit the de-

tails.

4. Applications for the Čebyšev Functional

For two Lebesgue integrable functions, f, g : [a, b] → R with fg an integrable
function, consider the Čebyšev functional C (·, ·) defined by

(4.1) C (f, g) :=
1

b− a

∫ b

a

f (t) g (t) dt− 1
b− a

∫ b

a

f (t) dt · 1
b− a

∫ b

a

g (t) dt.

In 1934, Grüss [12] showed that

(4.2) |C (f, g)| ≤ 1
4

(M −m) (N − n) ,

provided m,M,n,N are real numbers with the property

(4.3) −∞ < m ≤ f ≤ M < ∞, −∞ < n ≤ g ≤ N < ∞ a.e. on [a, b] .

The constant 1
4 is best possible in (4.1) in the sense that it cannot be replaced by

a smaller quantity.
Another lesser known inequality, even though it was derived in 1882 by Čebyšev

[1], under the assumption that f ′, g′ exist and are continuous in [a, b] and is given
by

(4.4) |C (f, g)| ≤ 1
12

‖f ′‖∞ ‖g′‖∞ (b− a)2 ,
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where ‖f ′‖∞ := supt∈[a,b] |f ′ (t)| . The constant 1
12 cannot be improved in the gen-

eral case. We notice that the Čebyšev inequality (4.4) also holds if f, g : [a, b] → R
are absolutely continuous on [a, b] and f ′, g′ ∈ L∞ [a, b] .

In 1970, Ostrowski [15] proved, amongst others, the following result that is in a
sense a combination of the Čebyšev and Grüss results, namely

(4.5) |C (f, g)| ≤ 1
8

(b− a) (M −m) ‖g′‖∞ ,

provided that f satisfies (4.3) while g is absolutely continuous and f ′, g′ ∈ L∞ [a, b] .
The constant 1

8 is best possible in (4.5).
Finally, let us recall that in 1973, Lupaş [14], proved the following inequality in

terms of the Euclidean norm:

(4.6) |C (f, g)| ≤ 1
π2

(b− a) ‖f ′‖2 ‖g
′‖2 ,

provided that f, g are absolutely continuous and f ′, g′ ∈ L2 [a, b] . The constant 1
π2

is best possible.
In the recent paper [2], Cerone and Dragomir proved amongst others the follow-

ing result:

(4.7) |C (f, g)| ≤ inf
γ∈R

‖g − γ‖∞ · 1
b− a

∫ b

a

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣ dt,

provided f ∈ L [a, b] and g ∈ C [a, b] .
As particular cases of (4.7), one can deduce the results

(4.8) |C (f, g)| ≤ ‖g‖∞
1

b− a

∫ b

a

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣ dt,

where g ∈ C [a, b] and f ∈ L [a, b] , and

(4.9) |C (f, g)| ≤ 1
2

(M −m)
1

b− a

∫ b

a

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣ dt,

where m ≤ g (x) ≤ M, x ∈ [a, b] .
The multiplicative constants 1 in (4.8) and 1

2 in (4.9) are best possible. The
inequality (4.9) has been obtained before in a different way in [4].

For generalisations in abstract Lebesgue spaces, best constants and discrete ver-
sions, see [3].

For other results on the Čebyšev functional, see [6], [8] and [11].
Now, assume that g : [a, b] → R is Lebesgue integrable on [a, b] and −∞ <

m ≤ g (t) ≤ M < ∞ for a.e. t ∈ [a, b] . Then the function u (t) :=
∫ t

a
g (s) ds is

(m,M)−Lipschitzian on [a, b] and

(4.10) Φ̃g (t) := Φu (t) =
∫ t

a

g (s) ds− t− a

b− a

∫ b

a

g (s) ds, t ∈ [a, b] .

On utilising the Theorem 1 we can state the following result that provides a sharp
bound for Φ̃g (t) in (4.10).

Proposition 2. If g : [a, b] → R is Lebesgue integrable on [a, b] and −∞ < m ≤
g (s) ≤ M < ∞ for a.e. s ∈ [a, b] , then

(4.11)
∣∣∣Φ̃g (t)

∣∣∣ ≤ (M −m) (b− t) (t− a)
b− a

≤ 1
4

(M −m) (b− a) ,
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for a.e. t ∈ [a, b] . The first inequality is sharp. The constant 1
4 is best possible.

The inequality is obvious by (3.1). The sharpness follows on choosing t = a+b
2

and g (t) = sgn
(
t− a+b

2

)
in (4.11). The details are omitted.

The following result for the Čebyšev functional can be stated:

Proposition 3. If f : [a, b] → R is of bounded variation on [a, b] and g : [a, b] → R
is Lebesgue integrable and satisfies the bounds

(4.12) −∞ < m ≤ g ≤ M < ∞ a.e. on [a, b] ,

then

(4.13) |C (f, g)| ≤ 1
4

(M −m)
b∨
a

(f) .

The constant 1
4 is best possible.

Proof. We observe that, for u (t) =
∫ b

a
g (s) ds,

(4.14) D (f ;u) = (b− a) C (f, g) ,

which by (3.1) produces the desired inequality (4.13).
Now, assume that (4.13) holds with a constant D > 0, i.e.,

(4.15) |C (f, g)| ≤ D (M −m)
b∨
a

(f) .

If we choose f (t) = g (t) = sgn
(
t− a+b

2

)
, then M = 1, m = −1,

∨b
a (f) = 2,

C (f, g) = 1 and by (4.15) we get 1 ≤ 4D which implies D ≥ 1
4 .

The following result can be stated as well.

Proposition 4. Assume that g : [a, b] → R is as in Proposition 3. If f : [a, b] → R
is monotonic nondecreasing on [a, b] , then

|C (f, g)| ≤ 2 · (M −m)
b− a

∫ b

a

(
t− a + b

2

)
f (t) dt(4.16)

≤



1
2 (M −m) max {|f (a)| , |f (b)|} ;

1

(q+1)
1
q

(M −m) ‖f‖p (b− a)−
1
p if p > 1, 1

p + 1
q = 1;

(M −m) 1
b−a ‖f‖1 .

The constants 2 and 1
2 are best possible.

The proof of the inequalities in (4.16) are obvious from (3.5). The sharpness of
the constants follows on choosing f (t) = g (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] .
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[14] A. LUPAŞ, The best constant in an integral inequality, Mathematica (Cluj, Romania),
15(38)(2) (1973), 219-222.

[15] A.M. OSTROWSKI, On an integral inequality, Aequationes Math., 4 (1970), 358-373.

School of Computer Science and Mathematics, Victoria University, PO Box 14428,

Melbourne City, VIC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/dragomir


