
Approximating the Stieltjes Integral for (φ, ф)-
Lipschitzian Integrators and Applications

This is the Published version of the following publication

Dragomir, Sever S (2007) Approximating the Stieltjes Integral for (φ, ф)-
Lipschitzian Integrators and Applications. Research report collection, 10 (2).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/17589/ 



APPROXIMATING THE STIELTJES INTEGRAL FOR
(ϕ, Φ)-LIPSCHITZIAN INTEGRATORS AND APPLICATIONS

S.S. DRAGOMIR

Abstract. Approximations for the Stieltjes integral with (ϕ, Φ)−Lipschitzian

integrators are given. Applications for the Riemann integral of a product and
for the generalised trapezoid and Ostrowski inequalities are also provided.

1. Introduction

One can approximate the Stieltjes integral
∫ b

a
f (t) du (t) with the following sim-

pler quantities:

1
b− a

[u (b)− u (a)] ·
∫ b

a

f (t) dt ([17], [18])(1.1)

f (x) [u (b)− u (a)] ([10], [11])(1.2)

or with

(1.3) [u (b)− u (x)] f (b) + [u (x)− u (a)] f (a) ([16]),

where x ∈ [a, b] .
In order to provide a priori sharp bounds for the approximation error, consider

the functionals:

D (f, u; a, b) :=
∫ b

a

f (t) du (t)− 1
b− a

[u (b)− u (a)] ·
∫ b

a

f (t) dt,

Θ(f, u; a, b, x) :=
∫ b

a

f (t) du (t)− f (x) [u (b)− u (a)]

and

T (f, u; a, b, x) :=
∫ b

a

f (t) du (t)− [u (b)− u (x)] f (b)− [u (x)− u (a)] f (a) .

If the integrand f is Riemann integrable on [a, b] and the integrator u : [a, b] → R
is L−Lipschitzian, i.e.,

(1.4) |u (t)− u (s)| ≤ L |t− s| for each t, s ∈ [a, b] ,

then the Stieltjes integral
∫ b

a
f (t) du (t) exists and, as pointed out in [17],

(1.5) |D (f, u; a, b)| ≤ L

∫ b

a

∣∣∣∣∣f (t)−
∫ b

a

1
b− a

f (s) ds

∣∣∣∣∣ dt.
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The inequality (1.5) is sharp in the sense that the multiplicative constant C = 1 in
front of L cannot be replaced by a smaller quantity. Moreover, if there exists the
constants m,M ∈ R such that m ≤ f (t) ≤ M for a.e. t ∈ [a, b] , then [17]

(1.6) |D (f, u; a, b)| ≤ 1
2
L (M −m) (b− a) .

The constant 1
2 is best possible in (1.6).

A different approach in the case of integrands of bounded variation were consid-
ered by the same authors in 2001, [18], where they showed that

(1.7) |D (f, u; a, b)| ≤ max
t∈[a,b]

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣
b∨
a

(u) ,

provided that f is continuous and u is of bounded variation. Here
∨b

a (u) denotes
the total variation of u on [a, b] . The inequality (1.7) is sharp.

If we assume that f is K−Lipschitzian, then [18]

(1.8) |D (f, u; a, b)| ≤ 1
2
K (b− a)

b∨
a

(u) ,

with 1
2 the best possible constant in (1.8).

For various bounds on the error functional D (f, u; a, b) where f and u belong
to different classes of function for which the Stieltjes integral exists, see [15], [14],
[13], and [7] and the references therein.

For the functional θ (f, u; a, b, x) we have the bound [10]:

|θ (f, u; a, b, x)|(1.9)

≤ H

[
(x− a)r

x∨
a

(f) + (b− x)r
b∨
x

(f)

]

≤ H ×



[(x− a)r + (b− x)r]
[

1
2

b∨
a

(f) + 1
2

∣∣∣∣ x∨
a

(f)−
b∨
x

(f)
∣∣∣∣] ;

[(x− a)qr + (b− x)qr]
1
q

[(
x∨
a

(f)
)p

+
(

b∨
x

(f)
)p
] 1

p

if p > 1, 1
p + 1

q = 1;

[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]r b∨
a

(f) ,

provided f is of bounded variation and u is of r −H−Hölder type, i.e.,

(1.10) |u (t)− u (s)| ≤ H |t− s|r for each t, s ∈ [a, b] ,

with given H > 0 and r ∈ (0, 1].
If f is of q −K−Hölder type and u is of bounded variation, then [11]

(1.11) |θ (f, u; a, b, x)| ≤ K

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]q b∨
a

(u) ,

for any x ∈ [a, b] .
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If u is monotonic nondecreasing and f of q−K−Hölder type, then the following
refinement of (1.11) also holds [7]:

|θ (f, u; a, b, x)| ≤ K

[
(b− x)q

u (b)− (x− a)q
u (a)(1.12)

+ q

{∫ x

a

u (t) dt

(x− t)1−q −
∫ b

x

u (t) dt

(t− x)1−q

}]
≤ K [(b− x)q [u (b)− u (x)] + (x− a)q [u (x)− u (a)]]

≤ K

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]q

[u (b)− u (a)] ,

for any x ∈ [a, b] .
If f is monotonic nondecreasing and u is of r −H−Hölder type, then [7]:

|θ (f, u; a, b, x)|(1.13)

≤ H

[
[(x− a)r − (b− x)r] f (x)

+ r

{∫ x

a

f (t) dt

(b− t)1−r −
∫ b

x

f (t) dt

(t− r)1−r

}]
≤ H {(b− x)r [f (b)− f (x)] + (x− a)r [f (x)− f (a)]}

≤ H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]r

[f (b)− f (a)] ,

for any x ∈ [a, b] .
The error functional T (f, u; a, b, x) satisfies similar bounds, see [16], [7], [2] and

[1] and the details are omitted.
The main aim of this paper is to provide a different approximation of the Stieltjes

integral
∫ b

a
f (t) du (t) in terms of the simpler quantity

ϕ + Φ
2

∫ b

a

f (t) dt

provided that the integrator u is (ϕ, Φ)−Lipschitzian on [a, b] .
Applications for the Riemann integral of a product of two functions and for the

generalised trapezoid and Ostrowski inequalities are also provided.

2. (ϕ, Φ)−Lipschitzian Functions

We say that the function v : [a, b] → R is L−Lipschitzian on [a, b] if

(2.1) |v (t)− v (s)| ≤ L |t− s| for any t, s ∈ [a, b] ,

where L > 0 is a given constant.
The following lemma may be stated.

Lemma 1. Let u : [a, b] → R and ϕ, Φ ∈ R with Φ > ϕ. The following statements
are equivalent:

(i) The function u−ϕ+Φ
2 ·e, where e (t) = t, t ∈ [a, b] , is 1

2 (Φ− ϕ)−Lipschitzian;
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(ii) We have the inequality:

(2.2) ϕ ≤ u (t)− u (s)
t− s

≤ Φ for each t, s ∈ [a, b] with t 6= s;

(iii) We have the inequality:

(2.3) ϕ (t− s) ≤ u (t)− u (s) ≤ Φ (t− s) for each t, s ∈ [a, b] with t > s.

Following [19], we can introduce the concept:

Definition 1. The function u : [a, b] → R which satisfies one of the equivalent
conditions (i) – (iii) is said to be (ϕ, Φ)−Lipschitzian on [a, b] .

Notice that in [19], the definition was introduced on utilising the statement (iii)
and only the equivalence (i) ⇔ (iii) was considered.

Utilising Lagrange’s mean value theorem, we can state the following result that
provides practical examples of (ϕ, Φ)−Lipschitzian functions.

Proposition 1. Let u : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) . If

(2.4) −∞ < γ := inf
t∈(a,b)

u′ (t) , sup
t∈(a,b)

u′ (t) =: Γ < ∞

then u is (γ, Γ)−Lipschitzian on [a, b] .

3. Inequalities for Stieltjes Integrals

The following result may be stated.

Theorem 1. Let f : [a, b] → R be Riemann integrable on [a, b] , ϕ,Φ ∈ R with
Φ > ϕ and u : [a, b] → R a (ϕ, Φ)−Lipschitzian function on [a, b] . Then the
Stieltjes integral

∫ b

a
f (t) du (t) exists and defining the functional

Σ (f, u, ϕ, Φ; a, b) :=
∫ b

a

f (t) du (t)− ϕ + Φ
2

·
∫ b

a

f (t) dt

we have

(3.1) |Σ (f, u, ϕ,Φ; a, b)| ≤ 1
2

(Φ− ϕ)
∫ b

a

|f (t)| dt.

The constant 1
2 is best possible in (3.1).

Proof. It is known that if p : [a, b] → R is a Riemann integrable function and
v : [a, b] → R is L−Lipschitzian, then the Stieltjes integral

∫ b

a
p (t) dv (t) exists and

(3.2)

∣∣∣∣∣
∫ b

a

p (t) dv (t)

∣∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.

Since ϕ, Φ are finite, we can find a positive L such that −L < ϕ < Φ < L and by
(2.2) we deduce that u is L−Lipschitzian. Therefore the Stieltjes integral exists
and by (3.2) we have

(3.3)

∣∣∣∣∣
∫ b

a

f (t) d

(
u (t)− ϕ + Φ

2
· t
)∣∣∣∣∣ ≤ 1

2
(Φ− ϕ)

∫ b

a

|f (t)| dt.
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Since ∫ b

a

f (t) d

(
u (t)− ϕ + Φ

2
· t
)

=
∫ b

a

f (t) du (t)− ϕ + Φ
2

∫ b

a

f (t) dt,

hence by (3.3) we deduce (3.1).
To prove the sharpness of the constant 1

2 , assume that the inequality (3.1) holds
with a constant C > 0, i.e.,

(3.4) |Σ (f, u, ϕ, Φ; a, b)| ≤ C (Φ− ϕ)
∫ b

a

|f (t)| dt,

provided f is Riemann integrable on [a, b] and u is (ϕ, Φ)−Lipschitzian.
Consider the function u (t) :=

∣∣t− a+b
2

∣∣ . By the triangle inequality we have

|u (t)− u (s)| =
∣∣∣∣∣∣∣∣t− a + b

2

∣∣∣∣− ∣∣∣∣a + b

2
− s

∣∣∣∣∣∣∣∣ ≤ |t− s| for each t, s ∈ [a, b] ,

which shows that u is L−Lipschitzian with L = 1 or (ϕ, Φ)−Lipschitzian with
ϕ = −1,Φ = 1.

For a Riemann integrable function f : [a, b] → R we then have∫ b

a

f (t) du (t) =
∫ a+b

2

a

f (t) d

(
a + b

2
− t

)
+
∫ b

a+b
2

f (t) d

(
t− a + b

2

)

= −
∫ a+b

2

a

f (t) dt +
∫ b

a+b
2

f (t) dt

=
∫ b

a

sgn
(

t− a + b

2

)
f (t) dt.

If g : [a, b] → R is Riemann integrable and nonnegative a.e. on [a, b] and if we
choose f (t) = sgn

(
t− a+b

2

)
g (t) , t ∈ [a, b] , then∫ b

a

f (t) du (t) =
∫ b

a

g (t) dt > 0,∫ b

a

|f (t)| dt =
∫ b

a

g (t) dt

and by (3.4) we deduce that∫ b

a

g (t) dt ≤ 2C

∫ b

a

g (t) dt,

which implies that C ≥ 1
2 .

Corollary 1. Let g : [a, b] → R be a Riemann integrable function on [a, b] and
u : [a, b] → R a (ϕ, Φ)−Lipschitzian function on [a, b] . Then

(3.5) |D (f, u; a, b)| ≤ 1
2

(Φ− ϕ)
∫ b

a

∣∣∣∣∣g (t)− 1
b− a

∫ b

a

g (s) ds

∣∣∣∣∣ dt.

The constant 1
2 is best possible in (3.5).
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Remark 1. The inequality (3.5) has been obtained by Z. Liu in [19], from which,
in the case of usual Lipschitzian functions, one recaptures the result of Dragomir
and Fedotov from [17]:

(3.6) |D (f, u; a, b)| ≤ L

∫ b

a

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣ dt.

The following particular case of Theorem 1 is also of interest.

Corollary 2. Let g : [a, b] → R be a Riemann integrable function on [a, b] such
that

(3.7) −∞ < m ≤ g (t) ≤ M < ∞ for a.e. t ∈ [a, b] .

If u : [a, b] → R is (ϕ, Φ)−Lipschitzian on [a, b] , then∣∣∣∣∣
∫ b

a

g (t) du (t)− ϕ + Φ
2

∫ b

a

g (t) dt(3.8)

− m + M

2
[u (b)− u (a)] +

(ϕ + Φ) (m + M)
4

(b− a)
∣∣∣∣

≤ 1
2

(Φ− ϕ)
∫ b

a

∣∣∣∣g (t)− m + M

2

∣∣∣∣ dt

≤ 1
4

(M −m) (Φ− ϕ) (b− a) .

The constants 1
2 and 1

4 are best possible in (3.8).

Proof. The first inequality in (3.8) follows directly from Theorem 1 on choosing
f (t) = g (t)− m+M

2 , t ∈ [a, b] .
The second inequality in (3.8) is obvious by the fact that∣∣∣∣g (t)− m + M

2

∣∣∣∣ ≤ 1
2

(M −m) for a.e. t ∈ [a, b] .

Now, for the sharpness on the constants, if we choose u (t) =
∣∣t− a+b

2

∣∣ , t ∈ [a, b],
then u is (−1, 1)−Lipschitzian on [a, b] , u (a) = u (b) = (b− a) /2 and the left side
of (3.8) reduces to∣∣∣∣∣

∫ b

a

g (t) du (t)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

sgn
(

t− a + b

2

)
g (t) dt

∣∣∣∣∣ .
If we choose g (t) = sgn

(
t− a+b

2

)
h (t) with h : [a, b] → R a Riemann integrable

function with the properties:

0 ≤ h (t) ≤ 1 for a.e. t ∈ [a, b] and
∫ b

a

h (t) dt = b− a

(for instance h (t) = 1, t ∈ [a, b]), then g is bounded above by M = 1 and below by
m = −1, ∫ b

a

g (t) du (t) =
∫ b

a

h (t) dt = b− a,∫ b

a

∣∣∣∣g (t)− m + M

2

∣∣∣∣ dt =
∫ b

a

h (t) dt = b− a

and in both sides of (3.8) we get the same quantity b− a.
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The following result of Ostrowski type can be stated as well:

Corollary 3. Let g : [a, b] → R be a Riemann integrable function and u : [a, b] → R
a (ϕ, Φ)−Lipschitzian function on [a, b] . Then for each x ∈ [a, b] , we have the
inequality:

(3.9)

∣∣∣∣∣
∫ b

a

g (t) du (t)− ϕ + Φ
2

∫ b

a

g (t) dt

− g (x)
[
u (b)− u (a)− ϕ + Φ

2
(b− a)

]∣∣∣∣
≤ 1

2
(Φ− ϕ)

∫ b

a

|g (t)− g (x)| dt.

The constant 1
2 is best possible in (3.9).

Proof. The inequality follows from (1.7) on choosing f (t) = g (t) − g (x) . For x ∈
(a, b) , define u (t) = |t− x| , t ∈ [a, b] . Then u is (−1, 1)−Lipschitzian and∫ b

a

g (t) du (t) =
∫ x

a

g (t) d (x− t) +
∫ b

x

g (t) d (t− x) =
∫ b

a

sgn (t− x) g (t) dt.

Now, if we choose g (t) = sgn (t− x) h (t) with h : [a, b] → [0,∞) a Riemann
integrable function, then the left side of (3.9) reduces to∣∣∣∣∣

∫ b

a

g (t) du (t)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

sgn (t− x) g (t) dt

∣∣∣∣∣ =
∫ b

a

h (t) dt.

Since ∫ b

a

|g (t)− g (x)| dt =
∫ b

a

h (t) dt,

hence on both sides of (3.9) we have the same quantity
∫ b

a
h (t) dt.

Remark 2. If we define the function B : [a, b] → R by

B (x) :=
∫ b

a

|g (t)− g (x)| dt,

then we can provide various bounds for B depending on the classes of functions g
considered.

For instance, if g : [a, b] → R is of r−H−Hölder type, where H > 0 and r ∈ (0, 1]
are given, then

(3.10) B (x) ≤ H

∫ b

a

|t− x|r dt =
H

r + 1

[
(b− x)r+1 + (x− a)r+1

]
.

If g is absolutely continuous, then g (t)− g (x) =
∫ t

x
g′ (s) ds and since

|g (t)− g (x)| =
∣∣∣∣∫ t

x

g′ (s) ds

∣∣∣∣
≤


|t− x| ‖g′‖∞ if g′ ∈ L∞ [a, b] ;

|t− x|
1
q ‖g′‖p if g′ ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;
‖g′‖1
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where

‖g′‖∞ := ess sup
s∈[a,b]

|g′ (s)| , ‖g′‖p :=

(∫ b

a

|g′ (s)|p ds

) 1
p

, p ≥ 1,

hence:

(3.11) B (x) ≤



1
2 ‖g

′‖∞
[
(x− a)2 + (b− x)2

]
if g′ ∈ L∞ [a, b] ;

q
q+1 ‖g

′‖p

[
(b− x)

q+1
q + (x− a)

q+1
q

]
if g′ ∈ Lp [a, b] ,
p > 1, 1

p + 1
q = 1;

‖g′‖1 (b− a) .

If g is monotonic nondecreasing, then

B (x) =
∫ x

a

(g (x)− g (t)) dt +
∫ b

x

(g (t)− g (x)) dt(3.12)

= (x− a) g (x)− (b− x) g (x) +
∫ b

x

g (t) dt−
∫ x

a

g (t) dt

= [2x− (a + b)] g (x) +
∫ b

a

sgn (t− x) g (t) dt.

Also, by the monotonicity of g on [a, b] , we have∫ b

x

g (t) dt ≤ g (b) (b− x) and −
∫ x

a

g (t) dt ≤ −g (a) (x− a)

for each x ∈ [a, b] , implying that

B (x) ≤ (x− a) g (x)− (b− x) g (x) + g (b) (b− x)− g (a) (x− a)(3.13)

= (x− a) [g (x)− g (a)] + (b− x) [g (b)− g (x)]

≤ max (x− a, b− x) [g (b)− g (a)]

=
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] [g (b)− g (x)] .

Utilising the result incorporated in the equations (3.10) – (3.13), we can provide
the following proposition that provides upper bounds for the absolute value of the
functional

Ψ (g, u; a, b, x)

:=
∫ b

a

g (t) du (t)− ϕ + Φ
2

∫ b

a

g (t) dt− g (x)
[
u (b)− u (a)− ϕ + Φ

2
(b− a)

]
that are coarser than the one in (3.9) but, perhaps, more useful in applications.

Proposition 2. Let u : [a, b] → R be a (ϕ, Φ)−Lipschitzian function and g a
Riemann integrable function on [a, b] .
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(i) If g : [a, b] → R is of r −H−Hölder type (K−Lipschitzian) then

|Ψ(g, u; a, b, x)| ≤ 1
2

(Φ− ϕ)
H

r + 1

[
(b− x)r+1 + (x− a)r+1

]
(3.14) (

≤ 1
2

(Φ− ϕ) K

[
1
4

(b− a)2 +
(

x− a + b

2

)2
])

,

for any x ∈ [a, b] ;
(ii) If g : [a, b] → R is absolutely continuous on [a, b] , then

(3.15) |Ψ(g, u; a, b, x)|

≤ 1
2

(Φ− ϕ)×



‖g′‖∞
[

1
4 (b− a)2 +

(
x− a+b

2

)2]
if g′ ∈ L∞ [a, b] ;

q
q+1 ‖g

′‖p

[
(b− x)

q+1
q + (x− a)

q+1
q

]
if g′ ∈ Lp [a, b] ,
p > 1, 1

p + 1
q = 1;

(b− a) ‖g′‖1 ,

for any x ∈ [a, b] ;
(iii) If g : [a, b] → R is monotonic nondecreasing on [a, b] , then

|Ψ(g, u; a, b, x)|(3.16)

≤ 1
2

(Φ− ϕ)

{
[2x− (a + b)] +

∫ b

a

sgn (t− x) g (t) dt

}

≤ 1
2

(Φ− ϕ) {(x− a) [g (x)− g (a)] + (b− x) [g (b)− g (x)]}

≤ 1
2

(Φ− ϕ)
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] [g (b)− g (a)] ,

for any x ∈ [a, b] .

In practical applications dealing with the approximation of the Stieltjes integral∫ b

a
g (t) du (t) , the case x = a+b

2 is of special interest.
If we introduce the functional

M (g, u; a, b) :=
∫ b

a

g (t) du (t)− ϕ + Φ
2

∫ b

a

g (t) dt

− g

(
a + b

2

)[
u (b)− u (a)− ϕ + Φ

2
(b− a)

]
,

then the following particular case of Proposition 2 can be stated.

Corollary 4. Assume that g and u are as in Proposition 2.

(i) If g is of r −H−Hölder type (K−Lipschitzian), then

|M (g, u; a, b)| ≤ H (Φ− ϕ)
2r+1 (r + 1)

(b− a)r+1(3.17) (
≤ 1

8
(Φ− ϕ) K (b− a)2

)
;
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(ii) If g is absolutely continuous on [a, b] , then

(3.18) |M (g, u; a, b)| ≤



1
8 (Φ− ϕ) (b− a)2 ‖g′‖∞ if g′ ∈ L∞ [a, b] ;

q(Φ−ϕ)

(q+1)2
q+1

q

‖g′‖p (b− a)
q+1

q if g′ ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;
1
2 (Φ− ϕ) ‖g′‖1 (b− a) .

(iii) If g is monotonic nondecreasing on [a, b] , then

|M (g, u; a, b)| ≤ 1
2

(Φ− ϕ)
∫ b

a

sgn
(

t− a + b

2

)
g (t) dt(3.19)

≤ 1
4

(Φ− ϕ) [g (b)− g (a)] .

4. Inequalities for the Weighted Riemann Integral

If h : [a, b] → R is Riemann integrable on [a, b] , then u (t) :=
∫ t

a
f (s) ds is

absolutely continuous on [a, b] and for a Riemann integrable function f : [a, b] → R
we have

(4.1)
∫ b

a

f (t) du (t) =
∫ b

a

f (t) h (t) dt.

If n, N are real numbers with N > n and

(4.2) n ≤ h (t) ≤ N for a.e. t ∈ [a, b] ,

then

n ≤ u (t)− u (s)
t− s

=

∫ t

s
h (z) dz

t− s
≤ N

for any t > s, showing that u (t) =
∫ t

a
h (z) dz is (n, N)−Lipschitzian on [a, b] .

Utilising Theorem 1, we can state the following result for weighted integrals.

Proposition 3. Let f, h : [a, b] → R be two Riemann integrable functions such that
h satisfies (4.1). Then

(4.3)

∣∣∣∣∣
∫ b

a

f (t) h (t) dt− n + N

2

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1
2

(N − n)
∫ b

a

|f (t)| dt.

The constant 1
2 is best possible.

Proof. The inequality follows from (3.1) for u (t) =
∫ t

a
h (s) ds.

For the best constant, we choose f (t) = t− a+b
2 and h (t) = sgn

(
t− a+b

2

)
. Then

n = −1, N = 1 and∫ b

a

f (t) h (t) dt =
∫ b

a

(
t− a + b

2

)
sgn

(
t− a + b

2

)
dt

=
∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt =
(b− a)2

4
,∫ b

a

f (t) dt = 0 and
∫ b

a

|f (t)| dt =
(b− a)2

4
,

which produces the same quantity on both parts of (4.3).
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Corollary 5. Let g and h be Riemann integrable on [a, b] and h satisfy the condition
(4.2). Then

(4.4)

∣∣∣∣∣
∫ b

a

g (t)h (t) dt− 1
b− a

∫ b

a

h (t) dt ·
∫ b

a

g (t) dt

∣∣∣∣∣
≤ 1

2
(N − n)

∫ b

a

∣∣∣∣∣g (t)− 1
b− a

∫ b

a

g (s) ds

∣∣∣∣∣ dt.

The constant 1
2 is best possible.

Remark 3. This result has been obtained by Cheng and Sun in [6]. The natural
extension to abstract Lebesgue integrals and the sharpness of the constant have been
established by Cerone and Dragomir in [4].

Corollary 6. Let g and h be Riemann integrable functions satisfying the bounded-
ness conditions (3.7) and (4.2). Then∣∣∣∣∣

∫ b

a

g (t) h (t) dt− n + N

2

∫ b

a

g (t) dt(4.5)

− m + M

2

∫ b

a

h (t) dt +
(n + N) (m + M)

4
(b− a)

∣∣∣∣∣
≤ 1

2
(N − n)

∫ b

a

∣∣∣∣g (t)− m + M

2

∣∣∣∣ dt

≤ 1
4

(M −m) (N − n) (b− a) .

The constants 1
2 and 1

4 are best possible in (4.5).

Remark 4. The inequality between the first and the last term in (4.5) has been
obtained in [12]. A generalisation for the abstract Lebesgue integral has been given
as well.

Corollary 7. Let g, h be Riemann integrable functions and let h satisfy the bound-
edness condition (4.2). Then

(4.6)

∣∣∣∣∣
∫ b

a

g (t)h (t) dt− n + N

2

∫ b

a

g (t) dt

− g (x)

[∫ b

a

h (t) dt− n + N

2
(b− a)

]∣∣∣∣∣
≤ 1

2
(N − n)

∫ b

a

|g (t)− g (x)| dt,

for any x ∈ [a, b] .
The constant 1

2 is best possible in (4.6).
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If we introduce the operator

Ψ̃ (g, h; a, b, x) := Ψ
(

g,

∫ ·

a

h (s) ds; a, b, x

)
(4.7)

=
∫ b

a

g (t) h (t) dt− n + N

2

∫ b

a

g (t) dt

− g (x)

[∫ b

a

h (t) dt− n + N

2
(b− a)

]
,

then the following may be stated as well.

Proposition 4. Let g, h : [a, b] → R be Riemann integrable on [a, b] and let h
satisfy the boundedness condition (4.2).

(i) If g : [a, b] → R is of r−H−Hölder type (K−Lipschitzian), then Ψ̃ (g, h; a, b, x)
satisfies the inequality∣∣∣Ψ̃ (g, h; a, b, x)

∣∣∣ ≤ 1
2

(N − n) · H

r + 1

[
(b− x)r+1 + (x− a)r+1

]
(4.8) (

≤ 1
2

(N − n) K

[
1
4

(b− a)2 +
(

x− a + b

2

)2
])

for any x ∈ [a, b] ;
(ii) If g is absolutely continuous on [a, b] , then

(4.9)
∣∣∣Ψ̃ (g, h; a, b, x)

∣∣∣

≤ 1
2

(N − n)×



‖g′‖∞
[

1
4 (b− a)2 +

(
x− a+b

2

)2]
if g′ ∈ L∞ [a, b] ;

q
q+1 ‖g

′‖p

[
(b− x)

q+1
q + (x− a)

q+1
q

]
if g′ ∈ Lp [a, b] ,
p > 1, 1

p + 1
q = 1;

(b− a) ‖g′‖1 ,

for any x ∈ [a, b] ;
(iii) If g : [a, b] → R is monotonic nondecreasing on [a, b] , then∣∣∣Ψ̃ (g, h; a, b, x)

∣∣∣(4.10)

≤ 1
2

(N − n)

{
[2x− (a + b)] +

∫ b

a

sgn (t− x) g (t) dt

}

≤ 1
2

(N − n) {(x− a) [g (x)− g (a)] + (b− x) [g (b)− g (x)]}

≤ 1
2

(N − n)
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] [g (b)− g (a)] ,

for any x ∈ [a, b] .
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Finally, on defining

(4.11) M̃ (g, h; a, b) = M

(
g,

∫ ·

a

h (s) ds; a, b

)
=
∫ b

a

g (t) du (t)− n + N

2

∫ b

a

g (t) dt

− g

(
a + b

2

)[∫ b

a

h (t) dt− n + N

2
(b− a)

]
,

then M̃ (g, h; a, b) satisfies the inequalities (3.17) – (3.19) with n and N replacing
ϕ and Φ.

5. Applications for the Generalised Trapezoid Formula

The following natural application for the generalised trapezoid formula can be
stated.

Proposition 5. Let f : [a, b] → R be a (ϕ, Φ)−Lipschitzian function. Then

(5.1)

∣∣∣∣∣
∫ b

a

f (t) dt−
[
f (b) (b− x) + f (a) (x− a) +

ϕ + Φ
2

(b− a)
(

x− a + b

2

)]∣∣∣∣∣
≤ 1

2
(Φ− ϕ)

[
1
4

(b− a)2 +
(

x− a + b

2

)2
]

,

for each x ∈ [a, b] .
The multiplicative constant 1

2 is best possible.

Proof. For any x ∈ [a, b] we have the identity (see [5])

(5.2)
∫ b

a

(t− x) df (t) = f (b) (b− x) + f (a) (x− a)−
∫ b

a

f (t) dt.

Since f is assumed to be (ϕ, Φ)−Lipschitzian, then, on applying Theorem 1, we
have from (5.2) that

(5.3)

∣∣∣∣∣
∫ b

a

(t− x) df (t)− ϕ + Φ
2

∫ b

a

(t− x) dt

∣∣∣∣∣ ≤ 1
2

(Φ− ϕ)
∫ b

a

|t− x| dt.

Since ∫ b

a

(t− x) dt = (b− a)
(

a + b

2
− x

)
, x ∈ [a, b]

and ∫ b

a

|t− x| dt =
1
4

(b− a)2 +
(

x− a + b

2

)2

, x ∈ [a, b] ,

hence (5.3) provides the desired inequality (5.1).

Remark 5. For x = a, we get the “right rectangle” inequality

(5.4)

∣∣∣∣∣
∫ b

a

f (t) dt− f (b) (b− a) +
ϕ + Φ

4
(b− a)2

∣∣∣∣∣ ≤ 1
4

(Φ− ϕ) (b− a)2 ,
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while for x = b we obtain the “left rectangle” inequality

(5.5)

∣∣∣∣∣
∫ b

a

f (t) dt− f (a) (b− a)− ϕ + Φ
4

(b− a)2
∣∣∣∣∣ ≤ 1

4
(Φ− ϕ) (b− a)2 .

The case x = a+b
2 provides the best possible inequality in (5.1), the “trapezoid

inequality”:

(5.6)

∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)
2

(b− a)

∣∣∣∣∣ ≤ 1
8

(Φ− ϕ) (b− a)2 .

The constant 1
8 is best possible.

This inequality has been obtained by Z. Liu in [19] as a particular case of Corol-
lary 1.

Remark 6. If f is L−Lipschitzian, i.e., ϕ = −L, Φ = L, then from (5.1) we get
the inequality

(5.7)

∣∣∣∣∣
∫ b

a

f (t) dt− [f (b) (b− x) + f (a) (x− a)]

∣∣∣∣∣
≤ L

[
1
4

(b− a)2 +
(

x− a + b

2

)2
]

for any x ∈ [a, b] , that has been obtained in [3].

6. Applications for Ostrowski Type Inequalities

The following particular case of Theorem 1 in connection with the celebrated
Ostrowski inequality [20] can be stated as well:

Proposition 6. Let f : [a, b] → R be a (ϕ, Φ)−Lipschitzian function. Then

(6.1)

∣∣∣∣∣
∫ b

a

f (t) dt− f (x) (b− a) +
ϕ + Φ

2
(b− a)

(
x− a + b

2

)∣∣∣∣∣
≤ 1

2
(Φ− ϕ)

[
1
4

(b− a)2 +
(

x− a + b

2

)2
]

for each x ∈ [a, b] .
The multiplicative constant 1

2 is best possible.

Proof. For any x ∈ [a, b] , we have the Montgomery type identity [8]

(6.2)
∫ b

a

p (x, t) df (t) = f (x) (b− a)−
∫ b

a

f (t) dt

for any x ∈ [a, b] , where the kernel p : [a, b]2 → R is defined by

p (t, x) :=

 t− a if t ∈ [a, x] ;

t− b if t ∈ (x, b].
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Since f is assumed to be a (ϕ, Φ)−Lipschitzian function, then, on applying Theorem
1, we have

(6.3)

∣∣∣∣∣
∫ b

a

p (x, t) df (t)− ϕ + Φ
2

∫ b

a

p (x, t) dt

∣∣∣∣∣ ≤ 1
2

(Φ− ϕ)
∫ b

a

|p (x, t)| dt.

Since ∫ b

a

p (x, t) dt =
∫ x

a

(t− a) dt +
∫ b

x

(t− b) dt = (b− a)
(

x− a + b

2

)
and∫ b

a

|p (x, t)| dt =
∫ x

a

(t− a) dt +
∫ b

x

(b− t) dt =
1
4

(b− a)2 +
(

x− a + b

2

)2

,

hence by (6.2) and (6.3) we get the desired inequality (6.1).

Remark 7. The cases x = a and x = b provide the rectangle inequalities stated in
the previous section.

The case x = a+b
2 provides the best possible inequality in (5.1), the “midpoint”

inequality:

(6.4)

∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f

(
a + b

2

)∣∣∣∣∣ ≤ 1
8

(Φ− ϕ) (b− a)2 .

The constant 1
8 is best possible in (6.4).

This inequality has been obtained by Z. Liu in [19] as a particular case of Corol-
lary 1.

Remark 8. If f is L−Lipschitzian, i.e., ϕ = −L, Φ = L, then from (6.1) we get
the inequality:

(6.5)

∣∣∣∣∣
∫ b

a

f (t) dt− f (x) (b− a)

∣∣∣∣∣ ≤ L

[
1
4

(b− a)2 +
(

x− a + b

2

)2
]

for any x ∈ [a, b] , which has been obtained in [10].
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