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APPROXIMATING REAL FUNCTIONS WHICH POSSESS n-TH
DERIVATIVES OF BOUNDED VARIATION AND

APPLICATIONS

SEVER S. DRAGOMIR

Abstract. The main aim of this paper is to provide an approximation for the
function f which possesses continuous derivatives up to the order n−1 (n ≥ 1)

and has the n−th derivative of bounded variation, in terms of the chord that

connects its end points A = (a, f (a)) and B = (b, f (b)) and some more terms
which depend on the values of the k derivatives of the function taken at the

end points a and b, where k is between 1 and n. Natural applications for some

elementary functions such as the exponential and the logarithmic functions are
given as well.

1. Introduction

Consider a function f : [a, b] → R and assume that it is bounded on [a, b] . The
chord that connects its end points A = (a, f (a)) and B = (b, f (b)) has the equation

df : [a, b] → R, df (x) =
1

b− a
[f (a) (b− x) + f (b) (x− a)] .

In [7], we introduced the error in approximating the value of the function f (x) by
df (x) with x ∈ [a, b] by Φf (x) , i.e., Φf (x) is defined by:

(1.1) Φf (x) :=
b− x
b− a

· f (a) +
x− a

b− a
· f (b)− f (x) .

The following simple result, which provides a sharp upper bound for the case of
bounded functions, has been stated in [5] as an intermediate result needed to obtain
a Grüss type inequality:

If f : [a, b] → R is a bounded function with −∞ < m ≤ f (x) ≤ M < ∞ for any
x ∈ [a, b] , then

(1.2) |Φf (x)| ≤ M −m.

The multiplicative constant 1 in front of M − m cannot be replaced by a smaller
quantity.

The case of convex functions has been considered in [6] in order to prove another
Grüss type inequality:

If f : [a, b] → R is a convex function on [a, b] , then

(1.3) 0 ≤ Φf (x) ≤ (b− x) (x− a)
b− a

[
f ′− (b)− f ′+ (a)

]
≤ 1

4
(b− a)

[
f ′− (b)− f ′+ (a)

]
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2 SEVER S. DRAGOMIR

for any x ∈ [a, b] .
If the lateral derivatives f ′− (b) and f ′+ (a) are finite, then the second inequality

and the constant 1
4 are sharp.

The following estimation result holds [7]:

Theorem 1. If f : [a, b] → R is of bounded variation, then

|Φf (x)| ≤
(

b− x
b− a

)
·

x∨
a

(f) +
(

x− a

b− a

)
·

b∨
x

(f)(1.4)

≤



[
1
2 +

∣∣∣x− a+b
2

b−a

∣∣∣]∨b
a (f) ;[(

b−x
b−a

)p

+
(

x−a
b−a

)p] 1
p
[(∨x

a (f)
)q +

(∨b
x (f)

)q] 1
q

if p > 1, 1
p + 1

q = 1;

1
2

∨b
a (f) + 1

2

∣∣∣∨x
a (f)−

∨b
x (f)

∣∣∣ .
The first inequality in (1.4) is sharp. The constant 1

2 is best possible in the first
and third branches.

Corollary 1. If f : [a, b] → R is L1−Lipschitzian on [a,x] and L2−Lipschitzian
on [x, b] , L1, L2 > 0, then

(1.5) |Φf (x)| ≤ (b− x) (x− a)
b− a

(L1 + L2) ≤
1
4

(b− a) (L1 + L2)

for any x ∈ [a, b] .
In particular, if f is L−Lipschitzian on [a, b], then

(1.6) |Φf (x)| ≤ 2 (b− x) (x− a)
b− a

L ≤ 1
2

(b− a) L.

The constants 1
4 , 2 and 1

2 are best possible.

When more information on the derivative of the function is available, then we
can state the following results as well [7]:

Theorem 2. Assume that f : [a, b] → R is absolutely continuous on [a, b] . If f ′ is
of bounded variation on [a, b] , then

(1.7) |Φf (x)| ≤ (x− a) (b− x)
b− a

·
b∨
a

(f ′) ≤ 1
4

(b− a)
b∨
a

(f ′) ,

where
∨b

a (f ′) denotes the total variation of f ′ on [a, b] .
The inequalities are sharp and the constant 1

4 is best possible.

The case when the derivative is a Lipschitzian function provides better accuracy
in approximating the function f by the straight line df as follows:

Theorem 3. Assume that f : [a, b] → R is absolutely continuous on [a, b] . If f ′ is
K1−Lipschitzian on [a,x] and K2−Lipschitzian on [x, b] (x ∈ [a, b]) , then

|Φf (x)| ≤ 1
2
· (x− a) (b− x)

b− a
[(K1 −K2)x + K2b−K1a](1.8)

≤ 1
8
· (b− a) [(K1 −K2)x + K2b−K1a] , x ∈ [a, b] .
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In particular, if f ′ is K−Lipschitzian on [a, b] , then

(1.9) |Φf (x)| ≤ 1
2

(b− x) (x− a)K ≤ 1
8

(b− a)2 K, x ∈ [a, b] .

The constants 1
2 and 1

8 are best possible.

The main aim of the present paper is to continue the study begun in [7] and
provide an approximation for the function f which possesses continuous derivatives
up to the order n− 1 (n ≥ 1) and has the n−th derivative of bounded variation, in
terms of the chord that connects its end points A = (a, f (a)) and B = (b, f (b)) and
some more terms which depend on the values of the k derivatives of the function
taken at the end points a and b, where k is between 1 and n. Natural applications
for some elementary functions such as the exponential and the logarithmic functions
are given as well.

2. A Representation Result

We start with the following identity:

Theorem 4. Let I be a closed subinterval on R, let a, b ∈ I with a < b and let
n be a nonnegative integer. If f : I → R is such that the n-th derivative f (n)

is of bounded variation on the interval [a, b] , then, for any x ∈ [a, b] we have the
representation

(2.1) f (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)]

+
(b− x) (x− a)

b− a
·

n∑
k=1

1
k!

{
(x− a)k−1

f (k) (a) + (−1)k (b− x)k−1
f (k) (b)

}
+

1
b− a

∫ b

a

Sn (x, t) d
(
f (n) (t)

)
,

where the kernel Sn : [a, b]2 → R is given by

(2.2) Sn (x, t) =
1
n!
×

 (x− t)n (b− x) if a ≤ t ≤ x;

(−1)n+1 (t− x)n (x− a) if x < t ≤ b

and the integral in the remainder is taken in the Riemann-Stieltjes sense.

Proof. We utilise the following Taylor’s representation formula for functions f :
I → R such that the n-th derivatives f (n) are of locally bounded variation on the
interval I,

(2.3) f (x) =
n∑

k=0

1
k!

(x− c)k
f (k) (c) +

1
n!

∫ x

c

(x− t)n
d
(
f (n) (t)

)
,

where x and c are in I and the integral in the remainder is taken in the Riemann-
Stieltjes sense.

Choosing c = a and then c = b in (2.3) we can write that

(2.4) f (x) =
n∑

k=0

1
k!

(x− a)k
f (k) (a) +

1
n!

∫ x

a

(x− t)n
d
(
f (n) (t)

)
,
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and

(2.5) f (x) =
n∑

k=0

(−1)k

k!
(b− x)k

f (k) (b) +
(−1)n+1

n!

∫ b

x

(t− x)n
d
(
f (n) (t)

)
,

for any x ∈ [a, b] .
Now, by multiplying (2.4) with (b− x) and (2.5) with (x− a) we get

(2.6) (b− x) f (x) = (b− x) f (a) + (b− x) (x− a)
n∑

k=1

1
k!

(x− a)k−1
f (k) (a)

+
1
n!

(b− x)
∫ x

a

(x− t)n
d
(
f (n) (t)

)
and

(2.7) (x− a) f (x) = (x− a) f (b) + (b− x) (x− a)
n∑

k=1

(−1)k

k!
(b− x)k−1

f (k) (b)

+
(−1)n+1

n!
(x− a)

∫ b

x

(t− x)n
d
(
f (n) (t)

)
respectively.

Finally, by adding the equalities (2.6) and (2.7) and dividing the sum with
(b− a) , we obtain the desired representation (2.2).

Remark 1. The case n = 0 provides the representation

(2.8) f (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)] +

1
b− a

∫ b

a

S (x, t) d (f (t))

for any x ∈ [a, b] , where

S (x, t) =

{
b− x if a ≤ t ≤ x,

a− x if x < t ≤ b,

and f is of bounded variation on [a, b] . This result was obtained by a different
approach in [7].

The case n = 1 provides the representation

(2.9) f (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)]

+
(b− x) (x− a)

b− a
[f ′ (a)− f ′ (b)] +

1
b− a

∫ b

a

S1 (x, t) d (f ′ (t)) ,

for any x ∈ [a, b] , where

S1 (x, t) =

{
(x− t) (b− x) if a ≤ t ≤ x,

(t− x) (x− a) if x < t ≤ b,

and f ′ is of bounded variation on [a, b] .
Due to the fact that

(b− x) (x− a)
b− a

[f ′ (a)− f ′ (b)] = − (b− x) (x− a)
b− a

∫ b

a

d (f ′ (t)) ,
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we obtain from (2.9) the following representation

(2.10) f (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)] +

1
b− a

∫ b

a

Q (x, t) d (f ′ (t)) ,

where

Q (x, t) =

{
(a− t) (b− x) if a ≤ t ≤ x,

(t− b) (x− a) if x ≤ t ≤ b.

Notice that the representation (2.10) was obtained by a different approach in [7].

The above representation provides, as a natural consequence, the possibility to
compare the value of a function at the mid point a+b

2 with the values of the function
and its derivatives at the end points. Therefore, we can state the following corollary:

Corollary 2. With the assumptions of Theorem 4 for f and I, we have the identity

(2.11) f

(
a + b

2

)
=

f (a) + f (b)
2

+
n∑

k=1

1
2k+1k!

{
f (k) (a) + (−1)k

f (k) (b)
}

(b− a)k

+
∫ b

a

Mn (t) d
(
f (n) (t)

)
,

where

Mn (t) =
1

2 · n!
×

{ (
a+b
2 − t

)n
if a ≤ t ≤ a+b

2 ;

(−1)n+1 (
t− a+b

2

)n
if a+b

2 ≤ t ≤ b.

and a, b ∈ I.

3. Error Bounds

On utilising the following notations

(3.1) Dn (f ;x, a, b) :=
1

b− a
[(b− x) f (a) + (x− a) f (b)]

+
(b− x) (x− a)

b− a
·

n∑
k=1

1
k!

{
(x− a)k−1

f (k) (a) + (−1)k (b− x)k−1
f (k) (b)

}
and

(3.2) En (f ;x, a, b) :=
1

b− a

∫ b

a

Sn (x, t) d
(
f (n) (t)

)
,

under the assumptions of Theorem 4, we can approximate the function f utilising
the polynomials Dn (f ; ·, a, b) with the error En (f ; ·, a, b) . In other words, we have

f (x) = Dn (f ;x, a, b) + En (f ;x, a, b)

for any x ∈ [a, b] .
It is then natural to ask for a priory error bounds provided that f belongs to

different classes of functions for which the Riemann-Stieltjes integral defining the
expression in (3.2) exists and can be bounded in absolute value.
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Theorem 5. Let I be a closed subinterval in R, let a, b ∈ I with a < b and let n be
a positive integer. If f : I → R is such that the n-th derivative f (n) is of bounded
variation on the interval [a, b] then for any x ∈ [a, b] we have

|En (f ;x, a, b)|(3.3)

≤ (x− a) (b− x)
n! (b− a)

[
(x− a)n−1

x∨
a

(
f (n)

)
+ (b− x)n−1

b∨
x

(
f (n)

)]

≤ (x− a) (b− x)
n! (b− a)

×



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]n−1
[

b∨
a

(
f (n)

)]
;

[
(x− a)p(n−1) + (b− x)p(n−1)

] 1
p

[(
x∨
a

(
f (n)

))q

+
(

b∨
x

(
f (n)

))] 1
q

p, q > 1, 1
p + 1

q = 1;[
1
2

b∨
a

(
f (n)

)
+ 1

2

∣∣∣∣ x∨
a

(
f (n)

)
−

b∨
x

(
f (n)

)∣∣∣∣] [(x− a)n−1 + (b− x)n−1
]

≤ 1
4n!

(b− a)

×



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]n−1
[

b∨
a

(
f (n)

)]
;

[
(x− a)p(n−1) + (b− x)p(n−1)

] 1
p

[(
x∨
a

(
f (n)

))q

+
(

b∨
x

(
f (n)

))q
] 1

q

p, q > 1, 1
p + 1

q = 1;[
1
2

b∨
a

(
f (n)

)
+ 1

2

∣∣∣∣ x∨
a

(
f (n)

)
−

b∨
x

(
f (n)

)∣∣∣∣] [(x− a)n−1 + (b− x)n−1
]
.

Proof. It is well known that if p : [α, β] → R is continuous and v : [α, β] → R is of
bounded variation, then the Riemann-Stieltjes integral

∫ β

α
p (t) dv (t) exists and∣∣∣∣∣

∫ β

α

p (t) dv (t)

∣∣∣∣∣ ≤ max
t∈[α,β]

|p (t)|
β∨
α

(v) ,

where
∨β

α (v) denotes the total variation of v on the interval [α, β] .
On utilising this property we have

|En (f ;x, a, b)| = 1
n! (b− a)

∣∣∣∣∫ x

a

(x− t)n (b− x) d
(
f (n) (t)

)
+
∫ b

x

(−1)n+1 (t− x)n (x− a) d
(
f (n) (t)

)∣∣∣∣∣
≤ 1

n! (b− a)

[∣∣∣∣∫ x

a

(x− t)n (b− x) d
(
f (n) (t)

)∣∣∣∣
+

∣∣∣∣∣
∫ b

x

(−1)n+1 (t− x)n (x− a) d
(
f (n) (t)

)∣∣∣∣∣
]
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≤ 1
n! (b− a)

[
max

t∈[a,x]
[(x− t)n (b− x)] ·

x∨
a

(
f (n)

)
+ max

t∈[x,b]
[(t− x)n (x− a)] ·

b∨
x

(
f (n)

)]

=
1

n! (b− a)

[
(x− a)n (b− x)

x∨
a

(
f (n)

)
+(b− x)n (x− a)

b∨
x

(
f (n)

)]

=
(x− a) (b− x)

n! (b− a)

[
(x− a)n−1

x∨
a

(
f (n)

)
+ (b− x)n−1

b∨
x

(
f (n)

)]
and the first inequality in (3.3) is proved.

However, by the Hölder’s discrete inequality we also have

(x− a)n−1
x∨
a

(
f (n)

)
+ (b− x)n−1

b∨
x

(
f (n)

)

≤



max
{

(x− a)n−1
, (b− x)n−1

}[∨x
a

(
f (n)

)
+
∨b

x

(
f (n)

)]
;[

(x− a)p(n−1) + (b− x)p(n−1)
] 1

p
[(∨x

a

(
f (n)

))q
+
(∨b

x

(
f (n)

))q] 1
q

p, q > 1, 1
p + 1

q = 1;

max
{∨x

a

(
f (n)

)
,
∨b

x

(
f (n)

)} [
(x− a)n−1 + (b− x)n−1

]
;

=



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]n−1
[∨b

a

(
f (n)

)]
;[

(x− a)p(n−1) + (b− x)p(n−1)
] 1

p
[(∨x

a

(
f (n)

))q
+
(∨b

x

(
f (n)

))] 1
q

p, q > 1, 1
p + 1

q = 1;[
1
2

∨b
a

(
f (n)

)
+ 1

2

∣∣∣∨x
a

(
f (n)

)
−
∨b

x

(
f (n)

)∣∣∣] [(x− a)n−1 + (b− x)n−1
]
,

which proves the second inequality in (3.3)
The last part is obvious by the elementary inequality

(x− a) (b− x) ≤ 1
4

(b− a)2 , x ∈ [a, b] .

The proof is complete.

Now, if we denote

Mn (f ; a, b) :=
f (a) + f (b)

2
+

n∑
k=1

1
2k+1k!

{
f (k) (a) + (−1)k

f (k) (b)
}

(b− a)k

and

Fn (f ; a, b) :=
∫ b

a

Mn (t) d
(
f (n) (t)

)
,
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where

Mn (t) =
1

2 · n!
×


(

a+b
2 − t

)n
if a ≤ t ≤ a+b

2 ;

(−1)n+1 (
t− a+b

2

)n
if a+b

2 < t ≤ b

then we can approximate the value of the function at the midpoint in terms of the
values of the function and its derivatives taken at the end points with the error
Fn (f ; a, b) . Namely, we have the representation formula

f

(
a + b

2

)
= Mn (f ; a, b) + Fn (f ; a, b) .

The absolute value of the error can be bounded as follows:

Corollary 3. With the assumptions of Theorem 5 for f, I, a, b and n, we have the
inequality

(3.4) |Fn (f ; a, b)| ≤ (b− a)n

2n+1n!
·

b∨
a

(
f (n)

)
.

We recall that a function g : [α, β] → R is L-Lipschitzian on [α, β] if for any
t, s ∈ [α, β] we have the inequality |g (t)− g (s)| ≤ L · |t− s| .

The following result can be stated as well:

Theorem 6. Let I a closed subinterval in R, let a, b ∈ I with a < b and let n be a
positive integer. If x ∈ [a, b] and f : I → R is such that the n-th derivative f (n) is
L1-Lipschitzian on [a, x] and L2-Lipschitzian on [x, b] then we have

|En (f ;x, a, b)|(3.5)

≤ (b− x) (x− a)
(n + 1)! (b− a)

[L1 (x− a)n + L2 (b− x)n]

≤ (x− a) (b− x)
(n + 1)! (b− a)



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]n−1
(L1 + L2) ;

[(x− a)pn + (b− x)pn]
1
p (Lq

1 + Lq
2)

1
q

p, q > 1, 1
p + 1

q = 1;[
1
2 (L1 + L2) + 1

2 |L1 − L2|
]
[(x− a)n + (b− x)n]

≤ 1
4 (n + 1)!

(b− a)



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]n−1
(L1 + L2) ;

[(x− a)pn + (b− x)pn]
1
p (Lq

1 + Lq
2)

1
q

p, q > 1, 1
p + 1

q = 1;[
1
2 (L1 + L2) + 1

2 |L1 − L2|
]
[(x− a)n + (b− x)n] .

Proof. It is well known that if p : [α, β] → R is L-Lipschitzian on [α, β] and v :
[α, β] → R is Riemann integrable on the same interval, then the Riemann-Stieltjes
integral

∫ β

α
p (t) dv (t) exists and∣∣∣∣∣

∫ β

α

p (t) dv (t)

∣∣∣∣∣ ≤ L ·
∫ β

α

|p (t)| dt.
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Making use of this property we have

|En (f ;x, a, b)| ≤ 1
n! (b− a)

[∣∣∣∣∫ x

a

(x− t)n (b− x) d
(
f (n) (t)

)∣∣∣∣
+

∣∣∣∣∣
∫ b

x

(−1)n+1 (t− x)n (x− a) d
(
f (n) (t)

)∣∣∣∣∣
]

≤ 1
n! (b− a)

[
L1

∫ x

a

(x− t)n (b− x) dt

+L2

∫ b

x

(t− x)n (x− a) dt

]

=
(b− x) (x− a)
(n + 1)! (b− a)

[L1 (x− a)n + L2 (b− x)n] ,

which proves the first inequality in (3.5). The last part follows by Hölder’s discrete
inequality. The details are omitted.

Remark 2. If the function f (n) is L-Lipschitzian on the whole interval [a, b] , which,
in fact, is a more natural assumption, then we get from (3.5) that

(3.6) |En (f ;x, a, b)| ≤ (b− x) (x− a)
(n + 1)! (b− a)

[(x− a)n + (b− x)n] · L

≤ 1
4 (n + 1)!

(b− a) [(x− a)n + (b− x)n] · L,

for any x ∈ [a, b] .

Corollary 4. Let I be a closed subinterval in R, let a, b ∈ I with a < b and
let n be a positive integer. If f : I → R is such that the n-th derivative f (n) is
L1-Lipschitzian on

[
a, a+b

2

]
and L2-Lipschitzian on

[
a+b
2 , b

]
, then we have

(3.7) |Fn (f ; a, b)| ≤ (b− a)n+1

2n+2 (n + 1)!
· (L1 + L2) .

In particular, if f (n) is L-Lipschitzian on [a, b] , then

(3.8) |Fn (f ; a, b)| ≤ (b− a)n+1

2n+1 (n + 1)!
· L.

Finally, the case when f (n) is absolutely continuous on [a, b] produces the fol-
lowing estimates for the remainder:

Theorem 7. Let I be a closed subinterval in R, let a, b ∈ I with a < b and let n
be a positive integer. If f : I → R is such that the n-th derivative f (n) is absolutely



10 SEVER S. DRAGOMIR

continuous on the interval [a, b] then for any x ∈ [a, b] we have

|En (f ;x, a, b)|(3.9)

≤ 1
n! (b− a)

[
(b− x)

∫ x

a

(x− t)n
∣∣∣f (n+1) (t)

∣∣∣ dt

+(x− a)
∫ b

x

(t− x)n
∣∣∣f (n+1) (t)

∣∣∣ dt

]

≤ 1
n! (b− a)

×

(b− x)×



(x−a)n+1

n+1

∥∥f (n+1)
∥∥

[a,x],∞ if f (n+1) ∈ L∞ [a, x] ;

(x−a)n+1/q

(nq+1)1/q

∥∥f (n+1)
∥∥

[a,x],p
if f (n+1) ∈ Lp [a, x] ,
p > 1, 1

p + 1
q = 1;

(x− a)n ∥∥f (n+1)
∥∥

[a,x],1
;

+ (x− a)×



(b−x)n+1

n+1

∥∥f (n+1)
∥∥

[x,b],∞ if f (n+1) ∈ L∞ [x, b] ;

(b−x)n+1/s

(ns+1)1/s

∥∥f (n+1)
∥∥

[x,b],w
if f (n+1) ∈ Lw [x, b] ,
w > 1, 1

w + 1
s = 1;

(b− x)n ∥∥f (n+1)
∥∥

[x,b],1
;


where the last part of (3.9) should be seen as all 9 possible configurations. Here
‖·‖[α,β],p are the usual Lebesgue p-norms, i.e.,

‖h‖[α,β],p :=


(∫ β

α
|h (s)|p ds

) 1
p

if p ≥ 1;

ess sups∈[α,β] |h (s)| if p = ∞.

Proof. Since f (n) is absolutely continuous on the interval [a, b] then for any x ∈ [a, b]
we have the representation

(3.10) f (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)]

+
(b− x) (x− a)

b− a
·

n∑
k=1

1
k!

{
(x− a)k−1

f (k) (a) + (−1)k (b− x)k−1
f (k) (b)

}
+

1
b− a

∫ b

a

Sn (x, t) f (n+1) (t) dt,

where the integral is considered in the Lebesgue sense and the kernel Sn (x, t) is
given by the equation (2.2).

Utilising the properties of the Stieltjes integral, we have

|En (f ;x, a, b)| = 1
b− a

∣∣∣∣∣
∫ b

a

Sn (x, t) f (n+1) (t) dt

∣∣∣∣∣(3.11)
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=
1

n! (b− a)

∣∣∣∣∫ x

a

(x− t)n (b− x) f (n+1) (t) dt

+
∫ b

x

(−1)n+1 (t− x)n (x− a) f (n+1) (t) dt

∣∣∣∣∣
≤ 1

n! (b− a)

[∣∣∣∣∫ x

a

(x− t)n (b− x) f (n+1) (t) dt

∣∣∣∣
+

∣∣∣∣∣
∫ b

x

(−1)n+1 (t− x)n (x− a) f (n+1) (t) dt

∣∣∣∣∣
]

≤ 1
n! (b− a)

[
(b− x)

∫ x

a

(x− t)n
∣∣∣f (n+1) (t)

∣∣∣ dt

+(x− a)
∫ b

x

(t− x)n
∣∣∣f (n+1) (t)

∣∣∣ dt

]
and the first part of the inequality (2.2) is proved.

Utilising the Hölder integral inequality for the Lebesgue integral we have

(3.12)
∫ x

a

(x− t)n
∣∣∣f (n+1) (t)

∣∣∣ dt

≤



(x−a)n+1

n+1

∥∥f (n+1)
∥∥

[a,x],∞ if f (n+1) ∈ L∞ [a, x] ;

(x−a)n+1/q

(nq+1)1/q

∥∥f (n+1)
∥∥

[a,x],p
if f (n+1) ∈ Lp [a, x] , p > 1, 1

p + 1
q = 1;

(x− a)n ∥∥f (n+1)
∥∥

[a,x],1
;

and

(3.13)
∫ b

x

(t− x)n
∣∣∣f (n+1) (t)

∣∣∣ dt

≤



(b−x)n+1

n+1

∥∥f (n+1)
∥∥

[x,b],∞ if f (n+1) ∈ L∞ [x, b] ;

(b−x)n+1/s

(ns+1)1/s

∥∥f (n+1)
∥∥

[x,b],w
if f (n+1) ∈ Lw [x, b] , w > 1, 1

w + 1
s = 1;

(b− x)n ∥∥f (n+1)
∥∥

[x,b],1
;

respectively.
On making use of (3.11)–(3.13) we deduce the second part of (3.9).

Remark 3. The above results have some particular instances of interest that are
perhaps more useful in applications. Namely, if f (n+1) ∈ L∞ [a, b] , then

|En (f ;x, a, b)|(3.14)

≤ (x− a) (b− x)
(n + 1)! (b− a)

[
(x− a)n

∥∥∥f (n+1)
∥∥∥

[a,x],∞
+ (b− x)n

∥∥∥f (n+1)
∥∥∥

[x,b],∞

]
≤ (x− a) (b− x)

(n + 1)! (b− a)
[(x− a)n + (b− x)n]

∥∥∥f (n+1)
∥∥∥

[a,b],∞(
≤ b− a

4 (n + 1)!
[(x− a)n + (b− x)n]

∥∥∥f (n+1)
∥∥∥

[a,b],∞

)
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for any x ∈ [a, b] .
If f (n+1) ∈ Lp [a, b] , p > 1, 1

p + 1
q = 1, then

|En (f ;x, a, b)|(3.15)

≤ (x− a) (b− x)

n! (nq + 1)1/q (b− a)

×
[
(x− a)n+1/q−1

∥∥∥f (n+1)
∥∥∥

[a,x],p
+ (b− x)n+1/q−1

∥∥∥f (n+1)
∥∥∥

[x,b],p

]
≤ (x− a) (b− x)

n! (nq + 1)1/q (b− a)

×
[
(x− a)(n−1)q+1 + (b− x)(n−1)q+1

]1/q ∥∥∥f (n+1)
∥∥∥

[a,b],p(
≤ b− a

4n! (nq + 1)1/q

×
[
(x− a)(n−1)q+1 + (b− x)(n−1)q+1

]1/q ∥∥∥f (n+1)
∥∥∥

[a,b],p

)
for any x ∈ [a, b] .

Finally, if f (n+1) ∈ L1 [a, b] , then

|En (f ;x, a, b)|(3.16)

≤ (x− a) (b− x)
n! (b− a)

[
(x− a)n−1

∥∥∥f (n+1)
∥∥∥

[a,x],1
+ (b− x)n−1

∥∥∥f (n+1)
∥∥∥

[x,b],1

]
≤ (x− a) (b− x)

n! (b− a)

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]n−1 ∥∥∥f (n+1)
∥∥∥

[a,b],1(
≤ b− a

4n!

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]n−1 ∥∥∥f (n+1)
∥∥∥

[a,b],1

)
,

for any x ∈ [a, b] .

Remark 4. The errors for the approximation at the midpoint satisfy the following
inequalities

|Fn (f ; a, b)|(3.17)

≤ (b− a)n+1

2n+2 (n + 1)!

[∥∥∥f (n+1)
∥∥∥
[a, a+b

2 ],∞
+
∥∥∥f (n+1)

∥∥∥
[ a+b

2 ,b],∞

]
≤ (b− a)n+1

2n+1 (n + 1)!

∥∥∥f (n+1)
∥∥∥

[a,b],∞

and

|Fn (f ; a, b)|(3.18)

≤ (b− a)n+1/q

2n+1/q+1n! (nq + 1)1/q

[∥∥∥f (n+1)
∥∥∥
[a, a+b

2 ],p
+
∥∥∥f (n+1)

∥∥∥
[ a+b

2 ,b],p

]

≤ (b− a)n+1/q

2n+1n! (nq + 1)1/q

∥∥∥f (n+1)
∥∥∥

[a,b],p
, for p > 1,

1
p

+
1
q

= 1
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and

(3.19) |Fn (f ; a, b)| ≤ (b− a)n

2n+1n!

∥∥∥f (n+1)
∥∥∥

[a,b],1

respectively.

4. Applications for Some Elementary Functions

We consider first the exponential function. Thus, if f (t) = et, t ∈ R, then for
a ≤ x ≤ b we have∥∥∥f (n+1)

∥∥∥
[a,x],∞

= ex,
∥∥∥f (n+1)

∥∥∥
[x,b],∞

= eb

and∥∥∥f (n+1)
∥∥∥

[a,x],p
=
(

epx − epa

p

) 1
p

,
∥∥∥f (n+1)

∥∥∥
[x,b],p

=
(

epb − epx

p

) 1
p

for p ≥ 1

and by the inequalities (3.14)–(3.16), we have the following result for the exponen-
tial ∣∣∣∣ex − 1

b− a

[
(b− x) ea + (x− a) eb

]
(4.1)

− (b− x) (x− a)
b− a

·
n∑

k=1

1
k!

{
(x− a)k−1

ea + (−1)k (b− x)k−1
eb
}∣∣∣∣∣

≤ (b− x) (x− a)
n! (b− a)

×



1
n+1

[
(x− a)n

ex + (b− x)n
eb
]
;

1

(nq+1)
1
q

[
(x− a)n+ 1

q−1
(

epx−epa

p

) 1
p

+ (b− x)n+ 1
q−1

(
epb−epx

p

) 1
p

]
,

p > 1, 1
p + 1

q = 1;[
(x− a)n−1 (ex − ea) + (b− x)n (

eb − ex
)]

;

for any a ≤ x ≤ b.
In particular, by utilising the inequalities (3.17)–(3.19), we have the following

result on approximating the exponential at the midpoint in terms of the exponential
taken at the extremities

(4.2)

∣∣∣∣∣e a+b
2 − ea + eb

2
−

n∑
k=1

1
2k+1k!

[
ea + (−1)k

eb
]
(b− a)k

∣∣∣∣∣

≤ (b− a)n

2n+1n!
×



b−a
n+1

(
e

a+b
2 + eb

)
;

(b−a)1/q

(nq+1)1/q

[(
ep· a+b

2 −epa

p

) 1
p

+
(

epb−ep· a+b
2

p

) 1
p

]
,

p > 1, 1
p + 1

q = 1;(
eb − ea

)
;

for any a ≤ b.
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Now, we consider another function that is of large interest. Let f (t) = ln t,
t > 0. We have

f (k) (t) =
(−1)k−1 (k − 1)!

tk
, k ≥ 1, t > 0

and, for 0 < a ≤ x ≤ b < ∞,

∥∥∥f (n+1)
∥∥∥

[a,x],∞
=

n!
an+1

,
∥∥∥f (n+1)

∥∥∥
[x,b],∞

=
n!

xn+1
,

∥∥∥f (n+1)
∥∥∥

[a,x],p
=

n!
[
x(n+1)p−1 − a(n+1)p−1

]1/p

[(n + 1) p− 1]1/p
xn+1−1/pan+1−1/p

,

∥∥∥f (n+1)
∥∥∥

[x,b],p
=

n!
[
b(n+1)p−1 − x(n+1)p−1

]1/p

[(n + 1) p− 1]1/p
bn+1−1/pxn+1−1/p

for p ≥ 1;

and

∥∥∥f (n+1)
∥∥∥

[a,x],1
=

(n− 1)! (xn − an)
xnan

,
∥∥∥f (n+1)

∥∥∥
[x,b],1

=
(n− 1)! (bn − xn)

bnxn

respectively.
Utilising the inequalities (3.14)–(3.16) we have

∣∣∣∣∣ lnx− 1
b− a

[(b− x) ln a + (x− a) ln b](4.3)

− (b− x) (x− a)
b− a

·
n∑

k=1

1
k

{
(−1)k−1 (x− a)k−1

ak
− (b− x)k−1

bk

}∣∣∣∣∣
≤ (b− x) (x− a)

(b− a)

×



1
n+1

[
(x− a)n · 1

an+1 + (b− x)n · 1
xn+1

]
;

1
(nq+1)1/q

[
(x− a)n+1/q−1 · [x(n+1)p−1−a(n+1)p−1]1/p

[(n+1)p−1]1/pxn+1−1/pan+1−1/p

+(b− x)n+1/q−1 · [b(n+1)p−1−x(n+1)p−1]1/p

[(n+1)p−1]1/pbn+1−1/pxn+1−1/p

]
,

p > 1, 1
p + 1

q = 1;

1
n

[
(x− a)n−1 · (xn−an)

xnan + (b− x)n · (bn−xn)
bnxn

]
for any 0 < a ≤ x ≤ b < ∞.

Finally, by using the second layer of inequalities from (3.17)–(3.19) we can state
the following result that provides some simple estimates for the logarithm taken at
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the midpoint:∣∣∣∣∣ln
(

a + b

2

)
− ln a + ln b

2
−

n∑
k=1

1
2k+1k

{
(−1)k−1

ak
− 1

bk

}
(b− a)k

∣∣∣∣∣

≤



(b−a)n+1

2n+1(n+1)an+1 ;

(b−a)n+1/q

2n+1(nq+1)1/q ·
[b(n+1)p−1−a(n+1)p−1]1/p

[(n+1)p−1]1/pbn+1−1/pan+1−1/p
,

p > 1, 1
p + 1

q = 1;

(b−a)n

2n+1n · (bn−an)
bnan

for any 0 < a ≤ b < ∞.

Remark 5. On utilising Appell type polynomials and making use of the generalised
Taylor type expansions considered for instance in [1], [2], [3], [4] and [9], more
general results will be considered in the paper [8] that is in preparation.
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