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A NEW REFINEMENT OF YOUNG’S INEQUALITY

ABDOLHOSSEIN HOORFAR AND FENG QI

Abstract. In this short note, the well-known Young’s inequality is refined by

a double inequality.

The original Young’s inequality is as follows.

Theorem 1 ([7]). Let f(x) be a continuous and strictly increasing function on
[0, A] for A > 0. If f(0) = 0, a ∈ [0, A] and b ∈ [0, f(A)], then∫ a

0

f(x) dx +
∫ b

0

f−1(x) dx ≥ ab, (1)

where f−1 is the inverse function of f . Equality in (1) is valid if and only if
b = f(a).

The following theorem is a converse of Theorem 1 which was proved in [5].

Theorem 2 ([5]). If the functions f(x) and g(x) for x ≥ 0 are continuous and
strictly increasing with f(0) = g(0) = 0, g−1(x) ≥ f(x) and∫ a

0

f(x) dx +
∫ b

0

g(x) dx ≥ ab (2)

for all a > 0 and b > 0, then f = g−1.

The following reversed version of Young’s inequality (1) was obtained in [6].

Theorem 3 ([6]). Under the assumptions of Theorem 1, inequality

min
{

1,
b

f(a)

} ∫ a

0

f(t) dt + min
{

1,
a

f−1(b)

} ∫ b

0

f−1(t) dt ≤ ab, (3)

holds. Equality in (3) is valid if and only if b = f(a).

For more information on Young’s inequality, please refer to [1, pp. 651–653], [2,
pp. 48–50], [3, Chapter XIV, pp. 379–389] and the references therein.

In this short note, we would like to refine Young’s inequality (1) by a double
inequality below.

Theorem 4. Let f(x) be a continuous, differentiable and strictly increasing func-
tion on [0, A] for A > 0. If f(0) = 0, a ∈ [0, A], b ∈ [0, f(A)] and f ′(x) is strictly
monotonic on [0, A], then

m

2
[
a− f−1(b)

]2 ≤ ∫ a

0

f(x) dx +
∫ b

0

f−1(x) dx− ab ≤ M

2
[
a− f−1(b)

]2
, (4)
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where m = min
{
f ′(a), f ′

(
f−1(b)

)}
and M = max

{
f ′(a), f ′

(
f−1(b)

)}
. Equalities

in (4) are valid if and only if b = f(a).

Proof. Changing variable of integration by x = f(y) and integrating by part of the
second integral in (4) yields∫ a

0

f(x) dx +
∫ b

0

f−1(x) dx =
∫ a

0

f(x) dx +
∫ f−1(b)

0

yf ′(y) dy

=
∫ a

0

f(x) dx + bf−1(b)−
∫ f−1(b)

0

f(x) dx

= bf−1(b) +
∫ a

f−1(b)

f(x) dx

= ab +
∫ a

f−1(b)

[
f(x)− b

]
dx.

(5)

From the fourth line in (5), it is easy to see that if f−1(b) = a then equalities in
(4) hold.

If f−1(b) < a, since f(x) is strictly increasing, then f(x) − b > 0 for x ∈(
f−1(b), a

)
. By mean value theorem, it is obtained that there exists c = c(x)

satisfying f−1(b) < c < x ≤ a such that 0 < f(x)− b =
[
x− f−1(b)

]
f ′(c). Further,

by virtue of the monotonicity of f ′(x) on [0, A], it is revealed that

0 < m , min
{
f ′(a), f ′

(
f−1(b)

)}
< f ′(c) < max

{
f ′(a), f ′

(
f−1(b)

)}
, M.

Consequently,

0 < m
[
x− f−1(b)

]
< f(x)− b < M

[
x− f−1(b)

]
.

As a result,

m

∫ a

f−1(b)

[
x− f−1(b)

]
dx <

∫ a

f−1(b)

[
f(x)− b

]
dx < M

∫ a

f−1(b)

[
x− f−1(b)

]
dx

which is equivalent to

m

2
[
a− f−1(b)

]2
<

∫ a

f−1(b)

[
f(x)− b

]
dx <

M

2
[
a− f−1(b)

]2
. (6)

If f−1(b) > a, inequalities in (6) can be deduced by a similar argument as above.
Substituting (6) into (5) leads to (4). The proof of Theorem 4 is complete. �

Remark 1. Taking f(x) = 4
√

x4 + 1 − 1, a = 3 and b = 2 in Theorem 4 and direct
calculation gives ∫ 3

0

f(x) dx =
∫ 3

0

4
√

x4 + 1 dx− 3,∫ 2

0

f−1(x) dx =
∫ 2

0

4
√

(x + 1)4 − 1 dx =
∫ 3

1

4
√

x4 − 1 dx,

f ′(x) =
x3

4
√

(x4 + 1)3
, f ′(3) =

27
4
√

823
, f ′

(
f−1(2)

)
= f ′

( 4
√

80
)

=
8 4
√

53

27
,

m =
2 4
√

5
27

, M =
27

4
√

823
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and

9+
4
√

5
27

[
3− 2 4

√
5

]2

<

∫ 3

0

4
√

x4 + 1 dx+
∫ 3

1

4
√

x4 − 1 dx < 9+
27

2 4
√

823

[
3− 2 4

√
5

]2

which can be computed numerically as

9.000004792 · · · <
∫ 3

0

4
√

x4 + 1 dx +
∫ 3

1

4
√

x4 − 1 dx < 9.000042871 · · · .

This refines the following double inequality

9 <

∫ 3

0

4
√

x4 + 1 dx +
∫ 3

1

4
√

x4 − 1 dx < 9.0001

in [4, Problem 3].
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