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THE BEST BOUNDS IN KERSHAW’S INEQUALITY AND TWO
COMPLETELY MONOTONIC FUNCTIONS

FENG QI

Abstract. A new proof for monotonicity and convexity of a function deduced
from Kershaw’s inequality involving the Wallis’ function about the Euler’s
gamma function is provided. The complete monotonicity results of two func-
tions involving the divided differences of the psi function ψ and polygamma
function ψ′ are established.

1. Introduction

The D. Kershaw’s inequality [15] states that
(

x +
s

2

)1−s

<
Γ(x + 1)
Γ(x + s)

<

(
x− 1

2
+

√
s +

1
4

)1−s

(1)

for 0 < s < 1 and x ≥ 1, where Γ denotes the classical Euler’s gamma function and
the middle term in (1) is a special case of the Wallis’ function or ratio Γ(x+p)

Γ(x+q) for
x + p > 0 and x + q > 0.

Inequalities for Wallis’s ratio Γ(x+1)
Γ(x+s) have remarkable applications to obtain es-

timates for ultraspherical polynomials, please refer to [2, 11, 17, 18], for example.
It is clear that inequality (1) can be rearranged as

s

2
<

[
Γ(x + 1)
Γ(x + s)

]1/(1−s)

− x <

√
s +

1
4
− 1

2
. (2)

Let s and t be nonnegative numbers and α = min{s, t}. Define

zs,t(x) =





[
Γ(x + t)
Γ(x + s)

]1/(t−s)

− x, s 6= t

eψ(x+s) − x, s = t

(3)

in x ∈ (−α,∞).
In [25], it was proved that the function z1,1/2(x) is strictly decreasing in (− 1

2 ,∞).

Applying this result, the paper [1] showed that
√

n+A
2π < Ωn−1

Ωn
≤

√
n+B
2π for n ∈ N

with the best possible constants A = 1
2 and B = π

2 , where Ωn = πn/2

Γ(1+n/2) denotes
the volume of the unit ball in Rn.
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For more information about the background, applications and recent develop-
ments of inequality (1) or (2), please refer to [4, 13, 20, 22] and the references
therein.

In order to establish the best upper and lower bounds in Kershaw’s inequality
(1) or (2), among other things, the paper [13] proved the following theorem.

Theorem 1. The function zs,t(x) is either convex and decreasing for |t− s| < 1
or concave and increasing for |t− s| > 1.

In 2005 the papers [4, 22] gave two alternative proofs for Theorem 1 respec-
tively by using the convolution theorem of Laplace transforms, some asymptotic
formulas and integral representations of the gamma function Γ, the psi or digamma
function ψ and the polygamma or multigamma functions ψ(k)(x) for k ∈ N, and
other analytic techniques. Recently the paper [16] by S. Koumandos applied the
monotonicity results in Theorem 1 to obtain an inequality which generalizes the
sharpened Wallis’ double inequality validated in [5, 6, 7, 8, 9, 10, 21] and the ref-
erences therein.

Recall that a function f is said to be completely monotonic on an interval I if f
has derivatives of all orders on I and

(−1)nf (n)(x) ≥ 0

for x ∈ I and n ≥ 0. For information about the history, applications and recent
developments on the completely monotonic function, please refer to the expository
article [19] and the references therein.

The first aim of this paper is to provide a new and simple proof of Theorem 1
by using a method developed in [12] and other techniques.

The second aim of this paper is to prove the complete monotonicity of two
functions involving the divided differences of the psi function ψ and polygamma
function ψ′, which are derived from the proof of Theorem 1. These conclusions can
be stated as two theorems below.

Theorem 2. Let s and t be nonnegative numbers and α = min{s, t}. Define

δs,t(x) =





ψ(x + t)− ψ(x + s)
t− s

− 2x + s + t + 1
2(x + s)(x + t)

, s 6= t

ψ′(x + s)− 1
x + s

− 1
2(x + s)2

, s = t

(4)

in x ∈ (−α,∞). Then the functions δs,t(x) for |t− s| < 1 and −δs,t(x) for |t− s| >
1 are completely monotonic in x ∈ (−α,∞).

Theorem 3. Let s and t be nonnegative numbers and α = min{s, t}. Define

∆s,t(x) =





[
ψ(x + t)− ψ(x + s)

t− s

]2

+
ψ′(x + t)− ψ′(x + s)

t− s
, s 6= t

[ψ′(x + s)]2 + ψ′′(x + s), s = t

(5)

in x ∈ (−α,∞). Then the functions ∆s,t(x) for |t− s| < 1 and −∆s,t(x) for
|t− s| > 1 are completely monotonic in x ∈ (−α,∞).

Remark 1. The positivity of the functions ∆0,0(x) = [ψ′(x)]2 +ψ′′(x) and δ0,0(x) =
ψ′(x)− 1

x − 1
2x2 has been proved in [3] and [12, 21] respectively, so Theorem 2 and

Theorem 3 are generalizations of related results in [3, 12, 21] and the references
therein.
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2. Proofs of theorems

2.1. Proof of Theorem 1. In this subsection, we will give a new and simple proof
of Theorem 1.

2.1.1. Convexity and concavity in Theorem 1 for s 6= t. Standard differentiating
and simplifying yields

z′s,t(x) =
[zs,t(x) + x][ψ(x + t)− ψ(x + s)]

t− s
− 1, (6)

z′′s,t(x) =
zs,t(x) + x

t− s

{
[ψ(x + t)− ψ(x + s)]2

t− s
+ [ψ′(x + t)− ψ′(x + s)]

}

= [zs,t(x) + x]

{[
1

t− s

∫ t

s

ψ′(x + u) du

]2

+
1

t− s

∫ t

s

ψ′′(x + u) du

}

, [zs,t(x) + x]
{
[Φ′s,t(x)]2 + Φ′′s,t(x)

}

, [zs,t(x) + x]∆s,t(x),

where, for simplicity and our own convenience in the following, a notation

Φs,t(x) =
1

t− s

∫ t

s

ψ(x + u) du =
lnΓ(x + t)− ln Γ(x + t)

t− s

is introduced. The functions

Φ′s,t(x) =
1

t− s

∫ t

s

ψ′(x + u) du =
ψ(x + t)− ψ(x + s)

t− s

and

Φ′′s,t(x) =
1

t− s

∫ t

s

ψ′′(x + u) du =
ψ′(x + t)− ψ′(x + s)

t− s

are known as the divided differences of the functions ψ and ψ′ or the arithmetic
means of the polygamma functions ψ′ and ψ′′ on the interval between x + s and
x + t.

It is well known that for n ∈ N the polygamma or multigamma functions ψ(n)(x)
have the following integral expressions

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−xt dt. (7)

This implies clearly that limx→∞∆s,t(x) = 0. Hence, in order to prove ∆s,t(x) ≷ 0,
it is sufficient to show ∆s,t(x)−∆s,t(x + 1) ≷ 0, as done in [12].

By using the following formula

ψ(i−1)(x + 1) = ψ(i−1)(x) +
(−1)i−1(i− 1)!

xi
(8)

for i ∈ N and x > 0, which can be established from the well-known difference
equation Γ(x + 1) = xΓ(x) by taking logarithm and consecutive differentiation, it
is obtained that

∆s,t(x)−∆s,t(x + 1) = [Φ′s,t(x)]2 − [Φ′s,t(x + 1)]2 + Φ′′s,t(x)− Φ′′s,t(x + 1)
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=
2

t− s

[
Φ′s,t(x) + Φ′s,t(x + 1)

2

∫ t

s

1
(x + u)2

du−
∫ t

s

1
(x + u)3

du

]

= 2
[

1
t− s

∫ t

s

1
(x + u)2

du

][
Φ′s,t(x) + Φ′s,t(x + 1)

2
−

∫ t

s
1/(x + u)3 du∫ t

s
1/(x + u)2 du

]

= 2
[

1
t− s

∫ t

s

ψ′(x + u) + ψ′(x + u + 1)
2

du−
∫ t

s
1/(x + u)3 du∫ t

s
1/(x + u)2 du

]

×
[

1
t− s

∫ t

s

1
(x + u)2

du

]

= 2δs,t(x)
[

1
t− s

∫ t

s

1
(x + u)2

du

]
.

(9)

Since limx→∞ δs,t(x) = 0 by (7) clearly, in order to show δs,t(x) ≷ 0, it suffices
to prove δs,t(x)− δs,t(x + 1) ≷ 0, as done in [12].

By using the formula (8) and standard argument, it is concluded that

δs,t(x)− δs,t(x + 1) =
1

t− s

∫ t

s

ψ′(x + u)− ψ′(x + u + 1)
2

du

+
1

t− s

∫ t

s

ψ′(x + u + 1)− ψ′(x + u + 2)
2

du

+

∫ t

s
1/(x + u + 1)3 du∫ t

s
1/(x + u + 1)2 du

−
∫ t

s
1/(x + u)3 du∫ t

s
1/(x + u)2 du

=
1

2(t− s)

[ ∫ t

s

1
(x + u)2

du +
∫ t

s

1
(x + u + 1)2

du

]

+

∫ t

s
1/(x + u + 1)3 du∫ t

s
1/(x + u + 1)2 du

−
∫ t

s
1/(x + u)3 du∫ t

s
1/(x + u)2 du

(10)

=
1
2

[
1

(x + s + 1)(x + t + 1)
+

1
(x + s)(x + t)

]

+
x + 1 + (s + t)/2

(x + s + 1)(x + t + 1)
− x + (s + t)/2

(x + s)(x + t)

=
1− (s− t)2

2(x + s)(x + s + 1)(x + t)(x + t + 1)
≷ 0

if and only if 1− (s− t)2 ≷ 0 which is equivalent to |s− t| ≶ 1 immediately. This
implies δs,t(x) ≷ 0, ∆s,t(x)−∆s,t(x + 1) ≷ 0, and then

∆s,t(x) =
z′′s,t(x)

zs,t(x) + x
≷ 0

if and only if |s− t| ≶ 1. So, the convexity and concavity of the function zs,t(x)
follows readily.

2.1.2. Convexity in Theorem 1 for s = t. It is clear that

z′s,s(x) = ψ′(x + s)eψ(x+s) − 1,

z′′s,s(x) = [ψ′(x + s)]2 + ψ′′(x + s)]eψ(x+s).
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The requirement z′′s,s(x) > 0 follows from a fact [3, Lemma 1.1] that ∆0,0(x) =
[ψ′(x)]2 + ψ′′(x) > 0 for x > 0.

2.1.3. Monotonicity in Theorem 1. From an inequality ψ′(x) exp ψ(x) < 1 for x > 0
obtained in [3, Lemma 1.1], it is deduced easily that z′s,s(x) < 0, and then zs,s(x)
is decreasing.

From the convexity and concavity of zs,t(x), it is deduced immediately that if
|s− t| > 1 the first derivative z′s,t(x) is decreasing and, if 0 < |s− t| < 1 the
function z′s,t(x) is increasing. Therefore, in order to obtain monotonicity of zs,t(x),
it is sufficient to verify limx→∞ z′s,t(x) = 0.

For x > 0, Corollary 1 in [21, p. 305] gives
1

2x2
− 1

6x3
<

1
x
− ψ′(x + 1) <

1
2x2

− 1
6x3

+
1

30x5
, (11)

which can be rewritten by (8) as
1
x

+
1

2x2
+

1
6x3

− 1
30x5

< ψ′(x) <
1
x

+
1

2x2
+

1
6x3

. (12)

This means

lim
x→∞

x[ψ(x + t)− ψ(x + s)] = (t− s) lim
x→∞

xψ′(x + ξ)

≤ lim
x→∞

x

[
1

x + ξ
+

1
2(x + ξ)2

+
1

6(x + ξ)3

]
= t− s

and

lim
x→∞

x[ψ(x + t)− ψ(x + s)] = (t− s) lim
x→∞

xψ′(x + ξ)

≥ lim
x→∞

x

[
1

x + ξ
+

1
2(x + ξ)2

+
1

6(x + ξ)3
− 1

30(x + ξ)5

]
= t− s,

where ξ is between s and t. As a result,

lim
x→∞

x[ψ(x + t)− ψ(x + s)] = t− s. (13)

In [14] J. D. Kečkić and P. M. Vasić gave the following double inequality

bb−1

aa−1
ea−b <

Γ(b)
Γ(a)

<
bb−1/2

aa−1/2
ea−b (14)

for 0 < a < b. Applying a = x + s and b = x + t to inequality (14) and rearranging
leads to

[
(1 + t/x)x+t−1

(1 + s/x)x+s−1

]1/(s−t)

e <

[
xs−t Γ(x + t)

Γ(x + s)

]1/(s−t)

<

[
(1 + t/x)x+t−1/2

(1 + s/x)x+s−1/2

]1/(s−t)

e.

For any constant β ∈ R, it is clear that

lim
x→∞

[
(1 + t/x)x+t−β

(1 + s/x)x+s−β

]1/(s−t)

=
[

limx→∞(1 + t/x)x+t−β

limx→∞(1 + s/x)x+s−β

]1/(s−t)

=
1
e
.

Thus,

lim
x→∞

[
xs−t Γ(x + t)

Γ(x + s)

]1/(s−t)

= 1. (15)
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Rearranging (6) and utilizing (13) and (15) reveals

lim
x→∞

z′s,t(x) = lim
x→∞

[(
Γ(x + t)
Γ(x + s)

)1/(t−s)
ψ(x + t)− ψ(x + s)

t− s

]
− 1

= lim
x→∞

[(
xs−t Γ(x + t)

Γ(x + s)

)1/(t−s)
x[ψ(x + t)− ψ(x + s)]

t− s

]
− 1

= lim
x→∞

(
xs−t Γ(x + t)

Γ(x + s)

)1/(t−s) limx→∞ x[ψ(x + t)− ψ(x + s)]
t− s

− 1

= 0.

The proof of Theorem 1 is complete.

2.2. Proof of Theorem 2. Now we are in a position to prove Theorem 2 which
tells us the complete monotonicity of the sum for the divided difference of psi
function ψ and a rational fraction.

2.2.1. The case δs,s(x). This is equivalent to the complete monotonicity of the
function δ0,0(x) = ψ′(x)− 1

x − 1
2x2 . Successive differentiation of the function δ0,0(x)

with respect to x > 0 yields

δ
(k)
0,0 (x) = ψ(k+1)(x) +

(−1)k+1k!
xk+1

+
(−1)k+1(k + 1)!

2xk+2
(16)

for nonnegative integer k. Formula (7) means directly that limx→∞ δ
(k)
0,0 (x) = 0.

Hence, to prove (−1)kδ
(k)
0,0 (x) > 0 in (0,∞) for nonnegative integer k, it suffices to

show (−1)k[δ(k)
0,0 (x)− δ

(k)
0,0 (x + 1)] > 0 as done in [12].

From (8), it is concluded that

(−1)k[δ(k)
0,0 (x)− δ

(k)
0,0 (x + 1)] = (−1)k[ψ(k+1)(x)− ψ(k+1)(x + 1)]

− k!
[

1
xk+1

− 1
(x + 1)k+1

]
− (k + 1)!

2

[
1

xk+2
− 1

(x + 1)k+2

]

=
(k + 1)!
xk+2

− k!
[

1
xk+1

− 1
(x + 1)k+1

]
− (k + 1)!

2

[
1

xk+2
− 1

(x + 1)k+2

]

=
(k + 1)!

2

[
1

xk+2
+

1
(x + 1)k+2

]
− k!

[
1

xk+1
− 1

(x + 1)k+1

]

= (k + 1)!
[
1/xk+2 + 1/(x + 1)k+2

2
−

∫ x+1

x

1
uk+2

du

]
.

(17)

Utilizing the noted Hermite-Hadamard-Jensen’s integral inequality [23, 24] in the
final line of (17) deduces the positivity of (−1)k[δ(k)

0,0 (x)− δ
(k)
0,0 (x + 1)]. As a result,

(−1)kδ
(k)
0,0 (x) > 0, and then, the function δ0,0(x) is completely monotonic in (0,∞).

2.2.2. The case δs,t(x) for s 6= t. The function δs,t(x) can be rewritten as

δs,t(x) =

∫ t

s
ψ′(x + u) du

t− s
− 1

2

[(
1− 1

t− s

)
1

x + t
+

(
1 +

1
t− s

)
1

x + s

]
, (18)

then, for nonnegative integer k,
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δ
(k)
s,t (x) =

1
t− s

∫ t

s

ψ(k+1)(x + u) du

− (−1)kk!
2

[(
1− 1

t− s

)
1

(x + t)k+1
+

(
1 +

1
t− s

)
1

(x + s)k+1

]
. (19)

Since limx→∞ δ
(k)
s,t (x) = 0 from (7), as done in [12], to show (−1)kδ

(k)
s,t (x) ≷ 0, it is

sufficient to verify

(−1)k[δ(k)
s,t (x)− δ

(k)
s,t (x + 1)] = (−1)k[δs,t(x)− δs,t(x + 1)](k) ≷ 0.

Formula (10) tells us that

δs,t(x)− δs,t(x + 1) =
1− (s− t)2

2(x + s)(x + s + 1)(x + t)(x + t + 1)
(20)

in x ∈ (−α,∞). Since 1
x is completely monotonic in (0,∞) and a product of finite

completely monotonic functions is also completely monotonic, then the function

δs,t(x)− δs,t(x + 1)
1− (s− t)2

is completely monotonic in (−α,∞), that is,

(−1)k [δs,t(x)− δs,t(x + 1)](k)

1− (s− t)2
= (−1)k

δ
(k)
s,t (x)− δ

(k)
s,t (x + 1)

1− (s− t)2
> 0

in x ∈ (−α,∞). Hence, (−1)k[δ(k)
s,t (x)− δ

(k)
s,t (x + 1)] ≷ 0 and then (−1)kδ

(k)
s,t (x) ≷ 0

in (−α,∞) for |s− t| ≶ 1.
The proof of Theorem 2 is complete.

2.3. Proof of Theorem 3. Finally, by using the same method as in the proof of
Theorem 2, we are about to prove the completely monotonic property of the sum
for two divided differences of the psi and polygamma functions.

2.3.1. The case ∆s,s(x). This case is equivalent to the complete monotonicity of
the function ∆0,0(x) = [ψ′(x)]2 + ψ′′(x).

By standard computation, it follows that

∆(k)
0,0(x) = 2

k−1∑

i=0

(
k − 1

i

)
ψ(i+1)(x)ψ(k−i+1)(x) + ψ(k+2)(x),

for nonnegative integer k, where
(
0
0

)
= 1 is assumed. Formula (7) means clearly

that limx→∞∆(k)
0,0(x) = 0 for nonnegative integer k. Hence, in order to show

(−1)k∆(k)
0,0(x) > 0 for nonnegative integer k, by a method used in [12], it is sufficient

to prove that (−1)k[∆(k)
0,0(x) −∆(k)

0,0(x + 1)] = (−1)k[∆0,0(x) −∆0,0(x + 1)](k) > 0
for nonnegative integer k.

From (8), it is obtained that

∆0,0(x)−∆0,0(x + 1) =
2
x2

[
ψ′(x)− 1

x
− 1

2x2

]
.

The function 2
x2 is completely monotonic in (0,∞) clearly. The complete mono-

tonicity of the function ψ′(x) − 1
x − 1

2x2 in (0,∞) has been proved in Theorem 2.
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Since a product of finite completely monotonic functions is also completely mono-
tonic, then the function ∆0,0(x)−∆0,0(x+1) is complete monotonic in (0,∞), that
is,

(−1)k[∆0,0(x)−∆0,0(x + 1)](k) = (−1)k[∆(k)
0,0(x)−∆(k)

0,0(x + 1)] > 0

for nonnegative integer k in (0,∞). Hence, (−1)k∆(k)
0,0(x) > 0 and the function

∆0,0(x) is completely monotonic in (0,∞).

2.3.2. The case ∆s,t(x) for s 6= t. In order to show (−1)k∆(k)
s,t (x) ≶ 0 for nonnega-

tive integer k, by a method used in [12], it is sufficient to show that

(−1)k[∆(k)
s,t (x)−∆(k)

s,t (x + 1)] = (−1)k[∆s,t(x)−∆s,t(x + 1)](k) ≶ 0

in (−α,∞) for nonnegative integer k. Formula (9) gives

∆s,t(x)−∆s,t(x + 1) = 2δs,t(x)
[

1
t− s

∫ t

s

1
(x + u)2

du

]
. (21)

It is clear that the function 1
t−s

∫ t

s
1

(x+u)2 du is completely monotonic in (−α,∞).

Combined with the fact that (−1)kδ
(k)
s,t (x) ≷ 0 in (−α,∞) for |s− t| ≶ 1 obtained

Theorem 2, it is deduced that

(−1)k[∆s,t(x)−∆s,t(x + 1)](k) = (−1)k[∆(k)
s,t (x)−∆(k)

s,t (x + 1)] ≶ 0

in (−α,∞) for |s− t| ≶ 1. This implies that (−1)k∆(k)
s,t (x) ≶ 0 in (−α,∞) if

|s− t| ≶ 1 for nonnegative integer k.
The proof of Theorem 3 is complete.

References

[1] H. Alzer, Inequalities for the volume of unit ball in Rn, J. Math. Anal. Appl. 252 (2000),
no. 1, 353–363.

[2] H. Alzer, On Bernstein’s inequality for ultraspherical polynomials, Arch. Math. (Basel) 69
(1997), no. 6, 487–490.

[3] N. Batir, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure
Appl. Math. 6 (2005), no. 4, Art. 103. Available online at http://jipam.vu.edu.au/article.
php?sid=577. RGMIA Res. Rep. Coll. 7 (2004), no. 3, Art. 1. Available online at http:

//rgmia.vu.edu.au/v7n3.html.
[4] Ch.-P. Chen, Monotonicity and convexity for the gamma function, J. Inequal. Pure Appl.

Math. 6 (2005), no. 4, Art. 100. Available online at http://jipam.vu.edu.au/article.php?

sid=574.
[5] Ch.-P. Chen and F. Qi, A new proof of the best bounds in Wallis’ inequality, RGMIA Res.

Rep. Coll. 6 (2003), no. 2, Art. 2. Available online at http://rgmia.vu.edu.au/v6n2.html.
[6] Ch.-P. Chen and F. Qi, Best upper and lower bounds in Wallis’ inequality, J. Indon. Math.

Soc. (MIHMI) 11 (2005), no. 2, 137–141.
[7] Ch.-P. Chen and F. Qi, Completely monotonic function associated with the gamma function

and proof of Wallis’ inequality, Tamkang J. Math. 36 (2005), no. 4, 303–307.
[8] Ch.-P. Chen and F. Qi, Improvement of lower bound in Wallis’ inequality, RGMIA Res. Rep.

Coll. 5 (2002), suppl., Art. 23. http://rgmia.vu.edu.au/v5(E).html.
[9] Ch.-P. Chen and F. Qi, The best bounds in Wallis’ inequality, Proc. Amer. Math. Soc. 133

(2005), no. 2, 397–401. RGMIA Res. Rep. Coll. 5 (2002), no. 4, Art. 13. Available online at
http://rgmia.vu.edu.au/v5n4.html.

[10] Ch.-P. Chen and F. Qi, The best bounds to
(2n)!

22n(n!)2
, Math. Gaz. 88 (2004), 54–55.

[11] Y. Chow, L. Gatteschi, and R. Wong, A Bernstein-type for the Jacobi polynomial, Proc.
Amer. Math. Soc. 121 (1994), no. 2, 703–709.
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