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SOME INEQUALITIES FOR f−DIVERGENCE MEASURES
GENERATED BY 2n−CONVEX FUNCTIONS

S.S. DRAGOMIR AND S. KOUMANDOS

Abstract. A double Jensen type inequality for 2n−convex functions is ob-

tained and applied to establish upper and lower bounds for the f−divergence
measure in Information Theory. Some particular inequalities of interest are

stated as well.

1. Introduction

Let (Ω,A, µ) be a measure space satisfying |A| > 2 and µ a σ−finite measure
on Ω. Let P be the set of all probability measures on the measurable space (Ω,A)
which are absolutely continuous with respect to µ. For P,Q ∈ P, let p = dP

dµ and
q = dQ

dµ denote the Radon-Nikodym derivatives of P and Q with respect to µ. Two
probability measures P,Q ∈ P are said to be orthogonal and we denote this by
Q ⊥ P if

P ({q = 0}) = Q ({p = 0}) = 1.

Let f : [0,∞) → (−∞,∞] be a convex function that is continuous at 0, i.e.,
f (0) = limu↓0 f (u) .

In 1963, I. Csiszár [3] introduced the concept of f−divergence as follows.

Definition 1. Let P,Q ∈ P. Then

(1.1) If (Q,P ) :=
∫

Ω

p (s) f

[
q (s)
p (s)

]
dµ (s) ,

is called the f−divergence of the probability distributions Q and P.

We observe that the integrand in (1.1) is undefined when p (s) = 0. We can
overcome this problem by postulating for f as above that

(1.2) 0f

[
q (s)

0

]
= q (s) lim

u↓0

[
uf

(
1
u

)]
, s ∈ Ω.

We recall now some important classes of f−divergences that play a key role in
various problems in Information Theory and Statistics.
A. The class of χ−divergences. The f−divergences in this class are generated by
the family of functions fα (u) := |u− 1|α , u ∈ [0,∞), α ∈ [1,∞). They have the
form:

(1.3) Ifα (Q,P ) =
∫

Ω

p1−α (s) |q (s)− p (s)|α dµ (s) .
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From this class only the parameter α = 1 provides a distance in the metric sense,
namely, the total variation distance

V (Q,P ) :=
∫

Ω

|q (s)− p (s)| dµ (s) .

The most prominent special case in this class is however the Karl Pearson χ2−divergence

(1.4) Iχ2 (Q,P ) =
∫

Ω

(q (s)− p (s))2

p (s)
dµ (s) =

∫
Ω

q2 (s)
p (s)

dµ (s)− 1.

B. The Dichotomy class. This class is generated by the family of functions gα :
[0,∞) → R where

gα (u) :=


u− 1− log u for α = 0,

1
α(1−α) [αu + 1− α− uα] for α ∈ R\ {0, 1} ,

1− u + u log u for α = 1.

Only the parameter α = 1
2 , that is, g1/2 (u) = 2 (

√
u− 1)2 provides a genuine

distance, namely, the Hellinger distance

H (Q,P ) :=
[∫

Ω

(√
q (s)−

√
p (s)

)2

dµ (s)
] 1

2

.

Another important divergence in this class is the Kullback-Leibler divergence
obtained for α = 1 and given by

KL (Q,P ) :=
∫

Ω

q (s) log
[
q (s)
p (s)

]
dµ (s) .

For other classes of f−divergence such as Matushita’s divergence, Puri-Vincze
divergences or Arimoto-type divergences, see [7], [12] and [11].

Now, for a continuous convex function f : [0,∞) → R, consider the ∗−conjugate
function

f∗ (u) := uf

(
1
u

)
if u ∈ (0,∞)

and
f∗ (0) := lim

u↓0
f∗ (u) .

It is well known that if f is continuous convex on [0,∞) then f∗ is the same. The
following results contain the most basic properties of f−divergences (for their proof,
we refer to Chapter 1 of [11]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, f1 be continuous convex
functions on [0,∞). We have

If1 (Q,P ) = If (Q, P )

for all P,Q ∈ P if and only if there exists a constant c ∈ R such that f1 (u) =
f (u) + c (u− 1) for any u ∈ [0,∞).

Theorem 2 (Range of Values Theorem). Let f : [0,∞) → R be a convex function
on [0,∞). For any P,Q ∈ P we have the double inequality

(1.5) f (1) ≤ If (Q,P ) ≤ f (0) + f∗ (0) .
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(i) If P = Q, then the equality holds in the first part of (1.5). If f is strictly
convex at 1, then the equality holds in the first part of (1.5) if and only if
P = Q;

(ii) If Q ⊥ P, then the equality holds in the second part of (1.5). If f (0) +
f∗ (0) < ∞, then equality holds in the second part of (1.5) if and only if
Q ⊥ P.

For other recent results concerning inequalities for f−divergences, see [2] and
[4].

2. Inequalities for 2n−Convex Functions

Let (Ω,A, µ) be a measure space consisting of a set Ω, a σ−algebra of parts
denoted by A and a countably additive and positive measure µ defined on A with
values in R ∪ {∞} .

Assume that the function w : Ω → [0,∞) is µ−measurable with the property
that

∫
Ω

w (s) dµ (s) = 1. We consider the Lebesgue space Lw (Ω, µ) :=
{
f : Ω → R,

f is µ−measurable and
∫
Ω

w (s) |f (s)| dµ (s) < ∞
}

.
The following result that provides a double Jensen type inequality may be stated.

Theorem 3. Let F : I ⊆ R → R be a 2n−time differentiable function on the
interior I̊of the interval I and n ≥ 1. Also, assume that F (2n) (t) ≥ 0 for each
t ∈ I̊, i.e., F is 2n−convex on I̊ . If f : Ω → I̊ is a µ−measurable function on Ω
and such that f,

(
f −

∫
Ω

w (s) f (s) dµ (s)
)k

, F ◦ f, F (k) ◦ f is in Lw (Ω, µ) for each
k = 1, . . . , 2n− 1 and

∫
Ω

w (s) f (s) dµ (s) ∈̊I, then,

2n−1∑
k=1

F (k)
(∫

Ω
w (s) f (s) dµ (s)

)
k!

(2.1)

×
∫

Ω

w (s)
[
f (s)−

∫
Ω

w (z) f (z) dµ (z)
]k

dµ (s)

≤
∫

Ω

w (s) F (f (s)) dµ (s)− F

(∫
Ω

w (s) f (s) dµ (s)
)

≤
2n−1∑
k=1

(−1)k+1

k!

×
∫

Ω

w (s)
[
f (s)−

∫
Ω

w (z) f (z) dµ (z)
]k

F (k) (f (s)) dµ (s) .

Proof. We observe that, by Taylor’s representation theorem with integral remain-
der, we have for each x, a ∈ I̊ that

(2.2) F (x) =
2n−1∑
k=0

(x− a)k

k!
F (k) (a) +

1
(2n− 1)!

∫ x

a

(x− t)2n−1
F (2n) (t) dt.

Since F (2n) (t) ≥ 0 for any t ∈ I̊, then on denoting by

R (x) :=
∫ x

a

(x− t)2n−1
F (2n) (t) dt,
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we observe that R (x) ≥ 0 for any x ≥ a. Also, for x < a we can write that

R (x) = −
∫ a

x

(x− t)2n−1
F (2n) (t) dt =

∫ a

x

(t− x)2n−1
F (2n) (t) dt ≥ 0

showing that in fact R (x) ≥ 0 for each x, a ∈ I̊. Therefore, by (2.2) we can state
that

(2.3) F (x) ≥ F (a) +
2n−1∑
k=1

(x− a)k

k!
F (k) (a)

for any x, a ∈ I̊.
Now, if we choose in (2.3) x = f (s) , s ∈ Ω and a =

∫
Ω

w (z) f (z) dµ (z), then
we get

(2.4) F (f (x)) ≥ F

(∫
Ω

w (z) f (z) dµ (z)
)

+
2n−1∑
k=1

[
f (s)−

∫
Ω

w (s) f (s) dµ (s)
]k

k!
· F (k)

(∫
Ω

w (z) f (z) dµ (z)
)

for each s ∈ Ω. If we multiply this inequality by w (s) ≥ 0 and integrate on Ω over
the positive measure µ we deduce the first inequality in (2.1).

By changing the place of x with a in (2.3) we also have

(2.5)
2n−1∑
k=1

(−1)k+1

k!
(x− a)k

F (k) (x) + F (a) ≥ F (x)

for each x, a ∈ I̊.
Now, if in (2.5) we choose x = f (s) , s ∈ Ω and a =

∫
Ω

w (s) f (s) dµ (s) , we
obtain

(2.6)
2n−1∑
k=1

(−1)k+1

k!

(
f (s)−

∫
Ω

w (z) f (z) dµ (z)
)k

F (k) (f (s))

+ F

(∫
Ω

w (z) f (z) dµ (z)
)
≥ F (f) (s)

for any s ∈ Ω.
Finally, if we multiply (2.6) by w (s) ≥ 0 and integrate on Ω over the positive

measure µ, we deduce the second part of the inequality (2.1) and the theorem is
proved.

Corollary 1. If F is twice differentiable and convex and f, F ◦f, F ′◦f ∈ Lw (Ω, µ) ,
then

0 ≤
∫

Ω

w (s) F (f (s)) dµ (s)− F

(∫
Ω

w (s) f (s) dµ (s)
)

(2.7)

≤
∫

Ω

w (s) f (s) F ′ (f (s)) dµ (s)

−
∫

Ω

w (s) f (s) dµ (s) ·
∫

Ω

w (s) F ′ (f (s)) dµ (s) .

A similar result has been obtained in [6].
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Remark 1. The discrete case, i.e., where Ω = {1, . . . ,m} and µ is the discrete
measure, is of interest and can be stated as:

2n−1∑
k=1

F (k) (x̄p)
k!

·
m∑

i=1

pi (xi − x̄p)
k(2.8)

≤
m∑

i=1

piF (xi)− F (x̄p)

≤
2n−1∑
k=1

(−1)k+1

k!
·

m∑
i=1

pi (xi − x̄p)
k
F (k) (xi) ,

where xi ∈ I̊, pi ≥ 0 with
∑n

i=1 pi = 1 and x̄p :=
∑m

i=1 pixi ∈ I̊, while F : I → R
is as in the statement of Theorem 3. We also notice that if F is differentiable and
convex, then we can deduce from (2.8) the following reverse of the Jensen inequality:

0 ≤
n∑

i=1

pif (xi)− f (x̄p)(2.9)

≤
n∑

i=1

pixif
′ (xi)− x̄p ·

n∑
i=1

pif
′ (xi)

that was obtained by Dragomir and Ionescu in 1994, see [5].

Remark 2. We recall that a function f : (a, b) → R which has derivatives of all
orders is said to be absolutely monotonic if f (n) (t) ≥ 0 for all t ∈ (a, b) and n =
0, 1, . . . , and f is called completely monotonic if (−1)n

f (n) (t) ≥ 0 for all t ∈ (a, b)
and n = 0, 1, 2, . . . . It is therefore obvious that Theorem 3 can be applied for any
absolutely monotonic or completely monotonic function F : I → R and any n ≥ 1.
However, the class of functions F for which Theorem 3 is valid is much larger. One
can choose for instance 2n−differentiable functions g : (a, b) → R with the property
that m := inft∈(a,b) g(2n) (t) > −∞ and consider the new function F : (a, b) → R,
F (t) := g (t) − m·t2n

(2n)! , which is 2n−differentiable and F (2n) (t) = g(2n) (t) −m ≥ 0
for any t ∈ (a, b) .

Remark 3. The discrete inequality (2.8) can be utilized to provide various inequal-
ities for means.

For instance, if we choose F (t) = − log t, then

F (k) (t) =
(−1)k (k − 1)!

tk
, k ≥ 1, t > 0

and then for any xi, pi > 0, i ∈ {1, . . . , n} with
∑n

i=1 pi = 1 and x̄p :=
∑n

i=1 pixi

and G (p;x) :=
n∏

i=1

xpi

i , we have:

2n−1∑
k=1

(−1)k

k

m∑
i=1

pi

(
xi

x̄p
− 1

)k

≤ log
[

x̄p

G (p;x)

]
(2.10)

≤
2n−1∑
k=1

(−1)k+1

k

m∑
i=1

pi

(
x̄p

xi
− 1

)k

,

for any n ≥ 1.
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We remark that for n = 1, we obtained the simpler inequality:

(2.11) 0 ≤ log
[

x̄p

G (p;x)

]
≤ x̄p · h̄p − 1,

where h̄p :=
∑m

i=1
pi

xi
is the harmonic mean of xi with the weights pi. This is a

known result, see for instance [5].
For F (t) = exp (t) , t ∈ R, we get from (2.8) the following result as well:

exp (x̄p)
2n−1∑
k=1

(−1)k

k!

m∑
i=1

pi (xi − x̄p)
k(2.12)

≤
m∑

i=1

pi exp (xi)− exp (x̄p)

≤
2n−1∑
k=1

(−1)k+1

k!

m∑
i=1

pi (xi − x̄p) exp (xi) .

For n = 1, the inequality (2.12) produces the following particular case of interest:

0 ≤
m∑

i=1

pi exp (xi)− exp (x̄p)

=
m∑

i=1

pixi exp (xi)− x ·
m∑

i=1

pi exp (xi) .

One can state other particular inequalities by choosing elementary function for
which F (2n) (t) ≥ 0 on the given interval. The details are omitted.

3. Inequalities for F−Divergences

We consider now a function F : [0,∞) → R which has the 2n−derivative F (2n)

nonnegative on (0,∞) . If P,Q are two probability distributions as in the introduc-
tion, we can define the following divergences:

(3.1) Iχk (Q,P ) :=
∫

Ω

p (s)
(

q (s)
p (s)

− 1
)k

dµ (s)

and

(3.2) Igk
(Q,P ) :=

∫
Ω

p (s) gk

(
q (s)
p (s)

)
dµ (s) ,

where the function gk is defined by

(3.3) gk (t) := (t− 1)k
F (k) (t) , t ∈ [0,∞), k ≥ 1

and is arguably simpler than the function F which generates it. This indeed hap-
pens if F (t) = − log t since the derivatives F (k) (t) are in this case rational functions.
The same applies if F (t) =

∫ t

0
u (τ) dτ and the integral cannot be represented by

elementary functions.
The following result provides upper and lower bounds for the f−divergence

IF (Q,P ) :=
∫

Ω

p (s) F

(
q (s)
p (s)

)
dµ (s)

in terms of the divergences introduced in equations (3.1) and (3.3) above.
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Theorem 4. Let F : [0,∞) → R be a 2n−differentiable function, n ≥ 1 and such
that F (2n) (t) ≥ 0 on (0,∞) . Then

2n−1∑
k=1

F (k) (1)
k!

Iχk (Q, P ) ≤ IF (Q,P )− F (1)(3.4)

≤
2n−1∑
k=1

(−1)k+1

k!
Igk

(Q, P ) .

Proof. We apply Theorem 3 for the choices w (s) = p (s) , f (x) = q(s)
p(s) , s ∈ Ω to

get:
2n−1∑
k=1

F (k)
(∫

Ω
q (s) dµ (s)

)
k!

·
∫

Ω

p (s)
[
q (s)
p (s)

−
∫

Ω

q (z) dµ (z)
]k

dµ (s)(3.5)

≤
∫

Ω

p (s)F

(
q (s)
p (s)

)
dµ (s)− F

(∫
Ω

q (s) dµ (s)
)

≤
2n−1∑
k=1

(−1)k+1

k!
·
∫

Ω

p (s)
[
q (s)
p (s)

−
∫

Ω

q (z) dµ (z)
]k

F (k)

(
q (s)
p (s)

)
dµ (s)

and since
∫
Ω

q (s) dµ (s) = 1, hence, with notations (3.1) and (3.3), we observe that
(3.5) is exactly the desired inequality (3.4).

We observe that for n = 1, Iχ1 (Q,P ) = 0 and

Ig1 (Q,P ) =
∫

Ω

p (s)
(

q (s)
p (s)

− 1
)

F ′
(

q (s)
p (s)

)
dµ (s)

=
∫

Ω

(q (s)− p (s))F ′
(

q (s)
p (s)

)
dµ (s) ,

therefore the following particular case may be stated:

Corollary 2. Assume that F : [0,∞) → R is continuous and twice differentiable
on [0,∞). If F is convex on [0,∞), then the following inequality can be stated:

(3.6) 0 ≤ IF (Q,P )− F (1) ≤ δF ′ (Q,P ) ,

where

δF ′ (Q,P ) :=
∫

Ω

(q (s)− p (s))F ′
(

q (s)
p (s)

)
dµ (s)

is the general δ−divergence measure introduced in the recent paper [4] by the first
author.

For the definition of δ−divergence measures and some of its fundamental prop-
erties, see [4].

Remark 4. It is well known that the Gamma function

Γ (x) =
∫ ∞

0

tx−1e−tdt, x > 0

is logarithmic-convex on (0,∞) . Therefore, one can consider the divergences gen-
erated by the convex function log Γ, i.e.,

Ilog Γ (Q, P ) :=
∫

Ω

p (s) log Γ
(

q (s)
p (s)

)
dµ (s) .
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If we denote by Ψ (t) = d
dt [log Γ (t)] = Γ′(t)

Γ(t) , which is well known in the literature
as the “psi” or “digamma function”, then utilizing Corollary 2, we can conveniently
connect the f−divergence and log Γ with the δ−divergence of Ψ via an inequality.
We have therefore the inequality:

(3.7) 0 ≤ Ilog Γ (Q,P ) ≤ δΨ (Q,P ) ,

for any P,Q ∈ P, where, as above

δΨ (Q,P ) :=
∫

Ω

(q (s)− p (s))Ψ
(

q (s)
p (s)

)
dµ (s) .

If we consider now the zeta function

ζ (x) :=
∞∑

n=0

1
nx

, x > 1

then we have that ζ (·+ 1) is log-convex and if we denote by

m (t) :=
d

dt
[log ζ (t + 1)] =

ζ ′ (t + 1)
ζ (t + 1)

, t > 0,

then the following representation is well known

m (t) = −
∞∑

n=1

Λ (n)
nt+1

, t > 1,

where Λ (n) is the van Mongoldt function, i.e.,

Λ (n) :=

 log p if n = pk (p prime, k ≥ 1) ,

0 otherwise.

We can label m (t) to be a “distance function” by following the same approach as
that for gamma.

We can then introduce the f−divergence of log ζ (·+ 1) and state, by utilizing
Corollary 2 that

(3.8) 0 ≤ Ilog ζ(·+1) (Q,P ) ≤ δm (Q,P ) ,

for any P,Q ∈ P, where δm (Q, P ) is the δ−divergence of m defined above.
Similar results may be considered for other log-convex functions for which the

log-derivatives are function of specific interest and generating δ−divergences which
can be easier to calculate/estimate. In the next section we give a different type of
applications of F−divergence inequalities.

4. Applications to product measures

In this section we prove the following

Proposition 1. Let an and bn be sequences of real numbers such that |an| < 1,
|bn| < 1. Then for all positive integers n we have

(4.1)
n∏

k=1

( 1 + bk

1 + ak

) 1+ak

2
( 1− bk

1− ak

) 1−ak

2 ≥ exp
[
1−

n∏
k=1

(
1 +

(ak − bk)2

1− b2
k

)]
.

Before proving (4.1) let us state an application of it.
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Corollary 3. Suppose that the sequences an and bn are as above. If

(4.2)
∞∑

n=1

(an − bn)2

1− b2
n

< ∞,

then the infinite product

(4.3)
∞∏

n=1

( 1 + bn

1 + an

) 1+an

2
( 1− bn

1− an

) 1−an

2
,

converges.

Proof. It is clear that

0 <
( 1 + bk

1 + ak

) 1+ak

2
( 1− bk

1− ak

) 1−ak

2
< 1.

Then use condition (4.2) in combination with (4.1) to complete the proof.

Remark 5. We observe that the conditions

(4.4)
∞∑

n=1

(an − bn)2 < ∞ and lim sup |bn| < 1

imply (4.2).

We now give a proof of (4.1)

Proof. Let rn(x), n = 1, 2, . . . be the Rademacher functions defined on the interval
[0, 1] by the relation rn(x) = sign sin 2nπx. These functions form an orthonormal
set in the Hilbert space L2([0, 1]) and also∫ 1

0

rn(x)dx = 0, n = 1, 2, . . . .

The functions rn(x) are also independent random variables in the probability mea-
sure space ([0, 1], B, λ), where λ is the Lebesgue measure on the σ-algebra B
of Borel subsets of [0, 1]. Let an and bn be sequences of real numbers such that
|an| < 1, |bn| < 1. For every n ∈ N the relations

(4.5) dP =
n∏

k=1

(1 + ak rk) dλ, dQ =
n∏

k=1

(1 + bk rk) dλ ,

define probability measures on ([0, 1], B, λ), which are absolutely continuous with
respect to λ.

For F (t) = − log t we will calculate the F -divergence of the probability distribu-
tions P and Q defined in (4.5), viz.

IF (Q,P ) = −
∫ 1

0

n∏
k=1

(1 + ak rk(x)) log
( ∏n

k=1(1 + bk rk(x)∏n
k=1(1 + ak rk(x)

)
dx(4.6)

= −
∫ 1

0

log
( ∏n

k=1(1 + bk rk(x)∏n
k=1(1 + ak rk(x)

)
dP .

We observe that

(4.7) log(1 + bk rk(x)) =
1
2

log(1− b2
k) +

1
2

log
(1 + bk

1− bk

)
rk(x) .
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It is easy to see that ∫ 1

0

rk(x) dP = ak, k = 1, 2, . . .

Then by (4.7) we obtain

(4.8)
∫ 1

0

n∑
k=1

log(1 + bk rk(x)) dP =
1
2

n∑
k=1

log(1− b2
k) +

1
2

n∑
k=1

ak log
1 + bk

1− bk

Hence, by (4.6) we find that

−IF (Q, P ) =
1
2

n∑
k=1

log
1− b2

k

1− a2
k

+
1
2

n∑
k=1

ak log
(1 + bk)(1− ak)
(1− bk)(1 + ak)

,

and finally

(4.9) IF (Q,P ) = − log
n∏

k=1

( 1 + bk

1 + ak

) 1+ak

2
( 1− bk

1− ak

) 1−ak

2
.

Now we set

p(x) =
n∏

k=1

(1 + ak rk(x)), q(x) =
n∏

k=1

(1 + bk rk(x))

and calculate the δ-divergence measure of P and Q. We have

δF ′(Q,P ) = −
∫ 1

0

(q(x)− p(x))
p(x)
q(x)

dx = −1 +
∫ 1

0

p(x)2

q(x)
dx(4.10)

= −1 +
∫ 1

0

n∏
k=1

(1 + ak rk(x))2 (1− bkrk(x)
1− b2

k

dx

= −1 +
n∏

k=1

(
1 +

(ak − bk)2

1− b2
k

)
.

Combining (4.9) with (4.10) and using the inequality (3.6) we conclude the proof
of (4.1).

5. Remarks

(1) Suppose that bk = 0 for all k ∈ N. Then inequality (4.1) is equivalent to

(5.1)
n∏

k=1

(1 + a2
k) ≥ 1 +

1
2

log
n∏

k=1

(1 + ak)1+ak (1− ak)1−ak .

Inequality (5.1) has the following interpretation:
Let µ be the Borel probability measure on [0, 1] defined by

(5.2) dµ = lim
n→∞

n∏
k=1

(1 + ak rk(x)) dx,

where the limit is in the weak? sense. This measure is absolutely continuous with
respect to the Lebesgue measure if and only if

∑∞
n=1 a2

n < ∞. Compare the paper
[8].
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Suppose now that M is a Borel subset of the support of µ such that µ(M) > 0.
It follows from the results of [9] (see also [1]) that for the Hausdorff dimension of
M , dim M , one has

(5.3) dim M = 1− lim sup
1

n log 4
log

n∏
k=1

(1 + ak)1+ak (1− ak)1−ak .

It follows from this and (5.1) that in the case where
∑∞

n=1 a2
n < ∞ for every Borel

subset M of the support of µ with µ(M) > 0, we have dim M = 1. Of course, this
happens because in this case µ is absolutely continuous with respect to Lebesgue
measure λ and thus λ(M) > 0.
(2) Let the probability measure µ be defined by (5.2) and ν be a product measure
of the same type, that is

(5.4) dν = lim
n→∞

n∏
k=1

(1 + bk rk(x)) dx .

In the case where (an), (bn) ∈ `2 we can calculate the F -divergence measure of the
probability distributions µ, ν for F (t) = − log t. Indeed, a small adaptation of the
proof of Proposition 1 yields

(5.5) IF (ν, µ) = − log
∞∏

k=1

( 1 + bk

1 + ak

) 1+ak

2
( 1− bk

1− ak

) 1−ak

2
.

Since the sequences (an), (bn) ∈ `2, both µ and ν is absolutely continuous with
respect to the Lebesgue measure λ and the condition (4.2) is satisfied therefore by
Corollary 3, the infinite product above converges.

Finally, we note that we can obtain results analogous to (4.1), (5.1) and (5.5)
using the more general product measures considered in [9] and [10].
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