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OSTROWSKI TYPE INEQUALITY FOR ABSOLUTELY
CONTINUOUS FUNCTIONS ON SEGMENTS IN LINEAR

SPACES

EDER KIKIANTY, S.S. DRAGOMIR, AND P. CERONE

Abstract. An Ostrowski type inequality is developed for estimating the devi-
ation of the integral mean of an absolutely continuous function and the linear
combination of its values at k + 1 partition points on a segment in (real)
linear spaces. Some particular cases are provided which recapture earlier re-
sults along with the results for trapezoidal type inequalities and the classical
Ostrowski inequality. Inequalities are obtained by applying these results for
semi-inner products and some of these inequalities are proven to be sharp.

1. Introduction

In 1938, A. Ostrowski (see [25, p. 226]) considered the problem of estimating
the deviation of a function from its integral mean. For any continuous function f
on [a, b] ⊂ R which is differentiable on (a, b) and |f ′(x)| ≤ M for all x ∈ (a, b), the
inequality

(1.1)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2

(b− a)2

]
(b− a)M,

holds for every x ∈ [a, b] (see [25, p. 226–227] for the complete proof). This is
then known as the Ostrowski inequality (see [24, p. 468]). The first factor on the
right hand side of (1.1) reaches the value of 1

4 at the midpoint and monotonically
increases to 1

2 which is attained at both endpoints [25, p. 226]. It implies that the
constant 1

4 is best possible, that is, it cannot be replaced by a smaller quantity (see
also [2, p. 3775–3776], for an alternative proof).

The Ostrowski inequality has been generalised for functions of bounded varia-
tions (see [15, p. 374] and [19, p. 3–4]). For this class of functions, the results have
been developed to estimate the absolute difference between the linear combination
of values of a function at k + 1 partition points (of a closed interval) from its inte-
gral mean (see [10]). A similar result has been obtained for the class of absolutely
continuous functions (see [11,12,15,18,19]). The classical Ostrowski inequality and
the trapezoidal type inequality were obtained by considering some particular cases
of the generalised Ostrowski type inequality (see [15, p. 378–381]).

Another possibility of generalising the Ostrowski inequality is to consider the case
of convex functions. Since any convex function is locally Lipschitzian (hence, it is
locally absolutely continuous), thus it can be connected to the previous mentioned
cases (see [15,17]). For other possible directions, we refer to the results in [4–9].
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An extension of the Ostrowski inequality to functions with values in Banach
spaces has been given in [3]. The result can be stated as follows:

Theorem 1. Let (X, ‖ · ‖) be a Banach space with the Radon-Nikodym property
and f : [a, b] → X an absolutely continuous function on [a, b]. Then we have the
inequalities, ∥∥∥∥∥f(s)− 1

b− a
(B)

∫ b

a

f(t)dt

∥∥∥∥∥

≤





[
1
4 +

(
s− a+b

2
b−a

)2
]

(b− a)‖|f ′|‖[a,b],∞, if f ′ ∈ L∞([a, b], X);

1

(q+1)
1
q

[(
s−a
b−a

)q+1

+
(

b−s
b−a

)q+1
] 1

q

(b− a)
1
q ‖|f ′|‖[a,b],p,

if f ′ ∈ Lp([a, b], X), p > 1, 1
p

+ 1
q

= 1;[
1
2 +

∣∣s− a+b
2

∣∣] ‖|f ′|‖[a,b],1,

for any s ∈ [a, b], where

‖|f ′|‖[a,b],∞ := ess sup
t∈[a,b]

‖f ′(t)‖, and ‖|f ′|‖[a,b],p :=

(∫ b

a

‖f ′(t)‖pdt

) 1
p

, p ≥ 1.

A similar result has been established for functions defined on segments in general
linear space (see [18]). The result can be summarised as follows:

Theorem 2. Let X be a linear space, x, y ∈ X, x 6= y and f : [x, y] ⊂ X → R
be a function defined on the segment [x, y] and such that the Gâteaux differential
∇f [(1 − ·)x + ·y](y − x) exists a.e. on [0, 1] and is Lebesgue integrable on [0, 1].
Then for any s ∈ [0, 1] we have

∣∣∣∣
∫ 1

0

f [(1− t)x + ty]dt− f [(1− s)x + sy]
∣∣∣∣

≤





[
1
4 +

(
s− 1

2

)2
]
‖∇f [(1− ·)x + ·y](y − x)‖∞,

if ∇f [(1− ·)x + ·y](y − x) ∈ L∞[0, 1];
1

(q+1)
1
q
[sq+1 + (1− s)q+1]

1
q ‖∇f [(1− ·)x + ·y](y − x)‖p,

if ∇f [(1− ·)x + ·y](y − x) ∈ Lp[0, 1], p > 1, 1
p

+ 1
q

= 1;[
1
2 +

∣∣s− 1
2

∣∣] ‖∇f [(1− ·)x + ·y](y − x)‖1,

(1.2)

where ‖ · ‖r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr[x, y].

An application of Theorem 2 for semi-inner products in any normed linear spaces
was also provided in [18, p. 95–99]. However, the sharpness for the constants of
these inequalities has not been considered.

In this paper, we develop an Ostrowski type inequality for estimating deviation of
the integral mean of an absolutely continuous function and the linear combination
of its values at k + 1 partition points on a segment in (real) linear spaces. We also
provide some particular cases which recapture the results in [18] along with the
results for trapezoidal type inequalities and the classical Ostrowski inequality. In a
normed linear spaces, we obtain inequalities for semi-inner products by applying the
obtained results and these inequalities are more general than those in [18]. Some
of these inequalities are proven to be sharp and the proof also covers the sharpness
of those in [18].
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2. Definitions

Let X be a linear space (in this paper, we assume that the linear space is over the
field of real numbers) and x, y ∈ X. We consider the Gâteaux lateral derivatives
for any x, y ∈ X and any function f defined on X, as

(5±f(x))(y) := lim
t→0±

f(x + ty)− f(x)
t

,

if the above limits exist.
Let x, y ∈ X, x 6= y and define the segment [x, y] := {(1 − t)x + ty, t ∈ [0, 1]}.

Let f : [x, y] → R and the associated function h = g(x, y) : [0, 1] → R, h(t) =
g(x, y)(t) := f [(1 − t)x + ty], t ∈ [0, 1]. It is well known that the function h is
absolutely continuous on [0, 1] if and only if h is differentiable almost everywhere,
the derivative h′ is Lebesgue integrable and h(t) =

∫ t

0
h′(s)ds+h(0) (see [1, p. 263]

and [27, p. 106–107]).

Lemma 1. With the above notation, h is absolutely continuous if and only if f
satisfies the following properties

(1) ∇f [(1− ·)x + ·y](y − x) exists almost everywhere on [0, 1];
(2) ∇f [(1− ·)x + ·y](y − x) is Lebesgue integrable on [0, 1];

(3) f [(1− t)x + ty] =
∫ t

0

∇f [(1− s)x + sy](y − x)ds + f(x).

Definition 1. Let f be a real-valued function defined on a segment [x, y] of a linear
space X. We say that f is absolutely continuous on segment [x, y] if f satisfies the
conditions (1)-(3) of Lemma 1.
By Definition 1 and Lemma 1, we conclude that f is absolutely continuous on
segment [x, y] if and only if h is absolutely continuous on [0, 1].

Assume that (X, ‖ · ‖) is a normed linear space. The function f0(x) = 1
2‖x‖2

(x ∈ X) is convex and the following limits

〈x, y〉s(i) := (5+(−)f0(y))(x) = lim
t→0+(−)

‖y + tx‖2 − ‖y‖2
2t

,

exist for any x, y ∈ X. They are called the superior (inferior) semi-inner products
associated to the norm ‖ · ‖ (see [16, p. 27–39] for further properties).

The function fr(x) = ‖x‖r (x ∈ X and 1 ≤ r < ∞) is also convex. Therefore,
the following limits, which are related to superior (inferior) semi-inner products,

(5+(−)fr(y))(x) = lim
t→0+(−)

‖y + tx‖r − ‖y‖r

t
= r‖y‖r−2〈x, y〉s(i),(2.1)

exist for all x, y ∈ X whenever r ≥ 2; otherwise, they exist for any x ∈ X and
nonzero y ∈ X. In particular, if r = 1, then the following limits

(5+(−)f1(y))(x) = lim
t→0+(−)

‖y + tx‖ − ‖y‖
t

=
〈

x,
y

‖y‖
〉

s(i)

,

exist for x, y ∈ X and y 6= 0.
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3. The Results

The following result is an Ostrowski type inequality for absolutely continuous
functions defined on a segment in a linear space.

Theorem 3. Let X be a linear space, Ik : 0 = s0 < s1 < · · · < sk−1 < sk = 1
be a division of the interval [0, 1] and αi (i = 0, . . . , k + 1) be k + 2 points such
that α0 = 0, αi ∈ [si−1, si] (i = 1, . . . , k) and αk+1 = 1. If f : [x, y] ⊂ X → R is
absolutely continuous on segment [x, y], then

(3.1)

∣∣∣∣∣
∫ 1

0

f [(1− t)x + ty]dt−
k∑

i=0

(αi+1 − αi)f [(1− si)x + siy]

∣∣∣∣∣

≤





[
1
4

k−1∑

i=0

h2
i +

k−1∑

i=0

(
αi+1 − si + si+1

2

)2
]
‖∇f [(1− ·)x + ·y](y − x)‖∞,

if ∇f [(1− ·)x + ·y](y − x) ∈ L∞[0, 1];

1

(q+1)
1
q

[
k−1∑

i=0

[
(αi+1 − si)q+1 + (si+1 − αi+1)q+1

]
] 1

q

‖∇f [(1− ·)x + ·y](y − x)‖p,

if ∇f [(1− ·)x + ·y](y − x) ∈ Lp[0, 1], p > 1, 1
p

+ 1
q

= 1;[
1
2ν(h) + max

i∈{0,...,k−1}

∣∣∣αi+1 − si+si+1
2

∣∣∣
]
‖∇f [(1− ·)x + ·y](y − x)‖1,

where ν(h) := max{hi|i = 0, . . . , k − 1}, hi := si+1 − si (i = 0, . . . , k − 1) and
‖ · ‖p (p ∈ [1,∞]) are the Lebesgue norms.
The constants 1

4 , 1

(q+1)
1
q

and 1
2 are sharp.

Proof. Under the assumptions, we have the Ostrowski type inequality for absolutely
continuous function h(·) that has been established in [10–12,15]

∣∣∣∣∣
∫ b

a

h(t)dt−
k∑

i=0

(αi+1 − αi)h(si)

∣∣∣∣∣

≤





[
1
4

k−1∑

i=0

h2
i +

k−1∑

i=0

(
αi+1 − si + si+1

2

)2
]
‖h′‖∞,

if h′ ∈ L∞[a, b];

1

(q+1)
1
q

[
k−1∑

i=0

[
(αi+1 − si)q+1 + (si+1 − αi+1)q+1

]
] 1

q

‖h′‖p,

if h′ ∈ Lp[a, b], p > 1, 1
p

+ 1
q

= 1;[
1
2ν(h) + max

i∈{0,...,k−1}

∣∣∣αi+1 − si+si+1
2

∣∣∣
]
‖h′‖1.

Consider the auxiliary function h(t) = g(x, y)(t) = f [(1− t)x+ ty] defined on [0, 1].
Since f is absolutely continuous on the segment [x, y], it follows that h = g(x, y)
is an absolutely continuous function and we may apply the above inequality. We
obtain the desired result by writing the above inequality for h(t) = g(x, y)(t).
The sharpness of the constants follows by the particular cases which are given in
Corollary 1 and Corollary 2. ¤
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Corollary 1. Let X be a linear space, x, y ∈ X, x 6= y and f : [x, y] ⊂ X → R
be an absolutely continuous function on segment [x, y]. Then for any s ∈ [0, 1] we
have the inequalities

∣∣∣∣
∫ 1

0

f [(1− t)x + ty]dt− sf(x)− (1− s)f(y)
∣∣∣∣

≤





[
1
4 +

(
s− 1

2

)2
]
‖∇f [(1− ·)x + ·y](y − x)‖∞,

if ∇f [(1− ·)x + ·y](y − x) ∈ L∞[0, 1];

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q ‖∇f [(1− ·)x + ·y](y − x)‖p,

if ∇f [(1− ·)x + ·y](y − x) ∈ Lp[0, 1],p > 1, 1
p

+ 1
q

= 1;[
1
2 +

∣∣s− 1
2

∣∣] ‖∇f [(1− ·)x + ·y](y − x)‖1,

(3.2)

where ‖ · ‖p (p ∈ [1,∞]) are the usual Lebesgue norms on Lp[0, 1]. Particularly, we
have

∣∣∣∣
f(x) + f(y)

2
−

∫ 1

0

f [(1− t)x + ty]dt

∣∣∣∣

≤





1
4‖∇f [(1− ·)x + ·y](y − x)‖∞,

1

2(q+1)
1
q
‖∇f [(1− ·)x + ·y](y − x)‖p, p > 1, 1

p
+ 1

q
= 1;

1
2‖∇f [(1− ·)x + ·y](y − x)‖1.

(3.3)

The constants in (3.2) and (3.3) are sharp.

Proof. Choose s0 = 0, s1 = 1 and 0 = α0 < α1 = s < α2 = 1 in Theorem 3 to
obtain (3.2). The sharpness of the constants in (3.2) follows by the particular case
(that is, (3.3)). By choosing s = 1

2 in (3.2), we obtain (3.3). Now, we will prove
the sharpness of the constants in (3.3). Let α and β be real positive constants such
that

∣∣∣∣
f(x) + f(y)

2
−

∫ 1

0

f [(1− t)x + ty]dt

∣∣∣∣ ≤





α‖∇f [(1− ·)x + ·y](y − x)‖∞,

β

(
1

(q+1)
1
q

)
‖∇f [(1− ·)x + ·y](y − x)‖p,

p > 1, 1
p

+ 1
q

= 1;

Take X = R, [x, y] = [a, b] ⊂ R (a 6= b) and f(x) =
∣∣x− b+a

2

∣∣. Note that f is
a convex function on the closed interval [a, b], thus, it is an absolutely continuous
function (see [27, Proposition 5.16]). Therefore,

1
4
(b− a) ≤





α(b− a),

β

(
1

(q+1)
1
q

)
(b− a)

1
q , q > 1.

From the first case, we obtain α ≥ 1
4 since b − a 6= 0, which proves the sharpness

of 1
4 in the first case of (3.3). Now, let q → 1 in the second case, we obtain

1
4 (b− a) ≤ 1

2β(b− a), that is, β ≥ 1
2 , since b− a 6= 0, which shows that 1

2 is sharp
in the second case of (3.3).

Now, suppose that
∣∣∣∣
f(x) + f(y)

2
−

∫ 1

0

f [(1− t)x + ty]dt

∣∣∣∣ ≤ γ‖∇f [(1− ·)x + ·y](y − x)‖1,
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for a real constant γ > 0. By choosing X = R and the absolutely continuous
function f(x) = C

C2+x2 − tan−1
(

1
C

)
(C > 0) on the interval [0, 1] (the proof of this

part is due to Peachey, McAndrew and Dragomir [26, p. 99–100]), we obtain

1
2C

− tan−1

(
1
C

)
+

C

2(C2 + 1)
≤ γ

[
1

C(C2 + 1)

]
.

Thus,

γ ≥ (C2 + 1)
[
1
2
− C tan−1

(
1
C

)
+

C2

2(C2 + 1)

]
,

and by taking C → 0+, we obtain γ ≥ 1
2 and the proof for the sharpness of the

constants in (3.3) is complete. This implies that all constants in (3.1) and(3.2) are
sharp. ¤
Remark 1. If we assume that the function f in (3.3) is convex, then the quantity(

f(x)+f(y)
2 − ∫ 1

0
f [(1− t)x + ty]dt

)
is positive by the Hermite-Hadamard integral

inequality (see [14, p. 2]).

Corollary 2. Let X be a linear space, x, y ∈ X, x 6= y and f : [x, y] ⊂ X → R
be an absolutely continuous function on segment [x, y]. Then for any s ∈ [0, 1] we
have the inequalities∣∣∣∣

∫ 1

0

f [(1− t)x + ty]dt− f [(1− s)x + sy]
∣∣∣∣

≤





[
1
4 +

(
s− 1

2

)2
]
‖∇f [(1− ·)x + ·y](y − x)‖∞,

if ∇f [(1− ·)x + ·y](y − x) ∈ L∞[0, 1];
1

(q+1)
1
q
[sq+1 + (1− s)q+1]

1
q ‖∇f [(1− ·)x + ·y](y − x)‖p,

if ∇f [(1− ·)x + ·y](y − x) ∈ Lp[0, 1],p > 1, 1
p

+ 1
q

= 1;[
1
2 +

∣∣s− 1
2

∣∣] ‖∇f [(1− ·)x + ·y](y − x)‖1,

(3.4)

where ‖ · ‖p (p ∈ [1,∞]) are the usual Lebesgue norms on Lp[0, 1]. Particularly, we
have ∣∣∣∣

∫ 1

0

f [(1− t)x + ty]dt− f

(
x + y

2

)∣∣∣∣

≤





1
4‖∇f [(1− ·)x + ·y](y − x)‖∞,

1

2(q+1)
1
q
‖∇f [(1− ·)x + ·y](y − x)‖p,

p > 1, 1
p

+ 1
q

= 1;
1
2‖∇f [(1− ·)x + ·y](y − x)‖1.

(3.5)

The constants in (3.4) and (3.5) are sharp.

Proof. Choose s0 = 0 ≤ s1 = s ≤ 1 = s2 and 0 ≤ α1 ≤ s ≤ α2 ≤ 1 in Theorem 3,
then let α1 = 0 and α2 = 1, to obtain the (3.4). The sharpness of the constants
in (3.4) would follow by the particular case (that is, (3.5)). By choosing s = 1

2 in
(3.4), we obtain (3.5). Now, we will prove the sharpness of the constants in (3.5).
Let ζ and η be real positive constants such that

∣∣∣∣
∫ 1

0

f [(1− t)x + ty]dt− f

(
x + y

2

)∣∣∣∣ ≤





ζ‖∇f [(1− ·)x + ·y](y − x)‖∞,

η

(
1

(q+1)
1
q

)
‖∇f [(1− ·)x + ·y](y − x)‖p,

p > 1, 1
p

+ 1
q

= 1.
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If we choose X = R, [x, y] = [a, b] (a 6= b) and f(x) =
∣∣x− b+a

2

∣∣, then we obtain

1
4
(b− a) ≤





ζ(b− a),

η

(
1

(q+1)
1
q

)
(b− a)

1
q , q > 1.

From the first case, we obtain ζ ≥ 1
4 since b − a 6= 0, which proves the sharpness

of 1
4 in the first case of (3.5). Now, let q → 1 in the second case, we obtain

1
4 (b − a) ≤ 1

2η(b − a), that is, η ≥ 1
2 , since b − a 6= 0, which shows that 1

2 is sharp
in the second case of (3.5).

Now, suppose that
∣∣∣∣
f(x) + f(y)

2
−

∫ 1

0

f [(1− t)x + ty]dt

∣∣∣∣ ≤ θ‖∇f [(1− ·)x + ·y](y − x)‖1,

for a real constant θ > 0. By choosing X = R and the absolutely continuous
function f(x) = C

C2+x2 − tan−1
(

1
C

)
(C > 0) on the interval [−1, 1] (the proof of

this part is due to Peachey, McAndrew and Dragomir [26, p. 99–100]), we obtain
∣∣∣∣−

1
C

+ tan−1

(
1
C

)∣∣∣∣ ≤ θ

[
2

C(C2 + 1)

]
.

Thus,

θ ≥ C2 + 1
2

∣∣∣∣−1 + C tan−1

(
1
C

)∣∣∣∣ ,

and by taking C → 0+, we obtain θ ≥ 1
2 and the proof for the sharpness of the

constants in (3.5) is complete. This implies that all constants in (3.1) and (3.4) are
sharp. ¤

Remark 2. If we assume that the function f in (3.5) is convex, then the quantity(∫ 1

0
f [(1− t)x + ty]dt− f

(
x+y

2

))
is positive by the Hermite-Hadamard integral in-

equality (see [13, p. 2]).
Remark 3. The inequality (3.5) has been obtained in [18, Corollary 1]. We also
note that the bounds in (3.4) and (3.5) are the same as the ones in (3.2) and (3.3),
respectively. Cerone in [5, Remark 1] stated that there is a strong relationship
between the Ostrowski and trapezoidal functionals which is highlighted by the
symmetric transformations amongst their kernels. Particularly, the bounds in the
Ostrowski and trapezoidal type inequalities are the same [5, p. 317].
Example 1. Let (X, ‖ · ‖) be a normed linear space and consider the absolutely
continuous function f(x) = ln(‖x‖), x ∈ X \ {0}. Applying this to (3.3) and (3.5),
we obtain∣∣∣∣ln(

√
‖x‖‖y‖)−

∫ 1

0

ln(‖(1− t)x + ty‖)dt

∣∣∣∣

≤





1
4 sup

u∈[0,1]

∣∣∣ 〈y−x,(1−u)x+uy〉s(i)

‖(1−u)x+uy‖2
∣∣∣ ,

1

2(q+1)
1
q

(∫ 1

0

∣∣∣∣∣
〈y − x, (1− u)x + uy〉s(i)

‖(1− u)x + uy‖2

∣∣∣∣∣

p

du

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2

∫ 1

0

∣∣∣∣∣
〈y − x, (1− u)x + uy〉s(i)

‖(1− u)x + uy‖2

∣∣∣∣∣ du,
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and

∣∣∣∣
∫ 1

0

ln(‖(1− t)x + ty‖)dt− ln
(∥∥∥∥

x + y

2

∥∥∥∥
)∣∣∣∣

≤





1
4 sup

u∈[0,1]

∣∣∣ 〈y−x,(1−u)x+uy〉s(i)

‖(1−u)x+uy‖2
∣∣∣ ,

1

2(q+1)
1
q

(∫ 1

0

∣∣∣∣∣
〈y − x, (1− u)x + uy〉s(i)

‖(1− u)x + uy‖2

∣∣∣∣∣

p

du

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2

∫ 1

0

∣∣∣∣∣
〈y − x, (1− u)x + uy〉s(i)

‖(1− u)x + uy‖2

∣∣∣∣∣ du,

for any linearly independent x, y ∈ X. Using the Cauchy-Schwarz inequality for
superior (inferior) semi-inner products (see [16, p. 29]), we obtain

∣∣∣∣ln(
√
‖x‖‖y‖)−

∫ 1

0

ln(‖(1− t)x + ty‖)dt

∣∣∣∣

≤ ‖y − x‖





1
4 sup

u∈[0,1]

‖(1− u)x + uy‖−1,

1

2(q+1)
1
q

(∫ 1

0

‖(1− u)x + uy‖−pdu

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2

∫ 1

0

‖(1− u)x + uy‖−1du,

and

∣∣∣∣
∫ 1

0

ln(‖(1− t)x + ty‖)dt− ln
(∥∥∥∥

x + y

2

∥∥∥∥
)∣∣∣∣

≤ ‖y − x‖





1
4 sup

u∈[0,1]

‖(1− u)x + uy‖−1,

1

2(q+1)
1
q

(∫ 1

0

‖(1− u)x + uy‖−pdu

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2

∫ 1

0

‖(1− u)x + uy‖−1du,

for any linearly independent x, y ∈ X.

4. Application for Semi-Inner Products

The following result holds in any normed linear space with the semi-inner prod-
ucts 〈·, ·〉s(i).

Proposition 1. Let (X, ‖ · ‖) be a normed linear space, Ik : 0 = s0 < s1 < · · · <
sk−1 < sk = 1 be a division of the interval [0, 1] and αi (i = 0, . . . , k + 1) be k + 2
points such that α0 = 0, αi ∈ [si−1, si] (i = 1, . . . , k) and αk+1 = 1. If 1 ≤ r < ∞
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then
∣∣∣∣∣
∫ 1

0

‖(1− t)x + ty‖rdt−
k∑

i=0

(αi+1 − αi)‖(1− si)x + siy‖r

∣∣∣∣∣

≤





[
1
4

k−1∑

i=0

h2
i +

k−1∑

i=0

(
αi+1 − si + si+1

2

)2
]

× sup
u∈[0,1]

[r‖(1− u)x + uy‖r−2|〈y − x, (1− u)x + uy〉s(i)|],

1

(q+1)
1
q

[
k−1∑

i=0

[
(αi+1 − si)q+1 + (si+1 − αi+1)q+1

]
] 1

q

×
[∫ 1

0

|r‖(1− u)x + uy‖r−2〈y − x, (1− u)x + uy〉s(i)|pdu

] 1
p

,

p > 1, 1
p

+ 1
q

= 1;[
1
2ν(h) + max

i∈{0,...,k−1}

∣∣∣αi+1 − si+si+1
2

∣∣∣
]

×
∫ 1

0

|r‖(1− u)x + uy‖r−2〈y − x, (1− u)x + uy〉s(i)|du,

(4.1)

holds for any x, y ∈ X, whenever r ≥ 2, otherwise it holds for any linearly inde-
pendent x, y ∈ X. Here, ν(h) := max{hi|i = 0, . . . , k − 1}, hi := si+1 − si (i =
0, . . . , k − 1) and ‖ · ‖p (p ∈ [1,∞]) are the Lebesgue norms.

Proof. Let f(x) = ‖x‖r, where x ∈ X, and 1 ≤ r < ∞. Since f is convex on
X then g(x, y)(·) = f((1 − ·)x + ·y) is convex on [0, 1] for any 1 ≤ r < ∞ and
x, y ∈ X. It follows that g(x, y)(·) = ‖(1 − ·)x + ·y‖r is an absolutely continuous
function. Therefore, we may apply Theorem 3 for f (see (2.1)) and obtained the
desired result. ¤

Remark 4. The result we obtain in Proposition 1 is ”complicated” in the sense
that the upper bound is not practical to apply. Here, we suggest a simpler, although
coarser, upper bound (see [18, p. 97–98]) using the Cauchy-Schwarz inequality for
semi-inner products. Under the assumptions of Proposition 1, and by Cauchy-
Schwarz type inequality for superior (inferior) semi-inner products (see [16, p. 29]),
we obtain

sup
u∈[0,1]

[r‖(1− u)x + uy‖r−2|〈y − x, (1− u)x + uy〉s(i)|

≤ r‖y − x‖ sup
u∈[0,1]

‖(1− u)x + uy‖r−1 = r‖y − x‖max{‖x‖r−1, ‖y‖r−1},

for all x, y ∈ X.
Note: Consider the function f(t) = ‖(1− t)x + ty‖r−1 on [0, 1]. Since it is contin-
uous and convex on [0, 1], then the supremum of f on [0, 1] is exactly its maximum,
and it is attained at one of the endpoints. In other words,

sup
u∈[0,1]

‖(1− u)x + uy‖r−1 = max{‖x‖r−1, ‖y‖r−1}.
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We also have the following for any x, y ∈ X

r

(∫ 1

0

|‖(1− u)x + uy‖r−2〈y − x, (1− u)x + uy〉s(i)|pdu

) 1
p

≤ r‖y − x‖
(∫ 1

0

‖(1− u)x + uy‖p(r−1)du

) 1
p

≤ r‖y − x‖
(‖x‖p(r−1) + ‖y‖p(r−1)

2

) 1
p

,

by the Hermite-Hadamard inequality for the norm (see [21, p. 3] and [28, p. 106]),
and

r

(∫ 1

0

|‖(1− u)x + uy‖r−2〈y − x, (1− u)x + uy〉s(i)|du

)

≤ r‖y − x‖
(∫ 1

0

‖(1− u)x + uy‖r−1du

)
≤ 1

2
r‖y − x‖(‖x‖r−1 + ‖y‖r−1),

by the refined triangle inequality for the norm (see [21, p. 4] and [28, p. 106]).
Therefore, we have the following inequalities

∣∣∣∣∣
∫ 1

0

‖(1− t)x + ty‖rdt−
k∑

i=0

(αi+1 − αi)‖(1− si)x + siy‖r

∣∣∣∣∣
(4.2)

≤ r‖y − x‖





[
1
4

k−1∑

i=0

h2
i +

k−1∑

i=0

(
αi+1 − si + si+1

2

)2
]

sup
u∈[0,1]

‖(1− u)x + uy‖r−1,

1

(q+1)
1
q

[
k−1∑

i=0

[
(αi+1 − si)q+1 + (si+1 − αi+1)q+1

]
] 1

q

×
[∫ 1

0

‖(1− u)x + uy‖p(r−1)du

] 1
p

,

p > 1, 1
p

+ 1
q

= 1;[
1
2ν(h) + max

i∈{0,...,k−1}

∣∣∣αi+1 − si+si+1
2

∣∣∣
] ∫ 1

0

‖(1− u)x + uy‖r−1du,

(4.3)

≤ r‖y − x‖





[
1
4

k−1∑

i=0

h2
i +

k−1∑

i=0

(
αi+1 − si + si+1

2

)2
]

max{‖x‖r−1, ‖y‖r−1},

1

(q+1)
1
q

[
k−1∑

i=0

[
(αi+1 − si)q+1 + (si+1 − αi+1)q+1

]
] 1

q

×
[‖x‖p(r−1) + ‖y‖p(r−1)

2

] 1
p

,

p > 1, 1
p

+ 1
q

= 1;

1
2

[
1
2ν(h) + max

i∈{0,...,k−1}

∣∣∣αi+1 − si+si+1
2

∣∣∣
]

(‖x‖r−1 + ‖y‖r−1),

which holds for any x, y ∈ X. The constants in the first and second cases of (4.2)
and (4.3) are sharp. The proof follows by its particular cases which are mentioned
in Remark 5 and Remark 6.
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Corollary 3. Let X be a normed linear space, s ∈ [0, 1] and 1 ≤ r < ∞. Then,
we have the inequality

∣∣∣∣
∫ 1

0

‖(1− t)x + ty‖rdt− s‖x‖r − (1− s)‖y‖r

∣∣∣∣
(4.4)

≤ r‖y − x‖





[
1
4 +

(
s− 1

2

)2
]

sup
u∈[0,1]

‖(1− u)x + uy‖r−1,

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q

(∫ 1

0

‖(1− u)x + uy‖p(r−1)du

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;

[
1
2 +

∣∣s− 1
2

∣∣]
∫ 1

0

‖(1− u)x + uy‖r−1du,

(4.5)

≤ r‖y − x‖





[
1
4 +

(
s− 1

2

)2
]
max{‖x‖r−1, ‖y‖r−1},

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q

[‖x‖p(r−1) + ‖y‖p(r−1)

2

] 1
p

,

p > 1, 1
p

+ 1
q

= 1;
1
2

[
1
2 +

∣∣s− 1
2

∣∣] (‖x‖r−1 + ‖y‖r−1),

which holds for any x, y ∈ X. The constants in the first and second cases of (4.4)
and (4.5) are sharp.

Proof. Choose s0 = 0, s1 = 1 and 0 = α0 < α1 = s < α2 = 1 in (4.2) and (4.3).
The sharpness of the constants follows by the particular case which is pointed out
in Remark 5. ¤

Remark 5. Particularly,
∣∣∣∣
∫ 1

0

‖(1− t)x + ty‖2dt− s‖x‖2 − (1− s)‖y‖2
∣∣∣∣

(4.6)

≤ 2‖y − x‖





[
1
4 +

(
s− 1

2

)2
]

sup
u∈[0,1]

‖(1− u)x + uy‖,

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q

(∫ 1

0

‖(1− u)x + uy‖pdu

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;

[
1
2 +

∣∣s− 1
2

∣∣]
∫ 1

0

‖(1− u)x + uy‖du,

(4.7)

≤ 2‖y − x‖





[
1
4 +

(
s− 1

2

)2
]
max{‖x‖, ‖y‖},

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q

(‖x‖p + ‖y‖p

2

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;
1
2

[
1
2 +

∣∣s− 1
2

∣∣] (‖x‖+ ‖y‖),
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holds for any x, y ∈ X. The constants in the first and second cases of (4.6) and (4.7)
are sharp. This implies that the constants in the first and second cases of (4.2),
(4.3), (4.4) and (4.5) are also sharp (the proof follows by considering a particular
case which is presented in Remark 8).

We also have
∣∣∣∣
∫ 1

0

‖(1− t)x + ty‖dt− s‖x‖ − (1− s)‖y‖
∣∣∣∣

≤ ‖y − x‖





1
4 +

(
s− 1

2

)2
,

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q , q > 1;

1
2 +

∣∣s− 1
2

∣∣ ,

(4.8)

for any x, y ∈ X. Note that for all 1 < q < ∞ and s ∈ [0, 1],

(1) 1
4 +

(
s− 1

2

)2 = s2+(1−s)2

2 =
∫ 1

0

|t− s|dt,

(2) 1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q =

(∫ 1

0

|t− s|qdt

) 1
q

,

(3) 1
2 +

∣∣s− 1
2

∣∣ = max{s, 1− s} = sup
t∈[0,1]

|t− s|,

and
∫ 1

0

|t− s|dt ≤
(∫ 1

0

|t− s|qdt

) 1
q

≤ sup
t∈[0,1]

|t− s| by the Hölder inequality. Thus,

(4.9)
1
4

+
(

s− 1
2

)2

≤ 1

(q + 1)
1
q

[sq+1 + (1− s)q+1]
1
q ≤ 1

2
+

∣∣∣∣s−
1
2

∣∣∣∣ .

We conclude that the constant 1
4 is best possible among the constants in all cases

of (4.8) and rewrite (4.8) as

(4.10)
∣∣∣∣
∫ 1

0

‖(1− t)x + ty‖dt− s‖x‖ − (1− s)‖y‖
∣∣∣∣ ≤

[
1
4

+
(

s− 1
2

)2
]
‖y − x‖.

The constant 1
4 in (4.10) is sharp (the proof follows by considering a particular case

which is given in Remark 8).

Corollary 4. Let X be a normed linear space, s ∈ [0, 1] and 1 ≤ r < ∞. Then,
we have the inequality

∣∣∣∣‖(1− s)x + sy‖r −
∫ 1

0

‖(1− t)x + ty‖rdt

∣∣∣∣
(4.11)

≤ r‖y − x‖





[
1
4 + (s− 1

2 )2
]

sup
u∈[0,1]

‖(1− u)x + uy‖r−1},

1

(q+1)
1
q
[sq+1 + (1− s)q+1]

1
q

(∫ 1

0

‖(1− u)x + uy‖p(r−1)du

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;

[
1
2 +

∣∣s− 1
2

∣∣]
(∫ 1

0

‖(1− u)x + uy‖r−1du

)
.
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(4.12)

≤ r‖y − x‖





[
1
4 + (s− 1

2 )2
]
max{‖x‖r−1, ‖y‖r−1},

1

(q+1)
1
q
[sq+1 + (1− s)q+1]

1
q

(‖x‖p(r−1) + ‖y‖p(r−1)

2

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;
1
2

[
1
2 +

∣∣s− 1
2

∣∣] (‖x‖r−1 + ‖y‖r−1).

for any x, y ∈ X. The constants in the first and second cases of (4.11) and (4.12)
are sharp.

Proof. Choose s0 = 0 ≤ s1 = s ≤ 1 = s2 and 0 ≤ α1 ≤ s ≤ α2 ≤ 1, then let
α1 = 0 and α2 = 1 in (4.2) and (4.3). The sharpness of the constants follows by
the particular case which is pointed out in Remark 6. ¤

Remark 6. Particularly, we have

∣∣∣∣‖(1− s)x + sy‖2 −
∫ 1

0

‖(1− t)x + ty‖2dt

∣∣∣∣
(4.13)

≤ 2‖y − x‖





[
1
4 + (s− 1

2 )2
]
max{‖x‖, ‖y‖},

1

(q+1)
1
q
[sq+1 + (1− s)q+1]

1
q

(∫ 1

0

‖(1− u)x + uy‖pdu

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;

[
1
2 +

∣∣s− 1
2

∣∣]
(∫ 1

0

‖(1− u)x + uy‖du

)
,

(4.14)

≤ 2‖y − x‖





[
1
4 +

(
s− 1

2

)2
]
max{‖x‖, ‖y‖},

1

(q+1)
1
q

[
sq+1 + (1− s)q+1

] 1
q

(‖x‖p + ‖y‖p

2

) 1
p

,

p > 1, 1
p

+ 1
q

= 1;
1
2

[
1
2 +

∣∣s− 1
2

∣∣] (‖x‖+ ‖y‖),

and

(4.15)
∣∣∣∣‖(1− s)x + sy‖ −

∫ 1

0

‖(1− t)x + ty‖dt

∣∣∣∣ ≤
[

1
4

+
(

s− 1
2

)2
]
‖y − x‖

for any x, y ∈ X. The constants in the first and second cases of (4.13) and (4.14)
are sharp as well as the one in (4.15) (the proof follows by considering a particular
case which is pointed out in Remark 10). It implies the sharpness of the constants
in the first and second cases of (4.2), (4.3), (4.11) and (4.12).
Remark 7. Again, we note that the bounds in (4.11), (4.12), (4.13), (4.14) and
(4.15) are the same as the ones in (4.4), (4.5), (4.6), (4.7) and (4.10), respectively
(see Remark 3).
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5. Some Particular Cases of Interest

Proposition 2. Let X be a normed linear space and 1 ≤ r < ∞. Then

0 ≤ ‖x‖r + ‖y‖r

2
−

∫ 1

0

‖(1− t)x + ty‖rdt

(5.1)

≤ r‖y − x‖





1
4 sup

u∈[0,1]

‖(1− u)x + uy‖r−1,

1

2(q+1)
1
q

(∫ 1

0

‖(1− u)x + uy‖p(r−1)du

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2

∫ 1

0

‖(1− u)x + uy‖r−1du,

(5.2)

≤ r‖y − x‖





1
4 max{‖x‖r−1, ‖y‖r−1},

1

2(q+1)
1
q

(‖x‖p(r−1) + ‖y‖p(r−1)

2

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
4 (‖x‖r−1 + ‖y‖r−1),

holds for any x, y ∈ X. The constants in the first and second cases of (5.1) and
(5.1) are sharp.

Proof. Choose s = 1
2 in (4.4) and (4.5). The sharpness of the constants follows by

the particular case which is presented in Remark 8. ¤

Remark 8. Particularly,

0 ≤ ‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt

≤ ‖y − x‖





1
2 sup

u∈[0,1]

‖(1− u)x + uy‖,

1

(q+1)
1
q

(∫ 1

0

‖(1− u)x + uy‖pdu

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

∫ 1

0

‖(1− u)x + uy‖du,

(5.3)

≤ ‖y − x‖





1
2 max{‖x‖, ‖y‖},

1

(q+1)
1
q

(‖x‖p + ‖y‖p

2

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2 (‖x‖+ ‖y‖),

(5.4)

holds for any x, y ∈ X. The constant 1
2 is sharp in the first case of (5.3) and (5.4).

The proof is as follows: suppose that the inequality holds for the constant A > 0
instead of 1

2 , that is,

‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt ≤ A‖y − x‖max{‖x‖, ‖y‖}.

Note that it is sufficient for us to prove the sharpness of the constant in the first
case of (5.4), since both quantities are equal.
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Choose (X, ‖ · ‖) = (R, ‖ · ‖1), x = ( 1
n , n), and y = (− 1

n , n) for n ∈ N, then we
have

3n2 + 2
3n2

≤ A

(
2n2 + 2

n2

)
.

Taking n →∞, we obtain 1 ≤ 2A, that is, A ≥ 1
2 . This implies that the constants

in the first case of (4.6), (4.7), (5.1) and (5.2) are also sharp.
Note that the constants in the second case of (5.3) and (5.4) are also sharp.

Suppose that the inequality holds for the constants B,C > 0 instead of the multi-
plicative constant 1, that is,

‖x‖2 + ‖y‖2
2

−
∫ 1

0

‖(1− t)x + ty‖2dt

≤ B
1

(q + 1)
1
q

(∫ 1

0

‖(1− u)x + uy‖pdu

) 1
p

≤ C
1

(q + 1)
1
q

(‖x‖p + ‖y‖p

2

) 1
p

.

Choose (X, ‖ · ‖) = (R, ‖ · ‖1), x = ( 1
n , n), and y = (− 1

n , n) for n ∈ N, then we have

3n2 + 2
3n2

≤ 2B

(
(n2(n2 + 1)p + (n2 + 1)p − n2p+2)

1
p

n2(q + 1)
1
q (p + 1)

1
p

)
≤ C

(
2(n2 + 1)

n2(q + 1)
1
q

)

Taking q → 1 and n → ∞, we obtain B ≥ 1 and C ≥ 1. Therefore, the constants
in the second case of (4.6), (4.7), (5.1) and (5.2) are also sharp.

We also have

(5.5) 0 ≤ ‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt ≤





1
4‖y − x‖,

1

2(q+1)
1
q
‖y − x‖, q > 1;

1
2‖y − x‖,

for any x, y ∈ X. Note that for any 1 < q < ∞, we have 1
4 ≤ 1

2(q+1)
1
q
≤ 1

2 (the

proof follows by choosing s = 1
2 in (4.9)). Therefore, 1

4 is the best possible among
the constants of all cases in (5.5) and now we have

(5.6) 0 ≤ ‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt ≤ 1
4
‖y − x‖.

The constant 1
4 in (5.6) is the best possible constant.

The proof is as follows: suppose that the inequality holds for any constant D > 0
instead of 1

4 , that is,

‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt ≤ D‖y − x‖.

Choose (X, ‖ · ‖) = (R2, ‖ · ‖1), x = (2, 1), and y = (2,−1) to obtain 1
2 ≤ 2D, that

is, D ≥ 1
4 . Thus, the constant 1

4 is sharp (this implies that the constant 1
4 in (4.10)

is sharp).
Remark 9 (The case of inner product space). If X is an inner product space, the
constant in the first case of (5.4) is not sharp, since

‖x‖+ ‖y‖
2

−
∫ 1

0

‖(1− t)x + ty‖dt =
1
6
‖y − x‖2,
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and the fact that

1
6
‖y − x‖2 ≤ 1

6
‖y − x‖(‖x‖+ ‖y‖) =

1
3
‖y − x‖max{‖x‖, ‖y‖}.

The sharpness of the constant in the second case of (5.4) is not preserved in this
case, since we have the fact that

1
6
‖y − x‖2 ≤ 1

6
‖y − x‖(‖x‖+ ‖y‖) ≤ 1

3
‖y − x‖(‖x‖p + ‖y‖p)

1
p ,

and that 1
3 ≤ 1

2
1
p (q+1)

1
q
. The constant in the third case of (5.4) is not sharp, since

1
6
‖y − x‖2 ≤ 1

6
‖y − x‖(‖x‖+ ‖y‖).

The constant 1
4 in (5.6) remains sharp in this case. The proof follows by choosing

(X, ‖ · ‖) = (R, | · |), x = 1, and y = −1.

Proposition 3. Let X be a normed linear space and 1 ≤ r < ∞. Then

0 ≤
∫ 1

0

‖(1− t)x + ty‖rdt−
∥∥∥∥

x + y

2

∥∥∥∥
r

(5.7)

≤ r‖y − x‖





1
4 sup

u∈[0,1]

‖(1− u)x + uy‖r−1,

1

2(q+1)
1
q

(∫ 1

0

‖(1− u)x + uy‖p(r−1)du

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2

∫ 1

0

‖(1− u)x + uy‖r−1du,

(5.8)

≤ r‖y − x‖





1
4 max{‖x‖r−1, ‖y‖r−1},

1

2(q+1)
1
q

(‖x‖p(r−1) + ‖y‖p(r−1)

2

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
4 (‖x‖r−1 + ‖y‖r−1),

holds for any x, y ∈ X. The constants in the first and second cases of (5.7) and
(5.8) are sharp.

Proof. Choose s = 1
2 in (4.11) and (4.12). The sharpness of the constants follows

by the particular case which is pointed out in Remark 10. ¤
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Remark 10. Particularly,

0 ≤
∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

≤ ‖y − x‖





1
2 sup

u∈[0,1]

‖(1− u)x + uy‖,

1

(q+1)
1
q

(∫ 1

0

‖(1− u)x + uy‖pdu

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

∫ 1

0

‖(1− u)x + uy‖du,

(5.9)

≤ ‖y − x‖





1
2 max{‖x‖, ‖y‖},

1

(q+1)
1
q

(‖x‖p + ‖y‖p

2

) 1
p

, p > 1, 1
p

+ 1
q

= 1;

1
2 (‖x‖+ ‖y‖),

(5.10)

holds for any x, y ∈ X. The constant 1
2 is sharp in the first case of (5.9) and (5.10).

The proof is as follows: suppose that the inequality holds for the constant E > 0
instead of 1

2 , that is,
∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

≤ E‖y − x‖max{‖x‖, ‖y‖}.

Again, it is sufficient for us to prove the sharpness of the constant in the first case
of (5.10).

Choose (X, ‖ · ‖) = (R, ‖ · ‖1), x = ( 1
n , n), and y = (− 1

n , n) for n ∈ N, then we
have

3n2 + 1
3n2

≤ E

(
2n2 + 2

n2

)
.

Taking n →∞, we obtain 1 ≤ 2E, that is, E ≥ 1
2 . This implies that the constants

in the first case of (4.13), (4.14), (5.7) and (5.8) are also sharp.
Note that the constants in the second case of (5.9) and (5.10) are also sharp.

Suppose that the inequality holds for the constants F, G > 0 instead of the multi-
plicative constant 1, that is,

∫ 1

0

‖(1− t)x + ty‖2dt−
∥∥∥∥

x + y

2

∥∥∥∥
2

≤ F
1

(q + 1)
1
q

(∫ 1

0

‖(1− u)x + uy‖pdu

) 1
p

≤ G
1

(q + 1)
1
q

(‖x‖p + ‖y‖p

2

) 1
p

.

Choose (X, ‖ · ‖) = (R, ‖ · ‖1), x = ( 1
n , n), and y = (− 1

n , n) for n ∈ N, then we have

3n2 + 1
3n2

≤ 2F

(
(n2(n2 + 1)p + (n2 + 1)p − n2p+2)

1
p

n2(q + 1)
1
q (p + 1)

1
p

)
≤ G

(
2(n2 + 1)

n2(q + 1)
1
q

)

Taking q → 1 and n → ∞, we obtain F ≥ 1 and G ≥ 1. Therefore, the constants
in the second case of (4.13), (4.14), (5.7) and (5.8) are also sharp.

We also have

(5.11) 0 ≤
∫ 1

0

‖(1− t)x + ty‖dt−
∥∥∥∥

x + y

2

∥∥∥∥ ≤
1
4
‖y − x‖

The constant 1
4 in (5.11) is the best possible constant.
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The proof is as follows: suppose that the inequality holds for any constant H > 0
instead of 1

4 , that is,
∫ 1

0

‖(1− t)x + ty‖dt−
∥∥∥∥

x + y

2

∥∥∥∥ ≤ H‖y − x‖.

Choose (X, ‖ · ‖) = (R2, ‖ · ‖1), x = (2, 1), and y = (2,−1) to obtain 1
2 ≤ 2H, that

is, H ≥ 1
4 . Thus, the constant 1

4 is sharp (this implies that the constant 1
4 in (4.15)

is sharp).
Remark 11. Again, we note that the bounds in (5.7), (5.8), (5.9), (5.10) and
(5.11) are the same as the ones in (5.1), (5.2), (5.3), (5.4) and (5.6), respectively
(see Remark 3).
Remark 12 (The case of inner product space). If X is an inner product space,
the constant in the first case of (5.10) is not sharp, since

∫ 1

0

‖(1− t)x + ty‖dt−
∥∥∥∥

x + y

2

∥∥∥∥ =
1
12
‖y − x‖2,

and the fact that
1
12
‖y − x‖2 ≤ 1

12
‖y − x‖(‖x‖+ ‖y‖) =

1
6
‖y − x‖max{‖x‖, ‖y‖}.

The sharpness of the constant in the second case of (5.10) is not preserved in this
case, since we have the fact that

1
12
‖y − x‖2 ≤ 1

12
‖y − x‖(‖x‖+ ‖y‖) ≤ 1

6
‖y − x‖(‖x‖p + ‖y‖p)

1
p ,

and that 1
6 ≤ 1

2
1
p (q+1)

1
q
. The constant in the third case of (5.10) is not sharp, since

1
12
‖y − x‖2 ≤ 1

12
‖y − x‖(‖x‖+ ‖y‖).

The constant 1
4 in (5.11) remains sharp in this case. The proof follows by choosing

(X, ‖ · ‖) = (R, | · |), x = 1, and y = −1.

6. Comparison Analysis

In [21, p. 11, 15], we considered an Ostrowski type inequality for convex functions
on linear spaces and obtained the following result in any normed linear space (X, ‖·
‖)
‖x‖r + ‖y‖r

2
−

∫ 1

0

‖(1− t)x + ty‖rdt ≤ 1
8
r(〈y − x, y‖y‖r−2〉i − 〈y − x, x‖x‖r−2〉s),

∫ 1

0

‖(1− t)x + ty‖rdt−
∥∥∥∥

x + y

2

∥∥∥∥
r

≤ 1
8
r(〈y − x, y‖y‖r−2〉i − 〈y − x, x‖x‖r−2〉s),

for any x, y ∈ X whenever r ≥ 2; otherwise they hold for nonzero x, y ∈ X, and
〈·, ·〉s(i) is the superior (inferior) semi-inner product with respect to the norm ‖ · ‖.

In this paper, we have considered the Ostrowski type inequality for absolutely
continuous functions, which is more general than [21] and have obtained the fol-
lowing bounds for the left-hand side of the inequalities above (see (5.1), (5.2), (5.7)
and (5.8)). The bound that we have obtained is,

1
4
r‖y − x‖ sup

u∈[0,1]

‖(1− u)x + uy‖r−1 =
1
4
r‖y − x‖max{‖x‖r−1, ‖y‖r−1}.
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Note: Since the last two bounds in (5.1), (5.2), (5.7) and (5.8) are not significant
for the case of r = 1 (see Remark 8 and Remark 10), we consider only the first
bound for this section.

We want to compare the two bounds 1
8r(〈y − x, y‖y‖r−2〉i − 〈y − x, x‖x‖r−2〉s)

and 1
4r‖y − x‖max{‖x‖r−1, ‖y‖r−1}. The bound that we obtained in this paper

is simpler in the sense that it only involves the given norm, while the other one
involves not only the given norm, but also the superior (inferior) semi-inner product
associated to the norm. However, the bounds in [21] are proven better for the case
of inner product spaces. The verification is as follows:

In an inner product space (X, 〈·, ·〉), consider the particular case of r = 2, we
want to compare 1

4 〈y− x, y− x〉 = 1
4‖y− x‖2 and 1

2‖y− x‖max{‖x‖, ‖y‖}. For all
x, y ∈ X, we have

1
4
‖y − x‖2 ≤ 1

4
‖y − x‖(‖x‖+ ‖y‖) ≤ 1

2
‖y − x‖max{‖x‖, ‖y‖}.

We conclude that the bounds in [21] are better.
Next, we consider the particular case of r = 1, that is, we wish to compare

1
8 〈y − x, y

‖y‖ − x
‖x‖ 〉 and 1

4‖y − x‖ (for nonzero x, y ∈ X). We recall the Dunkl-
Williams inequality (see [20, p. 53], [22, p. 890] and [23, p. 448])

(6.1)
∥∥∥∥

x

‖x‖ −
y

‖y‖

∥∥∥∥ ≤
2‖x− y‖
‖x‖+ ‖y‖ ,

which holds for nonzero x and y in an inner product space X. Now, for x, y ∈ X
where x, y 6= 0, we have
1
8

〈
y − x,

y

‖y‖ −
x

‖x‖
〉

≤ 1
8
‖y − x‖

∥∥∥∥
y

‖y‖ −
x

‖x‖

∥∥∥∥

≤ 1
4
‖y − x‖ ‖x− y‖

‖x‖+ ‖y‖ ≤
1
4
‖y − x‖‖x‖+ ‖y‖

‖x‖+ ‖y‖ =
1
4
‖y − x‖.

We conclude that the bounds in [21] are better.
For general 1 ≤ r < ∞, we conjecture that

Conjecture 1. In an inner product space (X, 〈·, ·〉), the following inequality
1
8
r〈y − x, y‖y‖r−2 − x‖x‖r−2〉 ≤ 1

4
r‖y − x‖max{‖x‖r−1, ‖y‖r−1}

holds for any x, y ∈ X whenever r ≥ 2; otherwise it holds for any nonzero x, y ∈ X.

We observe that the above statement is true in some cases. Taking X = R and
multiplication as its inner product and utilizing Maple for the following functions

Φ(x, y) :=
1
4
r|y − x|max{|x|r−1, |y|r−1} − 1

8
r(y − x)(y|y|r−2 − x|x|r−2),

for x, y ∈ R, we observe that for several values of r, we have Φ(x, y) ≥ 0 for any
x, y ∈ X (see Figure 1 for the plot of Φ with the choice of r = 3). However, we
have no analytical proof for this statement.

Conjecture 2. In a normed linear space (X, ‖ · ‖), the following inequality
1
8
r(〈y − x, y‖y‖r−2〉i − 〈y − x, x‖x‖r−2〉s) ≤ 1

4
r‖y − x‖max{‖x‖r−1, ‖y‖r−1}
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Figure 1. Plot of Φ for r = 3.

holds for any x, y ∈ X whenever r ≥ 2; otherwise it holds for any nonzero x, y ∈ X
(here, 〈·, ·〉s(i) is the superior (inferior) semi-inner product respect to the norm ‖·‖).

We observe that the above statement is true in some cases. Taking (X, ‖ · ‖) =
(R2, ‖ · ‖1) and consider the case of r = 1, we have the functions

f(x, y) :=
1
8


∑

yi 6=0

yi

|yi| (yi − xi)−
∑
yi=0

|yi − xi| −
∑

xi 6=0

xi

|xi| (yi − xi)−
∑
xi=0

|yi − xi|

 ,

g(x, y) :=
1
4
‖y − x‖1,

for x, y ∈ R2. We observe that f(x, y) ≤ g(x, y) for some x, y ∈ X (We choose
x = (1, 0) and y = (a, b) (a, b 6= 0) and plot the non negative function Ψ(a, b) :=
g(x, y) − f(x, y) = 1

4 (|a − 1| + |b|) − 1
8

(
a(a−1)
|a| + b2

|b| − (a− 1)− |b|
)

in Figure 2).
However, we do not have an analytical proof for this statement.
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