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Norm and Numerical Radius Inequalities for Two Linear
Operators in Hilbert Spaces

S.S. Dragomir

Abstract. Some inequalities for the norm and numerical radius of two bounded
linear operators in Hilbert spaces are established.

1. Introduction

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an operator
T is the subset of the complex numbers C given by [6, p. 1]:

W (T ) = {〈Tx, x〉 , x ∈ H, ‖x‖ = 1} .

The numerical radius w (T ) of an operator T on H is given by [6, p. 8]:

(1.1) w (T ) = sup {|λ| , λ ∈ W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} .

It is well known that w (·) is a norm on the Banach algebra B (H) of all bounded
linear operators T : H → H. This norm is equivalent with the operator norm. In
fact, the following more precise result holds [6, p. 9]:

Theorem 1 (Equivalent norm). For any T ∈ B (H) one has

(1.2) w (T ) ≤ ‖T‖ ≤ 2w (T ) .

For other results on numerical radius, see [7], Chapter 11. For some recent and
interesting results concerning inequalities for the numerical radius, see [8], [9] and
[1].

We recall some classical results involving the numerical radius of two linear
operators A,B.

The following general result for the product of two operators holds [6, p. 37]:

Theorem 2. If A,B are two bounded linear operators on the Hilbert space
(H, 〈·, ·〉) , then

(1.3) w (AB) ≤ 4w (A) w (B) .

In the case that AB = BA, then

(1.4) w (AB) ≤ 2w (A) w (B) .

The following results are also well known [6, p. 38].

1991 Mathematics Subject Classification. Primary 47A12, 47A30; Secondary 47A63.
Key words and phrases. Bounded linear operators, Numerical radius, Operator norm, Carte-

sian decomposition.

1



2 S.S. DRAGOMIR

Theorem 3. If A is a unitary operator that commutes with another operator
B, then

(1.5) w (AB) ≤ w (B) .

If A is an isometry and AB = BA, then (1.5) also holds true.

We say that A and B double commute if AB = BA and AB∗ = B∗A.
The following result holds [6, p. 38].

Theorem 4 (Double commute). If the operators A and B double commute,
then

(1.6) w (AB) ≤ w (B) ‖A‖ .

As a consequence of the above, we have [6, p. 39]:

Corollary 1. Let A be a normal operator commuting with B. Then

(1.7) w (AB) ≤ w (A) w (B) .

For other results and historical comments on the above see [6, p. 39–41]. For
more results on the numerical radius, see [7].

In the recent survey paper [2] we provided other inequalities for the numerical
radius of the product of two operators. We list here some of the results:

Theorem 5. Let A,B : H → H be two bounded linear operators on the Hilbert
space (H, 〈·, ·〉) , then

(1.8)
∥∥∥∥A∗A + B∗B

2

∥∥∥∥ ≤ w (B∗A) +
1
2
‖A−B‖2

and

(1.9)
∥∥∥∥A + B

2

∥∥∥∥2

≤ 1
2

[∥∥∥∥A∗A + B∗B

2

∥∥∥∥ + w (B∗A)
]

,

respectively.

If more information regarding one operator is available, then the following
results may be stated as well:

Theorem 6. Let A,B : H → H be two bounded linear operators on H and B
is invertible such that, for a given r > 0,

(1.10) ‖A−B‖ ≤ r.

Then

(1.11) ‖A‖ ≤
∥∥B−1

∥∥ [
w (B∗A) +

1
2
r2

]
and

(1.12) (0 ≤) ‖A‖ ‖B‖ − w (B∗A) ≤ 1
2
r2 +

‖B‖2 ∥∥B−1
∥∥2 − 1

2 ‖B−1‖2 ,

respectively.
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Motivated by the results outlined above, it is the main aim of the present
paper to establish other inequalities for the composite operator BA under suitable
assumptions for the transform C·,· (·) (see (2.1) below) of the operators involved.
The transform C·,· (·) has been recently introduced in the literature by the author
(see [3]) in order to provide various generalizations for the operator version of the
Kantorovich famous inequality obtained by Greub and Rheinboldt in [5]. Some
elementary properties of this transform will be provided at the beginning of the
next section.

2. Norm & Numerical Radius Inequalities

For the complex numbers α, β and the bounded linear operator T we define the
following transform (see [3]):

(2.1) Cα,β (T ) := (T ∗ − αI) (βI − T ) ,

where by T ∗ we denote the adjoint of T .
We list some properties of the transform Cα,β (·) that are of interest:

(i) For any α, β ∈ C and T ∈ B(H) we have:

(2.2) Cα,β (I) = (1− α) (β − 1) I, Cα,α (T ) = − (αI − T )∗ (αI − T ) ,

(2.3) Cα,β (γT ) = |γ|2 Cα
γ , β

γ
(T ) for each γ ∈ C\ {0} ,

(2.4) [Cα,β (T )]∗ = Cβ,α (T )

and

(2.5) Cβ,α (T ∗)− Cα,β (T ) = T ∗T − TT ∗.

(ii) The operator T ∈ B(H) is normal if and only if Cβ,α (T ∗) = Cα,β (T ) for
each α, β ∈ C.

We recall that a bounded linear operator T on the complex Hilbert space
(H, 〈·, ·〉) is called accretive if Re 〈Ty, y〉 ≥ 0 for any y ∈ H.

Utilizing the following identity

(2.6) Re 〈Cα,β (T )x, x〉 = Re 〈Cβ,α (T ) x, x〉 =
1
4
|β − α|2 −

∥∥∥∥(
T − α + β

2
I

)
x

∥∥∥∥2

that holds for any scalars α, β and any vector x ∈ H with ‖x‖ = 1 we can give a
simple characterization result that is useful in the following:

Lemma 1. For α, β ∈ C and T ∈ B(H) the following statements are equivalent:
(i) The transform Cα,β (T ) (or, equivalently, Cβ,α (T )) is accretive;

(ii) The transform Cα,β (T ∗)
(
or, equivalently, Cβ,ᾱ (T ∗)

)
is accretive;

(iii) We have the norm inequality

(2.7)
∥∥∥∥T − α + β

2
· I

∥∥∥∥ ≤ 1
2
|β − α|

or, equivalently,

(2.8)
∥∥∥∥T ∗ − ᾱ + β̄

2
· I

∥∥∥∥ ≤ 1
2
|β − α| .



4 S.S. DRAGOMIR

Remark 1. In order to give examples of operators T ∈ B(H) and numbers
α, β ∈ C such that the transform Cα,β (T ) is accretive, it suffices to select a bounded
linear operator S and the complex numbers z, w with the property that ‖S − zI‖ ≤
|w| and, by choosing T = S, α = 1

2 (z + w) and β = 1
2 (z − w) we observe that T

satisfies (2.7), i.e., Cα,β (T ) is accretive.

In the recent paper [4], the following Grüss type result in comparing the quan-
tities w (BA) and w (A)w (B) has been given:

Theorem 7. Let A,B ∈ B(H) and α, β, γ, δ ∈ K be such that the transforms
Cα,β (A) and Cγ,δ (B) are accretive, then

(2.9) w (BA) ≤ w (A) w (B) +
1
4
|β − α| |γ − δ| .

Another similar result obtained in [4] is the following one

Theorem 8. Let A,B ∈ B(H) and α, β, γ, δ ∈ K be such that Re (βα) >
0,Re (δγ) > 0 and the transforms Cα,β (A) , Cγ,δ (B) are accretive, then

(2.10)
w (BA)

w (A) w (B)
≤ 1 +

1
4
· |β − α| |δ − γ|
[Re (βα) Re (δγ)]1/2

and

(2.11) w (BA) ≤ w (A) w (B)

+
[(
|α + β| − 2 [Re (βα)]1/2

) (
|δ + γ| − 2 [Re (δγ)]1/2

)]1/2

[w (A) w (B)]1/2
,

respectively.

In the light of the above results it is then natural to compare the quantities
‖AB‖ and w (A)w (B) + w (A) ‖B‖ + ‖A‖w (B) provided that some information
about the transforms Cα,β (A) and Cγ,δ (B) are available, where α, β, γ, δ ∈ K.

Theorem 9. Let A,B ∈ B(H) and α, β, γ, δ ∈ K be such that the transforms
Cα,β (A) and Cγ,δ (B) are accretive, then

(2.12) ‖BA‖ ≤ w (A) w (B) + w (A) ‖B‖+ ‖A‖w (B) +
1
4
|β − α| |γ − δ| .

Proof. Since Cα,β (A) and Cγ,δ (B) are accretive, then, on making use of

Lemma 1 we have that
∥∥∥Ax− α+β

2 x
∥∥∥ ≤ 1

2 |β − α| and
∥∥∥B∗x− γ̄+δ̄

2 x
∥∥∥ ≤ 1

2

∣∣γ̄ − δ̄
∣∣ ,

for any x ∈ H, ‖x‖ = 1.
Utilizing the Schwarz inequality we may write that

(2.13) |〈Ax− 〈Ax, x〉x, B∗y − 〈B∗y, y〉 y〉|
≤ ‖Ax− 〈Ax, x〉x‖ ‖B∗y − 〈B∗y, y〉 y‖ ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Since for any vectors u, f ∈ H with ‖f‖ = 1 we have ‖u− 〈u, f〉 f‖ = infµ∈K ‖u− µf‖,

then obviously

‖Ax− 〈Ax, x〉x‖ ≤
∥∥∥∥Ax− α + β

2
x

∥∥∥∥ ≤ 1
2
|β − α|

and
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‖B∗y − 〈B∗y, y〉 y‖ ≤
∥∥∥∥B∗y − γ̄ + δ̄

2
y

∥∥∥∥ ≤ 1
2
|γ − δ|

producing the inequality

(2.14) ‖Ax− 〈Ax, x〉x‖ ‖B∗y − 〈B∗y, y〉 y‖ ≤ 1
4
|β − α| |γ − δ| .

Now, observe that

〈Ax− 〈Ax, x〉x,B∗y − 〈B∗y, y〉 y〉
= 〈BAx, y〉+ 〈Ax, x〉 〈By, y〉 〈x, y〉 − 〈Ax, x〉 〈Bx, y〉 − 〈Ax, y〉 〈By, y〉 ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Taking the modulus in the equality and utilizing its properties we have succes-

sively

|〈Ax− 〈Ax, x〉x,B∗y − 〈B∗y, y〉 y〉|
≥ |〈BAx, y〉| − |〈Ax, x〉 〈Bx, y〉+ 〈Ax, y〉 〈By, y〉 − 〈Ax, x〉 〈By, y〉 〈x, y〉|
≥ |〈BAx, y〉| − |〈Ax, x〉 〈Bx, y〉| − |〈Ax, y〉 〈By, y〉| − |〈Ax, x〉 〈By, y〉 〈x, y〉|

which is equivalent with

|〈Ax− 〈Ax, x〉x,B∗y − 〈B∗y, y〉 y〉|(2.15)
+ |〈Ax, x〉 〈Bx, y〉|+ |〈Ax, y〉 〈By, y〉|+ |〈Ax, x〉 〈By, y〉 〈x, y〉|

≥ |〈BAx, y〉| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Finally, on making use of the inequalities (2.13)-(2.15) we can state that

(2.16)
1
4
|β − α| |γ − δ|

+ |〈Ax, x〉 〈Bx, y〉|+ |〈Ax, y〉 〈By, y〉|+ |〈Ax, x〉 〈By, y〉 〈x, y〉|
≥ |〈BAx, y〉| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Taking the supremum in (2.16) over ‖x‖ = ‖y‖ = 1 and noticing that

sup
‖x‖=1

|〈Ax, x〉| = w (A) , sup
‖x‖=‖y‖=1

|〈Ax, y〉| = ‖A‖ , sup
‖y‖=1

|〈By, y〉| = w (B) ,

sup
‖x‖=‖y‖=1

|〈Bx, y〉| = ‖B‖ , sup
‖x‖=‖y‖=1

|〈x, y〉| = 1 and sup
‖x‖=‖y‖=1

|〈BAx, y〉| = ‖BA‖ ,

we deduce the desired result (2.12).

Remark 2. It is an open problem whether or not the constant 1
4 is best possible

in the inequality (2.12).

A different approach is consider in the following result:

Theorem 10. With the assumptions from Theorem 9 we have the inequality

(2.17) ‖BA‖ ≤ w (A) ‖B‖+
1
4
|β − α| (|γ + δ|+ |γ − δ|) .
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Proof. By the Schwarz inequality and taking into account the assumptions
for the operators A and B we may state that∣∣∣∣〈Ax− 〈Ax, x〉x,B∗y − γ̄ + δ̄

2
y

〉∣∣∣∣ ≤ ‖Ax− 〈Ax, x〉x‖
∥∥∥∥B∗y − γ̄ + δ̄

2
y

∥∥∥∥(2.18)

≤
∥∥∥∥Ax− α + β

2
x

∥∥∥∥∥∥∥∥B∗y − γ̄ + δ̄

2
y

∥∥∥∥ ≤ 1
4
|β − α| |γ − δ| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Now, since 〈

Ax− 〈Ax, x〉x,B∗y − γ̄ + δ̄

2
y

〉
= 〈BAx, y〉 − 〈Ax, x〉 〈Bx, y〉 − γ + δ

2
〈Ax− 〈Ax, x〉x, y〉 ,

on taking the modulus in this equality we have∣∣∣∣〈Ax− 〈Ax, x〉x,B∗y − γ̄ + δ̄

2
y

〉∣∣∣∣(2.19)

≥ |〈BAx, y〉| − |〈Ax, x〉 〈Bx, y〉| −
∣∣∣∣γ + δ

2

∣∣∣∣ |〈Ax− 〈Ax, x〉x, y〉| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
On making use of (2.18) and (2.19) we get

|〈BAx, y〉|(2.20)

≤ |〈Ax, x〉 〈Bx, y〉|+
∣∣∣∣γ + δ

2

∣∣∣∣ |〈Ax− 〈Ax, x〉x, y〉|+ 1
4
|β − α| |γ − δ|

≤ |〈Ax, x〉 〈Bx, y〉|+
∣∣∣∣γ + δ

2

∣∣∣∣ ∥∥∥∥Ax− α + β

2
x

∥∥∥∥ +
1
4
|β − α| |γ − δ|

≤ |〈Ax, x〉 〈Bx, y〉|+ 1
4
|β − α| (|γ + δ|+ |γ − δ|) ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Taking the supremum over ‖x‖ = ‖y‖ = 1 in (2.20) we deduce the desired

inequality (2.17).

In a similar manner we can state the following results as well:

Theorem 11. With the assumptions from Theorem 9 we have the inequality

(2.21) ‖BA‖ ≤ w (A) ‖B‖+
1
2
|γ + δ| (w (A) + ‖A‖) +

1
4
|β − α| |γ − δ| .

Indeed, we observe that〈
Ax− 〈Ax, x〉x,B∗y − γ̄ + δ̄

2
y

〉
= 〈BAx, y〉 − 〈Ax, x〉 〈Bx, y〉 − γ + δ

2
〈Ax, y〉+

γ + δ

2
〈Ax, x〉 〈x, y〉
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which produces the inequality∣∣∣∣〈Ax− 〈Ax, x〉x, B∗y − γ̄ + δ̄

2
y

〉∣∣∣∣ + |〈Ax, x〉 〈Bx, y〉|

+
∣∣∣∣γ + δ

2

∣∣∣∣ |〈Ax, y〉|+
∣∣∣∣γ + δ

2

∣∣∣∣ |〈Ax, x〉| |〈x, y〉|

≥ |〈BAx, y〉| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
On utilizing the same argument as in the proof of the above theorem, we get

the desired result (2.21). The details are omitted.

3. Other Norm Inequalities

The following result concerning an upper bound for the norm of the operator
product may be stated.

Theorem 12. With the assumptions from Theorem 9 we have the inequality

‖BA‖(3.1)

≤ 1
4
|β − α| |γ − δ|

+
∥∥∥∥α + β

2
·B +

γ + δ

2
·A− α + β

2
· γ + δ

2
· I

∥∥∥∥
≤ 1

4
|β − α| |γ − δ|

+min
{∣∣∣∣α + β

2

∣∣∣∣ (‖B‖+
1
2
|β − α|),

∣∣∣∣γ + δ

2

∣∣∣∣ (‖A‖+
1
2
|γ − δ|)

}
.

Proof. By Schwarz inequality and utilizing the assumptions about A and B
we have ∣∣∣∣〈Ax− α + β

2
x,B∗y − γ̄ + δ̄

2
y

〉∣∣∣∣(3.2)

≤
∥∥∥∥Ax− α + β

2
x

∥∥∥∥∥∥∥∥B∗y − γ̄ + δ̄

2
y

∥∥∥∥
≤ 1

4
|β − α| |γ − δ| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Also, the following identity is of interest in itself〈

Ax− α + β

2
x,B∗y − γ̄ + δ̄

2
y

〉
(3.3)

= 〈BAx, y〉+
α + β

2
· γ + δ

2
〈x, y〉 − α + β

2
〈Bx, y〉 − γ + δ

2
〈Ax, y〉 ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
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This identity gives〈
Ax− α + β

2
x, B∗y − γ̄ + δ̄

2
y

〉
+

〈
α + β

2
·Bx +

γ + δ

2
·Ax− α + β

2
· γ + δ

2
x, y

〉
= 〈BAx, y〉 ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Taking the modulus and utilizing (3.2) we get

|〈BAx, y〉| ≤
∣∣∣∣〈Ax− α + β

2
x,B∗y − γ̄ + δ̄

2
y

〉∣∣∣∣
+

∣∣∣∣〈α + β

2
·Bx +

γ + δ

2
·Ax− α + β

2
· γ + δ

2
x, y

〉∣∣∣∣
≤ 1

4
|β − α| |γ − δ|

+
∥∥∥∥α + β

2
·Bx +

γ + δ

2
·Ax− α + β

2
· γ + δ

2
x

∥∥∥∥ ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Finally, taking the supremum over ‖x‖ = ‖y‖ = 1 we deduce the first part of

the desired inequality (3.1). The second part is obvious by the triangle inequality
and by the assumptions on A and B.

The following particular case also holds

Corollary 2. Let A ∈ B(H) and α, β ∈ K be such that the transforms
Cα,β (A) is accretive. Then

(3.4)
∥∥A2

∥∥ ≤ 1
4
|β − α|2 +

∣∣∣∣α + β

2

∣∣∣∣ ∥∥∥∥2 ·A− α + β

2
· I

∥∥∥∥(
≤ 1

4
|β − α|2 +

∣∣∣∣α + β

2

∣∣∣∣ (
‖A‖+

1
2
|β − α|

))
and

(3.5) ‖A‖2 ≤ 1
4
|β − α|2

+

∥∥∥∥∥ ᾱ + β̄

2
·A∗ +

α + β

2
·A−

∣∣∣∣α + β

2

∣∣∣∣2 · I
∥∥∥∥∥(

≤ 1
4
|β − α|2 +

∣∣∣∣α + β

2

∣∣∣∣ (
‖A‖+

1
2
|β − α|

))
,

respectively.

The following result provides an approximation for the operator product in
terms of some simpler quantities:

Theorem 13. With the assumptions from Theorem 9 we have the inequality

(3.6)
∥∥∥∥BA− α + β

2
·B − γ + δ

2
·A +

α + β

2
· γ + δ

2
· I

∥∥∥∥ ≤ 1
4
|β − α| |γ − δ| .
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Proof. The identity (3.3) can written in an equivalent form as〈
Ax− α + β

2
x, B∗y − γ̄ + δ̄

2
y

〉
(3.7)

=
〈(

BA− α + β

2
·B − γ + δ

2
·A +

α + β

2
· γ + δ

2
· I

)
x, y

〉
,(3.8)

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Taking the modulus and making use of the inequality (3.2) we get∣∣∣∣〈(

BA− α + β

2
·B − γ + δ

2
·A +

α + β

2
· γ + δ

2
· I

)
x, y

〉∣∣∣∣
≤ 1

4
|β − α| |γ − δ| ,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1, which implies the desired result (3.6).

Corollary 3. Let A ∈ B(H) and α, β ∈ K be such that the transforms
Cα,β (A) is accretive, then

(3.9)

∥∥∥∥∥A2 − (α + β) ·A +
(

α + β

2

)2

· I

∥∥∥∥∥ ≤ 1
4
|β − α|2

and

(3.10)

∥∥∥∥∥A∗A− α + β

2
·A∗ − ᾱ + β̄

2
·A +

∣∣∣∣α + β

2

∣∣∣∣2 · I
∥∥∥∥∥ ≤ 1

4
|β − α|2 ,

respectively.

Remark 3. It is an open problem whether or not the constant 1
4 is best possible

in either of the inequalities (3.6), (3.9) or (3.10) above.

The following theorem provides an approximating for the operator 1
2 (U∗U + UU∗)

when some information about the real or imaginary part of the operator U are given.
We recall that U = Re (U) + i Im (U), i.e., Re (U) = 1

2 (U + U∗) and Im (U) =
1
2i (U − U∗) . For the simplicity, we denote with A the real part of U and with B
its imaginary part.

Theorem 14. Suppose that a, b, c, d ∈ R are so that Ca,c (A) and Cb,d (B) are
accretive. Denote α := a + ib and β := c + id ∈ C, then∥∥∥∥∥1

2
(U∗U + UU∗)− ᾱ + β̄

2
· U − α + β

2
· U∗ +

∣∣∣∣α + β

2

∣∣∣∣2 · I
∥∥∥∥∥(3.11)

≤ 1
4
|α − β|2 .

Proof. It is well known that for any operator T with T = C + iD we have

(3.12)
1
2

(T ∗T + TT ∗) = C2 + D2.

For any z ∈ C we also have the identity
1
2

[(U − zI) (U∗ − z̄I) + (U∗ − z̄I) (U − zI)](3.13)

=
1
2

(U∗U + UU∗)− z̄ · U − z · U∗ + |z|2 · I.
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For z = α+β
2 we observe that

Re (U − zI) = A− a + c

2
· I and Im (U − zI) = B − b + d

2
· I

and utilizing the identities (3.12) and (3.13) we deduce∥∥∥∥1
2

(U∗U + UU∗)− z̄ · U − z · U∗ + |z|2 · I.

∥∥∥∥
=

∥∥∥∥∥
(

A− a + c

2
· I

)2

+
(

B − b + d

2
· I

)2
∥∥∥∥∥

≤
∥∥∥∥A− a + c

2
· I

∥∥∥∥2

+
∥∥∥∥B − b + d

2
· I

∥∥∥∥2

≤ 1
4

[
(c− a)2 + (d− b)2

]
=

1
4
|α − β|2 ,

where for the last inequality we have used the fact that Ca,c (A) and Cb,d (B) are
accretive.

Remark 4. It is an open problem whether or not the constant 1
4 is best possible

in (3.11).
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