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SOME NEW BOUNDS FOR MATHIEU’S SERIES

ABDOLHOSSEIN HOORFAR AND FENG QI

Abstract. In the paper, an upper bound and two lower bounds for Mathieu’s
series are established, which refine to a certain extent a sharp double inequality
obtained by Alzer-Brenner-Ruehr in 1998. Moreover, the very closer lower and
upper bounds for ζ(3) are deduced.

1. Introduction

In 1890, Mathieu in [19] defined S(r) for r > 0 by

S(r) =
∞∑

n=1

2n

(n2 + r2)2
(1)

and conjectured that S(r) < 1
r2 . We call formula (1) Mathieu’s series.

There have been a lot of literature about the estimations of S(r) for more than
100 years before 1998, for examples, [1, 2, 6, 7, 11, 12, 18, 29, 33, 34, 35] and the
references therein. In [18], E. Makai proved

1
r2 + 1/2

< S(r) <
1
r2

. (2)

In 1998, H. Alzer, J. L. Brenner and O. G. Ruehr presented in [1] that

1
r2 + 1

2ζ(3)

< S(r) <
1

r2 + 1
6

, (3)

where ζ denotes the zeta function and the constants 1
2ζ(3) and 1

6 in (3) are the best
possible.

After 2000, among other things, several open problems on the estimations and
integral representations of generalized Mathieu’s series were posed in [14, 26, 27]
by B.-N. Guo and F. Qi. Stimulated by or originated from these open problems, a
lot of articles such as [3, 4, 5, 8, 9, 10, 13, 15, 20, 21, 22, 23, 24, 25, 28, 30, 31, 32]
have been published in variant reputable journals by many mathematicians all over
the world.

In this article, by utilizing a method and techniques used in [18], we would like
to improve or refine the sharp double inequality (3) and to establish a very closer
double inequality for ζ(3).

Our main results are the following four theorems.
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Theorem 1. For r > 0,

S(r) >
1

r2 + 1
6 + r2+6

3(9r2+8)

=
1

r2 + 1
2 − 2(4r2+1)

3(9r2+8)

. (4)

Remark 1. By standard argument, it is showed readily that inequality (4) is better

than the left hand side inequality in (3) when r > 2
√

5ζ(3)−6
27−11ζ(3) = 0.05 · · · .

Theorem 2. For r > 0,

S(r) >
1

r2 + 1
6 + 5

6(2r2+3)

=
1

r2 + 1
2 − 4r2+1

6(2r2+3)

. (5)

Remark 2. It is not difficult to verify that inequality (5) is better than the left hand

side inequality in (3) when r >
√

8ζ(3)−9
2[3−ζ(3)] = 0.41 · · · .

It is important to remark that inequalities (4) and (5) do not include each other,
which can be proved straightforwardly.

Theorem 3. For r > 0,

S(r) <
1√

r4 + 2r2 + 2 − 1
. (6)

Remark 3. It is easy to deduce that inequality (6) is better than the right hand

side inequality in (3) when 0 < r <
√

23
12 = 1.38 · · · .

Theorem 4. For m ∈ N, let S3(m) =
∑m

n=1
1

n3 . Then
1

2m2 + 2m + 1− 1
6(m2+m+3/2)

< ζ(3)− S3(m) <
1

2m2 + 2m + 1− 1
6(m2+m+1)

. (7)

Remark 4. Calculation by Mathematica 5.2 shows that

ζ(3) = 1.202056903159594285399 · · · .

If m taking from 1 to 9, the sums of the right side term in (7) and S3(m) are

1.202247191011235955, 1.202064220183486239, 1.202057560382342322,

1.202057003155139651, 1.202056924652726768, 1.202056909039779896,

1.202056905080018071, 1.202056903877571143, 1.202056903458154800.

If m taking from 1 to 9, the sums of the left side term in (7) and S3(m) are

1.201923076923076923, 1.202054794520547945, 1.202056799882886839,

1.202056893315403149, 1.202056901714344462, 1.202056902872941459,

1.202056903088695828, 1.202056903138840387, 1.202056903152657143.

These numerical computations by Mathematica 5.2 reveals that inequalities in
(7) give much accurate approximations from left and right.

Corollary 1. If 1 ≤ δ < 3
2 and m ≥

√
3δ2−δ+ 1

12
6−4δ − 1, then

ζ(3) < S3(m) +
1

2m2 + 2m + 1− 1
6(m2+m+δ)

. (8)

Remark 5. In [17], the number ζ(3) was estimated by using Jordan’s inequality and
its refinements. In [16], some more general conclusions were obtained.
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2. Proofs of theorems and corollary

Now we are in a position to prove our theorems and corollary.

Proof of Theorem 1. For n ∈ N, let

wn = n(n− 1) + r2 +
1
2
− θ

n2 + γ
,

where θ = 1
3

(
r2 + 1

4

)
and γ is a possible and undetermined positive function of r

such that
1

wn
− 1

wn+1
≤ 2n

(n2 + r2)2
. (9)

Straightforward computation yields

1
wn

− 1
wn+1

=
2n

{
1 + θ(1+1/2n)

(n2+γ)[(n+1)2+γ]

}

(n2 + r2)2 + θQ(n,r,γ)
(n2+γ)[(n+1)2+γ]

,

where

Q(n, r, γ) = n4 + 4n3 +
(
4γ − 2r2 − 1

)
n2

+
(
6γ − 2r2 − 2

)
n + 3γ2 + 2

(
1− r2

)
γ − 2r2

3
− 5

12
.

It is easy to see that if
1 + 1

2n

Q(n, r, γ)
≤ 1

(n2 + r2)2
, (10)

then inequality (9) holds. Further, inequality (10) is equivalent to

n4 + 4n3 +
(
4γ − 2r2 − 1

)
n2 +

(
6γ − 2r2 − 2

)
n + 3γ2

+ 2
(
1− r2

)
γ − 2r2

3
− 5

12
≥

(
1 +

1
2n

) (
n2 + r2

)2
,

which can be rewritten as

7n3 +
(
8γ − 8r2 − 2

)
n2 +

(
12γ − 6r2 − 4

)
n

+ 6γ2 + 4
(
1− r2

)
γ − 2r4 − 4r2

3
− 5

6
− r4

n
≥ 0,

which can be further rearranged as

f(n, γ) , (n− 1)
[
7n2 +

(
8γ − 8r2 + 5

)
n + 20γ − 14r2 + 1 +

r4

n

]

+ 6γ2 + 4
(
6− r2

)
γ − 3r4 − 46

3
r2 +

1
6
≥ 0.

Direct computation reveals that

f

(
n,

9r2

8

)
= (n− 1)

[
7n2 +

(
r2 + 5

)
n +

17
2

r2 + 1 +
r4

n

]
+

3
32

r4 +
35
3

r2 +
1
6

> 0,

but

f
(
n, r2

)
= (n− 1)

(
7n2 + 5n + 6r2 +

r4

n

)
− r4 +

26
3

r2 +
1
6
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is negative if r is large enough. Consequently, if taking γ = 9r2

8 , then inequality
(9) is valid. Summing up on both sides of (9) with respect to n = 1, 2, · · · leads to
(4). The proof of Theorem 1 is finished. ¤

Proof of Theorem 2. Now let us consider the sequence

νn(r) = n(n− 1) + r2 +
1
2
− θ

n(n− 1) + β
(11)

for n ∈ N, where θ and β are two undetermined functions of r, in order that
1

νn(r)
− 1

νn+1(r)
<

2n

(n2 + r2)2
. (12)

Direct calculation yields

1
νn(r)

− 1
νn+1(r)

=
2n + 2θn

(n2−n+β)(n2+n+β)

(n2 + r2)2 + P (n,r,θ,β)
(n2−n+β)(n2+n+β)

,

where

P (n, r, θ, β) =
(

r2 +
1
4
− 2θ

)
n4 +

(
r2 +

1
4

)
β2 − θβ(2r2 + 1) + θ2

+
[(

r2 +
1
4

)
(2β − 1)− θ

(
2β + 2r2 + 3

)]
n2.

Letting r2 + 1
4 − 2θ = θ and

(
r2 + 1

4

)
(2β − 1)− θ

(
2β + 2r2 + 3

)
= 2θr2 gives

θ =
1
3

(
r2 +

1
4

)
and β = r2 +

3
2
.

Consequently,

P (n, r, θ, β) = θn4 + 2θr2n2 + 3θβ2 − θβ
(
2r2 + 1

)
+ θ2

= θ
(
n2 + r2

)2
+ θ

[
3β2 − β

(
2r2 + 1

)
+ θ − r4

]

= θ
(
n2 + r2

)2
+

16
3

θ
(
r2 + 1

)
.

As a result,

1
νn(r)

− 1
νn+1(r)

=
2n + 2θn

(n2−n+β)(n2+n+β)

(n2 + r2)2 + θ(n2+r2)2+16θ(r2+1)/3
(n2−n+β)(n2+n+β)

<
2n + 2θn

(n2−n+β)(n2+n+β)

(n2 + r2)2 + θ(n2+r2)2

(n2−n+β)(n2+n+β)

=
2n

(n2 + r2)2
.

Summing up on both sides of above inequality with respect to n ∈ N leads to

S(r) >
1
ν1

=
1

r2 + 1
2 − θ

β

=
1

r2 + 1
2 − 4r2+1

12r2+18

.

The proof of Theorem 2 is complete. ¤

Proof of Theorem 3. Let un(r) = n(n− 1) + r2 + µ(r) for n ∈ N, where

µ(r) =
√

(r2 + 1)2 + 1 − (r2 + 1) > 0. (13)
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Then
1

un(r)
− 1

un+1(r)
=

2n

(n2 + r2)2 − [1− 2µ(r)]n2 + µ2(r) + 2r2µ(r)
.

From (13), it is deduced that µ2(r) + 2r2µ(r) = 1− 2µ(r) > 0. Hence,

1
un(r)

− 1
un+1(r)

=
2n

(n2 + r2)2 − [1− 2µ(r)](n2 − 1)
≥ 2n

(n2 + r2)2
,

and then
∞∑

n=1

2n

(n2 + r2)2
<

1
u1

=
1

r2 + µ(r)
=

1√
r4 + 2r2 + 2 − 1

.

The proof of Theorem 3 is complete. ¤

Proof of Theorem 4. Let tn = 2n2− 2n + 1− 1
6(n2−n+δ) , where δ is a fixed positive

number and n ∈ N. Direct computation gives

1
tn
− 1

tn+1
=

4n + 2n
6(n2−n+δ)(n2+n+δ)

4n4 + 2n4+(8δ−12)n2+6δ2−2δ+1/6
6(n2−n+δ)(n2+n+δ)

. (14)

If δ = 3
2 , then 8δ − 12 = 0 and

1
tn
− 1

tn+1
=

4n + 2n
6(n2−n+3/2)(n2+n+3/2)

4n4 + 2n4+32/3
6(n2−n+3/2)(n2+n+3/2)

<
1
n3

.

Summing up on both sides of above inequality for n from m+1 to infinity produces

1
tm+1

=
1

2m2 + 1− 1
6(m2+m+3/2)

<

∞∑
n=m+1

1
n3

.

Adding S3(m) on both sides of above inequality leads to the left hand side inequality
in (7).

If δ = 1 and n > 1, then

1
tn
− 1

tn+1
=

4n + 2n
6(n2−n+1)(n2+n+1)

4n4 + 2n4−[4(n2−1)−1/6]
6(n2−n+1)(n2+n+1)

>
1
n3

.

Summing up on both sides of above inequality for n from m + 1 to infinity yields

1
2m2 + 2m + 1− 1

2(m2+m+1)

>

∞∑
n=m+1

1
n3

.

This is equivalent to the right side inequality in (7). Theorem 4 is proved. ¤

Proof of Corollary 1. It is easy to see that

2n4 + (8δ − 12)n2 + 6δ2 − 2δ +
1
6

= 2n4 − (12− 8δ)
(

n2 − 3δ2 − δ + 1
12

6− 4δ

)
.

If 1 ≤ δ < 3
2 and n ≥

√
3δ2−δ+ 1

12
6−4δ , from equation (14), it is deduced that

1
tn
− 1

tn+1
≥ 1

n3
.
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By the same argument as above, when m ≥
√

3δ2−δ+ 1
12

6−4δ − 1, inequality

1
tm+1

=
1

2m2 + 2m + 1− 1
6(m2+m+δ)

>

∞∑
n=m+1

1
n3

is obtained, which is equivalent to (8). The proof of Corollary 1 is complete. ¤
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[30] H. M. Srivastava and Ž. Tomovski, Some problems and solutions involving Mathieu’s series
and its generalizations, J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Art. 45. Available online
at http://jipam.vu.edu.au/article.php?sid=380.
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