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SOME RESULTS RELATED TO THE
CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

N.S. BARNETT AND S.S. DRAGOMIR

Abstract. Some refinements and reverses of the Cauchy-Bunyakovsky-Schwarz

inequality for the Lebesgue integral in measurable spaces are given. Results
for the discrete case are pointed out as well.

1. Introduction

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ-algebra of parts A
and a countably additive and positive measure µ on A with values in R ∪ {∞} .

For a µ-measurable function w ≥ 0 µ-a.e. on Ω and p ≥ 1, we define the Lebesgue
space

Lp,w (Ω,A, µ) :=
{

f : Ω → K| f is µ-measurable,
∫

Ω

w (x) |f (x)|p dµ (x) < ∞
}

,

where K = C, R.
For p = ∞, we defined the space

L∞,w (Ω,A, µ) :=
{

f : Ω → K| f is µ-measurable, ess sup
x∈Ω

[w (x) |f (x)|] < ∞
}

.

It is known that for p ∈ [1,∞] , the spaces Lp,w (Ω,A, µ) together with the usual
norms

‖f‖w,p :=


ess sup

x∈Ω
[w (x) |f (x)|] if f ∈ L∞,w (Ω,A, µ)(∫

Ω
w (x) |f (x)|p dµ (x)

) 1
p , p ≥ 1

are Banach spaces.
If p = 2, then L2,w (Ω,A, µ) is a Hilbert space. Its norm ‖·‖w,2 is generated by

the inner product

〈f, g〉w,2 :=
∫

Ω

w (x) f (x) g (x)dµ (x) ,

where g (x) is the complex conjugate of g (x) .
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The following inequality, that holds for any f, g ∈ Lw,2 (Ω,A, µ), is well known
in the literature as the Cauchy-Bunyakovsky-Schwarz inequality:

(1.1)
∣∣∣∣∫

Ω

w (x) f (x) g (x) dµ (x)
∣∣∣∣

≤
(∫

Ω

w (x) |f (x)|2 dµ (x)
) 1

2
(∫

Ω

w (x) |g (x)|2 dµ (x)
) 1

2

.

Actually, the above inequality has a stronger form, namely:

(1.2)
∫

Ω

w (x) |f (x) g (x)| dµ (x)

≤
(∫

Ω

w (x) |f (x)|2 dµ (x)
) 1

2
(∫

Ω

w (x) |g (x)|2 dµ (x)
) 1

2

.

The main aim of this present note is to provide some upper and lower bounds
for the quantity

(0 ≤) ‖f‖w,2 ‖g‖w,2 − ‖fg‖w,1(1.3)

=
(∫

Ω

w (x) |f (x)|2 dµ (x)
) 1

2
(∫

Ω

w (x) |g (x)|2 dµ (x)
) 1

2

−
∫

Ω

w (x) |f (x) g (x)| dµ (x)

under the assumption that there exist constants 0 < m < M < ∞ such that

(1.4) 0 ≤ m ≤ |f (x) g (x)| ≤ M < ∞ for µ− a.e. x ∈ Ω.

Some reverses of the Cauchy-Bunyakovsky-Schwarz inequality are also given.
For some recent results related to the Cauchy-Bunyakovsky-Schwarz inequality

see also [5], [6], [7] and [8].

2. The Results

Throughout this section, we assume that the nonnegative weight w, considered
above, is Lebesgue integrable on Ω and

∫
Ω

w (x) dµ (x) > 0.

Theorem 1. Let f, g ∈ Lw,2 (Ω,A, µ) such that f/g, g/f ∈ Lw,1 (Ω,A, µ) and that
there exist constants 0 < m < M < ∞ with the property that:

(2.1) m ≤ |f (x) g (x)| ≤ M for µ− a.e. x ∈ Ω.

It then follows that,

(0 ≤)
1
2
m

[
‖g‖w,2

‖f‖w,2

·
∥∥∥∥f

g

∥∥∥∥
w,1

+
‖f‖w,2

‖g‖w,2

·
∥∥∥∥ g

f

∥∥∥∥
w,1

− 2 · ‖1‖w,1

]
(2.2)

≤ ‖f‖w,2 ‖g‖w,2 − ‖fg‖w,1

≤ 1
2
M

[
‖g‖w,2

‖f‖w,2

·
∥∥∥∥f

g

∥∥∥∥
w,1

+
‖f‖w,2

‖g‖w,2

·
∥∥∥∥ g

f

∥∥∥∥
w,1

− 2 · ‖1‖w,1

]
,

where 1 (x) = 1, x ∈ Ω.
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Proof. Note the elementary identity:

(2.3)
u2 + v2

2
− uv =

1
2
uv ·

(√
u

v
−
√

v

u

)2

,

that holds for any u, v ∈ (0,∞) .

Writing (2.3) for u = |f(x)|
‖f‖w,2

, v = |g(x)|
‖g‖w,2

, x ∈ Ω and utilising the assumption
(2.1), we obtain

1
2
m

(
‖g‖1/2

w,2

‖f‖1/2
w,2

·

√∣∣∣∣f (x)
g (x)

∣∣∣∣+ ‖f‖1/2
w,2

‖g‖1/2
w,2

·

√∣∣∣∣ g (x)
f (x)

∣∣∣∣
)2

· 1
‖f‖w,2 · ‖g‖w,2

(2.4)

≤ 1
2

[
|f (x)|2

‖f‖2
w,2

+
|g (x)|2

‖g‖2
w,2

]
− |f (x) g (x)|
‖f‖w,2 · ‖g‖w,2

≤ 1
2
M

(
‖g‖1/2

w,2

‖f‖1/2
w,2

·

√∣∣∣∣f (x)
g (x)

∣∣∣∣+ ‖f‖1/2
w,2

‖g‖1/2
w,2

·

√∣∣∣∣ g (x)
f (x)

∣∣∣∣
)2

· 1
‖f‖w,2 · ‖g‖w,2

for µ-a.e. x ∈ Ω.
Since(
‖g‖1/2

w,2

‖f‖1/2
w,2

·

√∣∣∣∣f (x)
g (x)

∣∣∣∣+ ‖f‖1/2
w,2

‖g‖1/2
w,2

·

√∣∣∣∣ g (x)
f (x)

∣∣∣∣
)2

=
‖g‖w,2

‖f‖w,2

·
∣∣∣∣f (x)
g (x)

∣∣∣∣+ ‖f‖w,2

‖g‖w,2

·
∣∣∣∣ g (x)
f (x)

∣∣∣∣− 2

then, by (2.4) we get

1
2
m

[
1

‖f‖2
w,2

·
∣∣∣∣fg
∣∣∣∣+ 1

‖g‖2
w,2

·
∣∣∣∣ gf
∣∣∣∣− 2

‖f‖w,2 · ‖g‖w,2

]
(2.5)

≤ 1
2

[
|f (x)|2

‖f‖2
w,2

+
|g (x)|2

‖g‖2
w,2

]
− |fg|
‖f‖w,2 · ‖g‖w,2

≤ 1
2
M

[
1

‖f‖2
w,2

·
∣∣∣∣fg
∣∣∣∣+ 1

‖g‖2
w,2

·
∣∣∣∣ gf
∣∣∣∣− 2

‖f‖w,2 · ‖g‖w,2

]
µ-almost everywhere in Ω.

On multiplying (2.5) by w ≥ 0 and integrating on Ω, we get

1
2
m

[
1

‖f‖2
w,2

·
∥∥∥∥f

g

∥∥∥∥
w,1

+
1

‖g‖2
w,2

·
∥∥∥∥ g

f

∥∥∥∥
w,1

−
2 · ‖1‖w,1

‖f‖w,2 · ‖g‖w,2

]

≤ 1−
‖fg‖w,1

‖f‖w,2 · ‖g‖w,2

≤ 1
2
M

[
1

‖f‖2
w,2

·
∥∥∥∥f

g

∥∥∥∥
w,1

+
1

‖g‖2
w,2

·
∥∥∥∥ g

f

∥∥∥∥
w,1

−
2 · ‖1‖w,1

‖f‖w,2 · ‖g‖w,2

]
,

which is clearly equivalent to (2.2).
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Consider now the sequence wj ≥ 0 with
∑∞

j=1 wj < ∞ and define the Banach
spaces `p

w (K) by

`2w (K) :=

x = (xi)i∈N

∣∣∣∣∣∣
∞∑

j=1

wj |xj |p < ∞

 ,

where

‖x‖w,p :=
∞∑

j=1

wj |xj |p .

With the above assumptions, we have the following discrete inequality.

Corollary 1. If x = (xi)i∈N , y = (yi)i∈N ∈ `2w (K) are such that xi, yj 6= 0, j ∈ N,(
xj

yj

)
j∈N

,
(

yj

xj

)
j∈N

∈ `1w (K) and that there exist constants M,m ∈ R such that

(2.6) 0 < m ≤ |xjyj | ≤ M < ∞ for each j ∈ N,

then,

1
2
m


[∑∞

j=1 wj |yj |2∑∞
j=1 wj |xj |2

] 1
2

·
∞∑

j=1

wj

∣∣∣∣xj

yj

∣∣∣∣(2.7)

+

[∑∞
j=1 wj |xj |2∑∞
j=1 wj |yj |2

] 1
2

·
∞∑

j=1

wj

∣∣∣∣ yj

xj

∣∣∣∣− 2 ·
∞∑

j=1

wj


≤

 ∞∑
j=1

wj |xj |2
 1

2
 ∞∑

j=1

wj |yj |2
 1

2

−
∞∑

j=1

wj |xiyj |

≤ 1
2
M


[∑∞

j=1 wj |yj |2∑∞
j=1 wj |xj |2

] 1
2

·
∞∑

j=1

wj

∣∣∣∣xj

yj

∣∣∣∣
+

[∑∞
j=1 wj |xj |2∑∞
j=1 wj |yj |2

] 1
2

·
∞∑

j=1

wj

∣∣∣∣ yj

xj

∣∣∣∣− 2 ·
∞∑

j=1

wj

 .

3. Reverses of the CBS-Inequality

Before we state a reverse of the Cauchy-Bunyakovsky-Schwarz (CBS)-inequality,
which can be naturally derived from Theorem 1, we present some known results for
complex functions.

Assume that f, g ∈ L2
w (Ω,A, µ) and that there exist real (complex) numbers

a,A ∈ K such that

(3.1) Re
[
(Ag (x)− f (x))

(
f (x)− āg (x)

)]
≥ 0
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for µ-a.e. x ∈ Ω, then [1] (see also [3, p. 7]):

(0 ≤)
∫

Ω

w (x) |f (x)|2 dµ (x)
∫

Ω

w (x) |g (x)|2 dµ (x)(3.2)

−
∣∣∣∣∫

Ω

w (x) f (x) g (x)dµ (x)
∣∣∣∣2

≤ 1
4
· |A− a|2

(∫
Ω

w (x) |g (x)|2 dµ (x)
)2

.

With the assumption (3.1), the following result also holds [2] (see also [3, p. 26]):

(3.3)
∫

Ω

w (x) |f (x)|2 dµ (x)
∫

Ω

w (x) |g (x)|2 dµ (x)

≤ 1
4
· |A + a|2

Re (Aā)

∣∣∣∣∫
Ω

w (x) f (x) g (x)dµ (x)
∣∣∣∣2 ,

provided Re (Aā) > 0.
Finally, if A 6= a and the condition (3.1) holds true, then [3] (see also [4, p. 32])

(0 ≤)
[∫

Ω

w (x) |f (x)|2 dµ (x)
∫

Ω

w (x) |g (x)|2 dµ (x)
] 1

2

(3.4)

−
∣∣∣∣∫

Ω

w (x) f (x) g (x)dµ (x)
∣∣∣∣

≤ 1
4
· |A− a|2

|A + a|2
∫

Ω

w (x) |g (x)|2 dµ (x) .

We give now our new result which provide a different reverse for the CBS-
inequality than the inequalities mentioned above:

Theorem 2. Let f, g ∈ Lw,2 (Ω,A, µ) be such that there exist constants 0 < M < ∞
and 0 < n < N < ∞ with the properties that:

(3.5) |f (x) g (x)| ≤ M, n ≤
∣∣∣∣f (x)
g (x)

∣∣∣∣ ≤ N for µ-a.e. x ∈ Ω,

then we have the reverse of the CBS-inequality:

(0 ≤)
[∫

Ω

w (x) |f (x)|2 dµ (x)
∫

Ω

w (x) |g (x)|2 dµ (x)
] 1

2

(3.6)

−
∫

Ω

w (x) |f (x) g (x)| dµ (x)

≤ M

(
N

n
− 1
)∫

Ω

w (x) dµ (x) .

Proof. From the second condition in (3.5),

(3.7)
∣∣∣∣f (x)
g (x)

∣∣∣∣ ≤ N and
∣∣∣∣ g (x)
f (x)

∣∣∣∣ ≤ 1
n

, for µ-a.e. x ∈ Ω,

which implies that

(3.8)
∥∥∥∥f

g

∥∥∥∥
w,1

≤ N

∫
Ω

w (x) dµ (x) and
∥∥∥∥ g

f

∥∥∥∥
w,1

≤ 1
n

∫
Ω

w (x) dµ (x) .
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Also, from (3.8) we have |f (x)| ≤ N |g (x)| and |g (x)| ≤ 1
n |f (x)| for µ-a.e. x ∈ Ω,

which imply

(3.9) ‖f‖w,2 ≤ N ‖g‖w,2 and ‖g‖w,2 ≤
1
n
‖f‖w,2 .

Utilising the second inequality in (2.2) and the inequalities (3.8) and (3.9), we
deduce

‖f‖w,2 ‖g‖w,2 − ‖fg‖w,1 ≤
1
2
M

[
N

n
+

M

n
− 2
] ∫

Ω

w (x) dµ (x)

= M

(
N

n
− 1
)∫

Ω

w (x) dµ (x)

and the proof is complete.

Corollary 2. Assume that f, g are measurable and such that:

(3.10) 0 < m1 ≤ |f (x)| ≤ M1 < ∞, 0 < m2 ≤ |g (x)| ≤ M2 < ∞

for µ-a.e. x ∈ Ω, then

(0 ≤)
[∫

Ω

w (x) |f (x)|2 dµ (x)
∫

Ω

w (x) |g (x)|2 dµ (x)
] 1

2

(3.11)

−
∫

Ω

w (x) |f (x) g (x)| dµ (x)

≤ M1M2

(
M1M2

m1m2
− 1
)∫

Ω

w (x) dµ (x) .

The proof is obvious by Theorem 2 on noticing that |f (x) g (x)| ≤ M1M2 and

m1

M2
≤
∣∣∣∣f (x)
g (x)

∣∣∣∣ ≤ M1

m2

for µ-a.e. x ∈ Ω.

Remark 1. The discrete case can be stated as follows. Assume that x = (xi)i∈N ,

y = (yi)i∈N ∈ `2w (K) are such that xi, yi 6= 0, i ∈ N and that there exist constants
0 < M < ∞ and 0 < n < N < ∞ with

(3.12) |xjyj | ≤ M and n ≤
∣∣∣∣xj

yj

∣∣∣∣ ≤ N for each j ∈ N.

It follows that

0 ≤

 ∞∑
j=1

wj |xj |2 ·
∞∑

j=1

wj |yj |2
 1

2

−
∞∑

j=1

wj |xjyj |(3.13)

≤ M

(
N

n
− 1
) ∞∑

j=1

wj .

Also, if

(3.14) 0 < m1 ≤ |xj | ≤ M1 < ∞, 0 < m2 ≤ |yj | ≤ M2 < ∞, for each j ∈ N
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then

0 ≤

 ∞∑
j=1

wj |xj |2 ·
∞∑

j=1

wj |yj |2
 1

2

−
∞∑

j=1

wj |xjyj |(3.15)

≤ M1M2

(
M1M2

m1m2
− 1
) ∞∑

j=1

wj .
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[6] B. MOND, J. PEČARIĆ, and B. TEPEŠ, Counterparts of Schwarz’s inequality for Čebyšev
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