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ON THE TORRICELLIAN POINT IN INNER PRODUCT SPACES

S.S. DRAGOMIR AND D. COMĂNESCU

Abstract. The concept of Torricellian point related to a set of n vectors in

normed linear spaces is introduced and the general properties obtained. The

existence and uniqueness of the Torricellian point in inner product spaces are
established.

1. Introduction

The problem of minimizing the sum of the distances from a variable point to
three fixed points in the plane, posed and solved by Torricelli in the 17th century,
is well known. He found that the point for which the minimum is realised is either
a vertex of the fixed triangle, if the measure of the corresponding angle is greater
than 2π

3 , or the unique point for which each edge is seen under 2π
3 .

In this paper, the concept of Torricellian point for the case of normed linear
spaces and related with a set of n distinct given vectors {a1, . . . , an} ⊂ X (n ≥ 1)
is introduced and some of its general properties obtained. The existence and unique-
ness of Torricellian point in inner product spaces and characterisations with a ge-
ometrical interpretation are established as well. The obtained results build on the
case of three vectors in inner product spaces that has been considered in [4].

2. Preliminary Results

We start with the following definition:

Definition 1. Let (X; ‖·‖) be a real normed linear space, n ≥ 1 a natural number
and {a1, . . . , an} ⊂ X a set of distinct vectors in X. We say that the point x0 ∈ X
is a Torricellian point for the set {a1, . . . , an} if the following condition holds:

n∑
i=1

‖x0 − ai‖ ≤
n∑

i=1

‖x− ai‖ for all x ∈ X,

i.e., the element x0 minimizes the (nonlinear) functional T : X → [0,∞), called
the Torricelli functional, and given by: T (x) :=

∑n
i=1 ‖x− ai‖ .

The set of Torricellian points associated with the set {a1, . . . , an} will be denoted
by TX {a1, . . . , an} .

Remark 1. Naturally, the above concepts can be introduced in the more general
case of metric spaces. The Torricellian point is also known in the literature as
the median point of the finite set F = {a1, . . . , an} , [1]-[3] and [5]-[7], however we
believe that, taking into account the history of the problem, the name Torricellian
point is perhaps more appropriate.
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For the sake of completeness, we introduce some notations that will be used in
the sequel:

(i) dr (a, b) := {λa + (1− λ) b|λ ∈ R} where a, b ∈ X and a 6= b will be called
the right line determined by the elements a and b;

(ii) [a, b] := {λa + (1− λ) b|λ ∈ [0, 1]} where a, b are as above, will be the seg-
ment determined by a and b;

(iii) The points of the set M ⊂ H are said to be colinear iff there exists a right
line dr (a, b) such that M ⊆ dr (a, b) .

(iv) The normed space (X, ‖·‖) will be called strictly convex iff for every x, y ∈ X
with x 6= y and such that ‖x + y‖ = ‖x‖+ ‖y‖ , there exists a real number
t such that x = ty.

(v) Sp [a1, . . . , an] is the linear subspace generated by the set of vectors {a1, . . . , an} .
(vi) Let (X, ‖·‖) be a normed linear space and h : D ⊆ X → R (D is open in

X). Suppose that x0 ∈ D. We will say that h is Gâteaux differentiable in
x0 iff there exists the limit:

lim
t→0

h (x0 + ty)− h (x0)
t

=
∂h

∂y
(x0)

for all y ∈ X.

Some of the fundamental properties of the Torricellian mapping T associated
with the set of distinct points {a1, . . . , an} are embodied in the following proposi-
tion:

Proposition 1. With the above assumptions,
(i) T is nonlinear;
(ii) T is continuous on X in the norm topology;
(iii) T is nonnegative and lim‖x‖→∞ T (x) = ∞;
(iv) T is convex on X.

Proof. (i) and (ii) are obvious.
(iii) We have:

T (x) =
n∑

i=1

‖x− ai‖ ≥
n∑

i=1

|‖x‖ − ‖ai‖|

≥
n∑

i=1

(‖x‖ − ‖ai‖) = n ‖x‖ −
n∑

i=1

‖ai‖

which shows that T (x) →∞ as ‖x‖ → ∞.
(iv) Utilising the triangle inequality we have:

T (αx + βy) =
n∑

i=1

‖αx + βy − ai‖ =
n∑

i=1

‖α (x− ai) + β (y − ai)‖

≤ α
n∑

i=1

‖x− ai‖+ β
n∑

i=1

‖y − ai‖ = αT (x) + βT (y)

for all α, β ≥ 0 with α + β = 1 and x, y ∈ X.

The next proposition also holds.
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Proposition 2. Let (X, ‖·‖) be a strictly convex normed linear space. If {a1, . . . , an}
(n ≥ 1) is a set of non-colinear vectors in X, then T is strictly convex on X.

Proof. Since T is convex, one has:

(2.1) T (λx1 + (1− λ) x2) ≤ λT (x1) + (1− λ) T (x2)

for all λ ∈ [0, 1] and x1, x2 ∈ X.
Now, let λ ∈ (0, 1) and x1, x2 ∈ X with x1 6= x2 and assume that the inequality

(2.1) becomes an equality, i.e.,

n∑
i=1

‖λ (x1 − ai) + (1− λ) (x2 − ai)‖ = λ

n∑
i=1

‖x1 − ai‖+ (1− λ)
n∑

i=1

‖x2 − ai‖

which gives us (by the triangle inequality) that:

(2.2) ‖λ (x1 − ai) + (1− λ) (x2 − ai)‖ = ‖λ (x1 − ai)‖+ ‖(1− λ) (x2 − ai)‖

for all i ∈ {1, . . . , n} .
Since (X, ‖·‖) is strictly convex, then there exists ti ∈ R such that

λ (x1 − ai) = ti (1− λ) (x2 − ai) for all i ∈ {1, ..., n} .

Suppose that xr 6= ai, r ∈ {1, 2} for all i ∈ {1, ..., n} . Then by the above equality
we get:

ai (λ− ti (1− λ)) = −λx1 + ti (1− λ) x2 for all i ∈ {1, ..., n} .

Now, if ti = λ
1−λ , then we get x1 = x2 which contradicts the previous assumption,

hence

ai = − λ

λ− ti (1− λ)
x1 +

ti (1− λ)
λ− ti (1− λ)

x2 for all i ∈ {1, ..., n} ,

which shows that ai ∈ dr (x1, x2) for all i ∈ {1, ..., n} , i.e., a contradiction to the
fact that {a1, . . . , an} are non-colinear.

If there exists i0 ∈ {1, . . . , n} such that x2 = ai0 , then the argument goes likewise
and we omit the details.

Corollary 1. If (H; 〈·, ·〉) is an inner product space and {a1, . . . , an} (n ≥ 3) are
non-colinear, then T is strictly convex on X.

We also have:

Proposition 3. Let (H; 〈·, ·〉) be an inner product space and {a1, . . . , an} a set of
n distinct vectors in H. Then T is Gâteaux differentiable on H\ {a1, . . . , an} and

∂T

∂y
(x) = 〈y, g (x)〉 for all x ∈ H\ {a1, . . . , an} and y ∈ H,

where

g (x) : H\ {a1, . . . , an} → H, g (x) :=
n∑

i=1

x− ai

‖x− ai‖
.
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Proof. Let y ∈ H and t ∈ R. Then for all x ∈ H\ {a1, . . . , an} one has:

lim
t→0

T (x + ty)− T (x)
t

= lim
t→0

∑n
i=1 (‖x + ty − ai‖ − ‖x− ai‖)

t

= lim
t→0

1
t

n∑
i=1

‖x + ty − ai‖2 − ‖x− ai‖2

‖x + ty − ai‖+ ‖x− ai‖

= lim
t→0

1
t

n∑
i=1

2t 〈y, x− ai〉+ t2 ‖y‖2

‖x + ty − ai‖+ ‖x− ai‖

=
n∑

i=1

〈y, x− ai〉
‖x− ai‖

= 〈y, g (x)〉 ,

which proves the statement.

3. The Existence and Uniqueness of Torricellian Point in Inner
Product Spaces

We start this section with the following decomposition theorem which holds in
inner product spaces (not necessarily Hilbert spaces).

Lemma 1. Let (H; 〈·, ·〉) be an inner product space and G a finite-dimensional
subspace in H. Then for all x ∈ H there exists a unique element x1 ∈ G and a
unique element x2 ∈ G⊥ (the orthogonal complement of G) such that:

(3.1) x = x1 + x2.

We denote this by H = G
⊕

G⊥.

Proof. Let x ∈ H. If x ∈ G, then x = x + 0 with G ∈ G⊥ and the decomposition
(3.1) holds.

If x ∈ X\G, then by the well known theorem of the best approximation element
from finite-dimensional linear subspaces, there exists x1 ∈ G such that d (x, x1) =
d (x,G) . Put x2 := x− x1. Then for all y ∈ G and λ ∈ K one has

‖x2 + λy‖ = ‖x− x1 + λy‖ = ‖x− (x1 − λy)‖ ≥ ‖x− x1‖ = ‖x2‖ ,

which is clearly equivalent with x2 ⊥ y, i.e., x2 ∈ G⊥ and the representation (3.1)
holds.

Now, suppose that there exists another representation x = y1 + y2 with y1 ∈ G
and y2 ∈ G⊥. Then one gets:

G 3 x1 − y1 = y2 − x2 ∈ G⊥.

Since G ∩ G⊥ = {0} , we deduce that x1 = y1 and x2 = y2 and the uniqueness in
decomposition (3.1) is proved.

Theorem 1. Let (H; 〈·, ·〉) be an inner product space. If {a1, . . . , an} is a set of
n ≥ 3 non-colinear distinct vectors in H, then TX {a1, . . . , an} has a unique element.

Proof. The existence. Consider Hn := Sp [a1, . . . , an] the finite-dimensional sub-
space generated by {a1, . . . , an} . Then 2 ≤ dim Hn ≤ n. By the above lemma we
have:

H = Hn

⊕
H⊥

n .

Now, let x ∈ H\Hn. Then there exists a unique x1 ∈ Hn and a unique x2 ∈ H⊥
n

such that x = x1 + x2 and x2 6= 0.
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For all a ∈ Hn one has:

‖x− a‖ = ‖x1 + x2 − a‖ = ‖x2 + (x1 − a)‖

=
(
‖x2‖2 + ‖x1 − a‖2

) 1
2

> ‖x1 − a‖

because ‖x2‖ > 0. Thus, for a = ai, i ∈ {1, ..., n} , we get:

T (x) =
n∑

i=1

‖x− ai‖ >
n∑

i=1

‖x1 − ai‖ = T (x1) ,

which shows that the vectors which minimize the functional T on H are in the
finite-dimensional subspace Hn.

Let x0 ∈ Hn. Since lim‖x‖→∞ T (x) = ∞, there exists r > 0 such that T (y) >
T (x0) for all y ∈ Hn with ‖y‖ > r.

Denote B̄n (0, r) = B̄ (0, r)∩Hn. Then B̄n (0, r) is compact in Hn and since T is
continuous on B̄n (0, r) , it follows that there exists an element x0 ∈ B̄n (0, r) such
that:

T (x0) = inf
x∈B̄n(0,r)

T (x) ≤ T (y) for all y ∈ Hn.

Now, by the above considerations we can state that x0 is a point which minimizes
the functional T on H.

The uniqueness. Suppose that there exist two vectors x1, x2 ∈ H with x1 6= x2

such that:
T (x1) = T (x2) = inf

x∈H
T (x) .

Consider xt := tx1 + (1− t) x2 with t ∈ (0, 1) (i.e., xt 6= x1, x2). Since T is strictly
convex (see Corollary 1) we have:

T (xt) = T (tx1 + (1− t) x2) < tT (x1) + (1− t) T (x2) = T (x1)

which contradicts the fact that x1 minimizes the functional T on H.
The proof of the theorem is thus completed.

4. Sets which are Torricellian Degenerate in Inner Product Spaces

We start with the following definition.

Definition 2. Let {a1, . . . , an} be a set of n non-colinear distinct vectors. The set
{a1, . . . , an} is said to be Torricellian degenerate if TH {a1, . . . , an} ∈ {a1, . . . , an} ,
i.e., there exists aj ∈ {a1, . . . , an} so that TH {a1, . . . , an} = {aj} , (j ∈ {1, . . . , n}) .

We have the following lemma which is of interest in itself.

Lemma 2. Let F : X → R be a convex mapping in the normed linear space (X, ‖·‖)
and x0 ∈ X. The following statements are equivalent:

(i) x0 minimizes the functional F on X;
(ii) One has the inequality:

(4.1) lim
t→0+

F (x0 + tx)− F (x0)
t

≥ 0 ≥ lim
s→0−

F (x0 + sx)− F (x0)
s

.

for all x ∈ X.
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Proof. Consider the mapping Ψx0,x : R → R given by

Ψx0,x (t) := F (x0 + tx) , x ∈ X.

A simple calculation shows that Ψx0,x is convex on R for all x ∈ X, hence there
exists the limits:

lim
t→0+

Ψx0,x (t)−Ψx0,x (0)
t

, lim
s→0−

Ψx0,x (s)−Ψx0,x (0)
s

and
Ψx0,x (t)−Ψx0,x (0)

t
≥ lim

t→0+

Ψx0,x (t)−Ψx0,x (0)
t

≥ lim
s→0−

Ψx0,x (s)−Ψx0,x (0)
s

≥ Ψx0,x (s)−Ψx0,x (0)
s

for all s < 0 < t, i.e., one has
F (x0 + tx)− F (x0)

t
≥ lim

t→0+

F (x0 + tx)− F (x0)
t

(4.2)

≥ lim
s→0−

F (x0 + sx)− F (x0)
s

≥ F (x0 + sx)− F (x0)
s

for all t > 0 > s and x ∈ X.
“(i) =⇒ (ii)”. If we assume that x0 minimizes the functional F, then F (x0 + tx)−
F (x0) ≥ 0 for all t ∈ R which implies, by (4.2), that the inequality (4.1) holds.
“(ii) =⇒ (i)”. If (4.1) holds, then for all t > 0 > s, we have:

F (x0 + tx)− F (x0)
t

≥ 0 ≥ F (x0 + sx)− F (x0)
s

which gives :

F (x0 + uy) ≥ F (x0) for all u ∈ R and y ∈ X.

Choosing u = 1 and y = v − x0 (v is arbitrary in X), we get

F (v) ≥ F (x0) , for each v ∈ X

i.e., x0 minimizes the functional F.

Theorem 2. Let (H; 〈, ·〉) be an inner product space over the real number field and
{a1, . . . , an} a set of n non-colinear distinct vectors. The following statements are
equivalent:

(i) TH {a1, . . . , an} = {aj} , j ∈ {1, . . . , n} ;
(ii) One has the inequality:

(4.3)

∥∥∥∥∥∥∥
n∑

i=1
i6=j

ai − aj

‖ai − aj‖

∥∥∥∥∥∥∥ ≤ 1.

Proof. We have:

T (x)− T (aj) = ‖x− aj‖+
n∑

i=1
i6=j

(‖x− ai‖ − ‖aj − ai‖)

= ‖x− aj‖+
n∑

i=1
i6=j

‖x− aj‖2 + 2 〈x− aj , aj − ai〉
‖x− ai‖+ ‖aj − ai‖

.
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Let y ∈ X and t ∈ R. Then we have:

T (aj + ty)− T (aj) = |t| ‖y‖+
n∑

i=1
i6=j

t2 ‖y‖2 + 2t 〈y, aj − ai〉
‖ty + aj − ai‖+ ‖aj − ai‖

.

A simple calculation shows that:

lim
t→0+

T (aj + ty)− T (aj)
t

= ‖y‖ −

〈
y,

n∑
i=1
i6=j

ai − aj

‖ai − aj‖

〉

and

lim
s→0−

T (aj + sy)− T (aj)
s

= −‖y‖ −

〈
y,

n∑
i=1
i6=j

ai − aj

‖ai − aj‖

〉
.

“(i) =⇒ (ii)”. If aj minimizes the convex functional T, then by the implication “(i)
=⇒ (ii)” of the above lemma, we have:

‖y‖ −

〈
y,

n∑
i=1
i6=j

ai − aj

‖ai − aj‖

〉
≥ 0 ≥ −‖y‖ −

〈
y,

n∑
i=1
i6=j

ai − aj

‖ai − aj‖

〉

for all y ∈ X which yields that

(4.4)

∣∣∣∣∣∣∣
〈

y,
n∑

i=1
i6=j

ai − aj

‖ai − aj‖

〉∣∣∣∣∣∣∣ ≤ ‖y‖ for all y ∈ X.

Put u :=
n∑

i=1
i6=j

ai−aj

‖ai−aj‖ and fu : X → R, fu (y) = 〈y, u〉 . Then by (4.4) one has

|fu (u)| ≤ ‖u‖ which gives that ‖fu‖ ≤ 1.
On the other hand, it is clear that ‖fu‖ = ‖u‖ and the inequality (4.3) is thus

proved.
“(ii) =⇒ (i)”. Suppose that ‖u‖ ≤ 1, then by Schwarz’s inequality, we have

|〈y, u〉| ≤ ‖u‖ ‖y‖ for all y ∈ X,

which is clearly equivalent with (4.4), i.e.,

lim
t→0+

T (aj + ty)− T (aj)
t

≥ 0 ≥ lim
s→0−

T (aj + sy)− T (aj)
s

and by the implication “(ii) =⇒ (i)” we conclude that aj minimizes the functional
T , i.e., TH {a1, . . . , an} = {aj} .

5. Characterisation of Torricellian Points for Non-degenerate Sets

In this section we point out a characterisation result for the Torricellian point
associated with a non-degenerate set of n distinct non-colinear vectors in an inner
product space.

We can state and prove the following theorem:

Theorem 3. Let (H; 〈·, ·〉) be an inner product space and {a1, . . . , an} ⊂ H a non-
degenerate set of n ≥ 3 non-colinear distinct vectors. If x0 ∈ H, the following
statements are equivalent:

(i) x0 ∈ TH {a1, . . . , an}
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(ii) x0 is a solution of the equation:

(5.1) g (x) =
n∑

i=1

x− ai

‖x− ai‖
= 0, x ∈ H;

(iii) x0 is a solution of the system:

(5.2)



∑n
i=1 cos ϕi1 (x) = 0,

.................. x ∈ H;∑n
i=1 cos ϕin (x) = 0

where

cos ϕij (x) =
〈x− ai, x− aj〉
‖x− ai‖ ‖x− aj‖

, i, j ∈ {1, . . . , n} ,

and in all cases x0 is unique.

Proof. “(i) =⇒ (ii)”. If x0 minimizes the functional T , then by the implication “(i)
=⇒ (ii)” of Lemma 2, we deduce:

(5.3) lim
t→0+

T (x0 + tx)− T (x0)
t

≥ 0 ≥ lim
s→0−

T (x0 + sx)− T (x0)
s

.

Since the mapping T is Gâteaux differentiable, hence by Proposition 3 we have:
∂T (x0)

∂x
= 〈x, g (x0)〉 for all x ∈ X.

By the relation (5.3) we get ∂T (x0)
∂x = 0 for all x ∈ X, i.e., g (x0) = 0, which shows

that x0 is a solution of the equation (5.1).
“(ii) =⇒ (iii)”. Suppose that x0 is a solution of (5.1), then

n∑
i=1

x0 − ai

‖x0 − ai‖
= 0,

which yields that:〈
n∑

i=1

x0 − ai

‖x0 − ai‖
,

x0 − aj

‖x0 − aj‖

〉
= 0 for all j ∈ {1, . . . , n}

i.e.,
n∑

i=1

〈x0 − ai, x0 − aj〉
‖x0 − ai‖ ‖x0 − aj‖

= 0 for all j ∈ {1, . . . , n} ,

which means that x0 is a solution of the system (5.2).
“(iii) =⇒ (ii)”. If x0 is a solution of the system (5.2), then〈

n∑
i=1

x0 − ai

‖x0 − ai‖
,

x0 − aj

‖x0 − aj‖

〉
= 0 for all j ∈ {1, ..., n} ,

i.e., 〈
g (x0) ,

x0 − aj

‖x0 − aj‖

〉
= 0 for all j ∈ {1, ..., n} .

Summing over j from 1 to n, we get

0 = 〈g (x0) , g (x0)〉 = ‖g (x0)‖2
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which means that x0 is a solution of the equation (5.1), then

∂T (x0)
∂x

= 〈x, g (x0)〉 = 0,

which, by Lemma 2, shows that x0 minimizes the functional T, i.e., x0 ∈ TH {a1, . . . , an} .
The uniqueness of the solution for the equations (5.1) and (5.2) is obvious by

the uniqueness of the Torricellian point associated with a set of n ≥ 3 non-colinearl
distinct vectors in H, and the proof is complete.

6. The Case of Three Vectors in Inner Product Spaces

It is natural to consider the case of n = 3 vectors in inner product spaces and
show that the classical result due to Torricelli can be naturally recaptured from the
more general results stated above.

If {a1, a2, a3} are colinear and

ai = λia + (1− λib) with i = {1, 2, 3} , λ1 < λ2 < λ3 and a, b ∈ H

then one can easily show that TH {a1, a2, a3} = {a2} .
The case of Torricellian degenerated vectors is embodied in the following propo-

sition (see also [4]):

Proposition 4. Let (H; 〈·, ·〉) be an inner product space and {a1, a2, a3} a set of
three non-colinear vectors in H. The following statements are equivalent:

(i) TH {a1, a2, a3} = {a2} ;
(ii) The angle θ between a1 − a2 and a1 − a3 is greater that 2π

3 .

Proof. By Theorem 2 one has that a2 ∈ TH {a1, a2, a3} if and only if∥∥∥∥ a1 − a2

‖a1 − a2‖
+

a3 − a2

‖a3 − a2‖

∥∥∥∥ ≤ 1,

which is equivalent with

‖a1 − a2‖2

‖a1 − a2‖2 + 2
〈

a1 − a2

‖a1 − a2‖
,

a3 − a2

‖a3 − a2‖

〉
+
‖a3 − a2‖2

‖a3 − a2‖2 ≤ 1

i.e.,

cos θ =
〈a1 − a2, a3 − a2〉
‖a1 − a2‖ ‖a3 − a2‖

≤ −1
2
,

which shows that θ ∈
[
2π
3 , π

)
.

The case of non-degenerate sets is embodied in the following proposition (see
also [4]):

Proposition 5. Let (H; 〈·, ·〉) be an inner product space and {a1, a2, a3} a set
of three non-colinear non-degenerate vectors in H. The following statements are
equivalent:

(i) TH {a1, a2, a3} = {x0} .
(ii) We have θ12 = θ23 = θ31 = 2π

3 , where θij is the angle between ai − x0,
aj − x0, (i, j) ∈ {(1, 2) , (2, 3) , (3, 1)} .
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Proof. By Theorem 3, we have that TH {a1, a2, a3} = {x0} iff x0 is the unique
solution of the system:

cos θ11 (x) + cos θ12 (x) + cos θ13 (x) = 0

cos θ21 (x) + cos θ22 (x) + cos θ23 (x) = 0

cos θ31 (x) + cos θ32 (x) + cos θ33 (x) = 0

where cos ϕij (x) = 〈x−ai,x−aj〉
‖x−ai‖‖x−aj‖ .

This system is equivalent with
cos θ12 (x) + cos θ31 (x) = −1

cos θ12 (x) + cos θ23 (x) = −1

cos θ31 (x) + cos θ23 (x) = −1

which gives us cos θ12 = cos θ23 = cos θ31 = − 1
2 and the proposition is proved.
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