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A GENERALIZATION OF THE CAUCHY-SCHWARZ
INEQUALITY WITH FOUR FREE PARAMETERS AND

APPLICATIONS

MOHAMMAD MASJED-JAMEI AND SEVER S. DRAGOMIR

Abstract. A generalization of the well-known Cauchy-Schwarz inequality
with four free parameters is given for both discrete and continuous cases. Some

particular cases of interest are also analyzed.

1. Introduction

Let {ak}n
k=1 and {bk}n

k=1 be two sequences of real numbers. It is well known
that the discrete version of the Cauchy-Schwarz inequality [3] can be stated as:

(1.1)

(
n∑

k=1

akbk

)2

≤
n∑

k=1

a2
k

n∑
k=1

b2
k.

The equality case holds in (1.1) if and only if the sequences are proportional meaning
that there exists a real number r so that ak = rbk for each k ∈ {1, ..., n} .

To date, a large number of generalizations and refinements of (1.1) have been
mentioned in the literature, see for example the survey paper [4], the book [7] and
the numerous references therein.

In this paper, we present a further generalization of the Cauchy-Schwarz inequal-
ity in terms of four free parameters and study some particular cases of interest.

2. A Generalization of the Cauchy-Schwarz Inequality

The first result is incorporated in:

Theorem 1. If {ak}n
k=1 and {bk}n

k=1 are two sequences of real numbers and p, q, r, s ∈
R then

(2.1)

 n∑
k=1

akbk + A1

n∑
k=1

ak

n∑
k=1

bk + B1

(
n∑

k=1

ak

)2

+C1

(
n∑

k=1

bk

)2
2

≤

 n∑
k=1

a2
k + A2

n∑
k=1

ak

n∑
k=1

bk + B2

(
n∑

k=1

ak

)2

+C2

(
n∑

k=1

bk

)2


×

 n∑
k=1

b2
k + A3

n∑
k=1

ak

n∑
k=1

bk + B3

(
n∑

k=1

ak

)2

+C3

(
n∑

k=1

bk

)2
 ,
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in which the coefficients involved are defined in the following matrix equation

M =

 A1 B1 C1

A2 B2 C2

A3 B3 C3

 =
1
n

 p + s + ps + qr r(1 + p) q(1 + s)
2q(1 + p) p(p + 2) q2

2r(1 + s) r2 s(s + 2)

 .

Moreover, the inequality (2.1) is equivalent to

(2.2)

[
n∑

k=1

akbk +
p + s + ps + qr

n

n∑
k=1

ak

n∑
k=1

bk

+
r(1 + p)

n

(
n∑

k=1

ak

)2

+
q(1 + s)

n

(
n∑

k=1

bk

)2
2

≤

[
n∑

k=1

a2
k +

1
n

n∑
k=1

(pak + qbk)
n∑

k=1

((p + 2)ak + qbk)

]

×

[
n∑

k=1

b2
k +

1
n

n∑
k=1

(rak + sbk)
n∑

k=1

(rak + (s + 2)bk)

]
,

and is a generalization of the Cauchy-Schwarz inequality for Ai = Bi = Ci = 0,
i = 1, 2, 3. The equality holds if ak = bk and Ai = Bi = Ci for each i = 1, 2, 3.

Proof. Let us define the positive quadratic polynomial Q : R → R as

(2.3) Q(x; p, q, r, s) =
n∑

k=1

[(
ak +

p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk

)
x

+

(
bk +

r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk

)]2

,

in which p, q, r, s ∈ R and {ak}n
k=1, {bk}n

k=1 are real numbers. Since a simple
calculation reveals that

(2.4) Q(x; p, q, r, s) =
n∑

k=1

(
ak +

p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk

)2

x2

+ 2
n∑

k=1

(
ak +

p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk

)(
bk +

r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk

)
x

+
n∑

k=1

(
bk +

r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk

)2

≥ 0
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for any x ∈ R, the discriminant ∆ of Q must be negative, i.e.

(2.5)
1
4
∆ =

[
n∑

k=1

(
ak +

p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk

)(
bk +

r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk

)]2

−

(
n∑

k=1

(ak +
p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk)2
)

×

(
n∑

k=1

(bk +
r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk)2
)
≤ 0.

On the other hand, the elements of ∆/4 can be simplified as follows:

(2.6a)
n∑

k=1

(
ak +

p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk

)(
bk +

r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk

)

=
n∑

k=1

akbk +
p + s + ps + qr

n

n∑
k=1

ak

n∑
k=1

bk

+
r(1 + p)

n

(
n∑

k=1

ak

)2

+
q(1 + s)

n

(
n∑

k=1

bk

)2

,

(2.6b)
n∑

k=1

(
ak +

p

n

n∑
k=1

ak +
q

n

n∑
k=1

bk

)2

=
n∑

k=1

a2
k +

2q(1 + p)
n

n∑
k=1

ak

n∑
k=1

bk

+
p(p + 2)

n

(
n∑

k=1

ak

)2

+
q2

n

(
n∑

k=1

bk

)2

,

(2.6c)
n∑

k=1

(
bk +

r

n

n∑
k=1

ak +
s

n

n∑
k=1

bk

)2

=
n∑

k=1

b2
k +

2r(1 + s)
n

n∑
k=1

ak

n∑
k=1

bk

+
r2

n

(
n∑

k=1

ak

)2

+
s(s + 2)

n

(
n∑

k=1

bk

)2

.

So, by replacing the results (2.6) in inequality (2.5), the first part of Theorem 1 is
proved.
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To prove the second part (i.e. the equality condition) let us assume that bk = vak

and substitute it into (2.1) to get

(2.7)

v
n∑

k=1

a2
k + (C1v

2 + A1v + B1)

(
n∑

k=1

ak

)2
2

=

 n∑
k=1

a2
k + (C2v

2 + A2v + B2)

(
n∑

k=1

ak

)2


×

v2
n∑

k=1

a2
k + (C3v

2 + A3v + B3)

(
n∑

k=1

ak

)2
 .

After some computations, the above equality leads to the nonlinear system

(2.8)

 (C1v
2 + A1v + B1)2 = (C2v

2 + A2v + B2)(C3v
2 + A3v + B3),

2v(C1v
2 + A1v + B1) = v2(C2v

2 + A2v + B2) + (C3v
2 + A3v + B3).

Obviously, one of the solutions of equation (2.8) is: Ai = Bi = Ci for each i = 1, 2, 3
and v = 1. �

Remark 1. We can observe that there exist various sub-cases of inequality (2.1).
However, due to page limitations, we only consider a particular case of (2.1) and
investigate its sub-cases. Naturally, other special cases can be separately studied.
The details are left to the interested reader.

3. The Particular Case B1 = C1 = 0

A total of four cases can occur for the inequality (2.1) when B1 = C1 = 0. They
are, respectively:

(i) (r, q) = (0, 0),
(ii) (r, s) = (0,−1),
(iii) (p, q) = (−1, 0),
(iv) (p, s) = (−1,−1).

3.1. Case q = r = 0 and p, s ∈ R in (2.1). In this case B1 = C1 = A2 = C2 =
A3 = B3 = 0 and the inequality (2.1) is reduced to

(3.1)

[
n∑

k=1

akbk +
p + s + ps

n

n∑
k=1

ak

n∑
k=1

bk

]2

≤

 n∑
k=1

a2
k +

p(p + 2)
n

(
n∑

k=1

ak

)2
 n∑

k=1

b2
k +

s(s + 2)
n

(
n∑

k=1

bk

)2
 .

This inequality has some interesting sub-cases as follows:
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3.1.1. Sub-case 1. p = s ∈ R \ (−2, 0) (A generalization of the Wagner
inequality). The following inequality for sequences of real numbers is known in
the literature as the Wagner inequality [9] (see also [6]):

Let {ak}n
k=1 and {bk}n

k=1 be two sequences of real numbers. If w ≥ 0 then

(3.2)

[
n∑

k=1

akbk + w
n∑

k=1

ak

n∑
k=1

bk

]2

≤

 n∑
k=1

a2
k + w

(
n∑

k=1

ak

)2
 n∑

k=1

b2
k + w

(
n∑

k=1

bk

)2
 .

To obtain (3.2) it is enough in (3.1) to assume that

p + s + ps

n
=

p(p + 2)
n

=
s(s + 2)

n
≥ 0,

which holds for p = s ∈ R \ (−2, 0) and gives the Wagner inequality for w =
p(p+2)

n ≥ 0.
Note that in (3.1) if p(p + 2) ≤ 0 and s(s + 2) ≤ 0, then[

n∑
k=1

akbk +
p + s + ps

n

n∑
k=1

ak

n∑
k=1

bk

]2

(3.3)

≤

 n∑
k=1

a2
k +

p(p + 2)
n

(
n∑

k=1

ak

)2
 n∑

k=1

b2
k +

s(s + 2)
n

(
n∑

k=1

bk

)2


≤

(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
⇔ p ∈ [−2, 0] and s ∈ [−2, 0].

3.1.2. Sub-case 2. p = s ∈ [−2, 0] (A refinement for the Cauchy-Schwarz
inequality). Suppose in (3.1) that p = s ∈ [−2, 0] and p(p+2) = u. Consequently
u ∈ [−1, 0]. By noting these assumptions we can obtain a refinement for inequality
(1.1). For this purpose, first the following inequality should be considered, which
is directly provable via some algebraic computations

(3.4)

 n∑
k=1

a2
k +

u

n

(
n∑

k=1

ak

)2
 n∑

k=1

b2
k +

u

n

(
n∑

k=1

bk

)2


≤

( n∑
k=1

a2
k

) 1
2
(

n∑
k=1

b2
k

) 1
2

+
u

n

n∑
k=1

ak

n∑
k=1

bk

2

,

because (3.4) eventually leads to

(3.5)
u

n

( n∑
k=1

a2
k

) 1
2 n∑

k=1

bk −

(
n∑

k=1

b2
k

) 1
2 n∑

k=1

ak

2

≤ 0 for u ∈ [−1, 0].

Hence, by referring to inequalities (3.1) and (3.4), one can at last conclude:
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Corollary 1. Let {ak}n
k=1 and {bk}n

k=1 be two positive sequences of real numbers
and α ∈ [0, 1]. Then

[
n∑

k=1

akbk −
α

n

n∑
k=1

ak

n∑
k=1

bk

]2

(3.6)

≤

 n∑
k=1

a2
k −

α

n

(
n∑

k=1

ak

)2
 n∑

k=1

b2
k −

α

n

(
n∑

k=1

bk

)2


≤

( n∑
k=1

a2
k

) 1
2
(

n∑
k=1

b2
k

) 1
2

−α

n

n∑
k=1

ak

n∑
k=1

bk

2

,

which is equivalent to

(
n∑

k=1

akbk

)2

(3.7)

≤

α

n

n∑
k=1

ak

n∑
k=1

bk +

√√√√ n∑
k=1

a2
k −

α

n

(
n∑

k=1

ak

)2
√√√√ n∑

k=1

b2
k −

α

n

(
n∑

k=1

bk

)2


2

≤
n∑

k=1

a2
k

n∑
k=1

b2
k.

The equality holds in (3.7) when bk = λak ( where λ is a constant).

For other refinements of the Cauchy-Schwarz inequality we refer the reader to
[1] and [10].

3.1.3. Sub-case 3. It may be interesting to add that if 1
p + 1

s = −1 for p, s ∈ R\{0},
then (3.1) is reduced to

(3.8)

(
n∑

k=1

akbk

)2

≤

 n∑
k=1

a2
k +

p(p + 2)
n

(
n∑

k=1

ak

)2


×

 n∑
k=1

b2
k +

s(s + 2)
n

(
n∑

k=1

bk

)2
 ,

where p = s = −2 gives the Cauchy-Schwarz inequality.
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3.2. Case r = 0, s = −1 and p, q ∈ R in (2.1). In this case B1 = C1 = A3 =
B3 = 0 and the inequality (2.1) is reduced to:

(3.9)

[
n∑

k=1

akbk −
1
n

n∑
k=1

ak

n∑
k=1

bk

]2

≤

 n∑
k=1

b2
k −

1
n

(
n∑

k=1

bk

)2


×

 n∑
k=1

a2
k −

1
n

(
n∑

k=1

ak

)2

+
1
n

(
n∑

k=1

(p + 1)ak + qbk

)2
 .

However, since

(3.10)
n∑

k=1

a2
k −

1
n

(
n∑

k=1

ak

)2

≥ 0,

the best option for p, q in (3.9) is when p = −1 and q = 0. Furthermore, note that
the third mentioned case, i.e. p = −1, q = 0 and r, s ∈ R, gives the same result as
in (3.9).

3.3. Case p = s = −1 and q, r ∈ R in (2.1). In this case B1 = C1 = A2 = A3 = 0
and the inequality (2.1) is reduced to

(3.11)

[
n∑

k=1

akbk +
qr − 1

n

n∑
k=1

ak

n∑
k=1

bk

]2

≤

 n∑
k=1

a2
k −

1
n

(
n∑

k=1

ak

)2

+
q2

n

(
n∑

k=1

bk

)2


 n∑
k=1

b2
k −

1
n

(
n∑

k=1

bk

)2

+
r2

n

(
n∑

k=1

ak

)2
 .

An interesting case in (3.11) is when q = r = 1, i.e.

(3.12)

(
n∑

k=1

akbk

)2

≤

 n∑
k=1

a2
k +

1
n


(

n∑
k=1

bk

)2

−

(
n∑

k=1

ak

)2



 n∑
k=1

b2
k +

1
n


(

n∑
k=1

ak

)2

−

(
n∑

k=1

bk

)2

 .

4. A Generalization of the Cauchy-Bunyakovsky Inequality

In a similar manner, the integral version of the Cauchy-Schwarz inequality, which
is known in the literature as the Cauchy-Bunyakovsky inequality [2] and has the
form

(4.1)

(∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

f2(x)dx

∫ b

a

g2(x)dx,
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can also be generalized as follows.

Theorem 2. Let f, g : [a, b] → R be two integrable functions on [a, b] and p, q, r, s ∈
R. Then, the following inequality holds[∫ b

a

f(x)g(x)dx + A∗
1

∫ b

a

f(x)dx

∫ b

a

g(x)dx(4.2)

+ B∗
1

(∫ b

a

f(x)dx

)2

+C∗
1

(∫ b

a

g(x)dx

)2
2

≤

[∫ b

a

f2(x)dx + A∗
2

∫ b

a

f(x)dx

∫ b

a

g(x)dx

+ B∗
2

(∫ b

a

f(x)dx

)2

+ C∗
2

(∫ b

a

g(x)dx

)2


×

[∫ b

a

g2(x)dx + A∗
3

∫ b

a

f(x)dx

∫ b

a

g(x)dx

+ B∗
3

(∫ b

a

f(x)dx

)2

+ C∗
3

(∫ b

a

g(x)dx

)2
 ,

in which

M∗ =

 A∗
1 B∗

1 C∗
1

A∗
2 B∗

2 C∗
2

A∗
3 B∗

3 C∗
3

 =
1

b− a

 p + s + ps + qr r(1 + p) q(1 + s)
2q(1 + p) p(p + 2) q2

2r(1 + s) r2 s(s + 2)

 .

Moreover, the inequality (4.2) is equivalent to

(4.3)

[∫ b

a

f(x)g(x)dx +
p + s + ps + qr

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx

+
r(1 + p)
b− a

(∫ b

a

f(x)dx

)2

+
q(1 + s)
b− a

(∫ b

a

g(x)dx

)2
2

≤

[∫ b

a

f2(x)dx +
1

b− a

∫ b

a

(pf(x) + qg(x))dx

∫ b

a

((p + 2)f(x) + qg(x))dx

]

×

[∫ b

a

g2(x)dx +
1

b− a

∫ b

a

(rf(x) + sg(x))dx

∫ b

a

(rf(x) + (s + 2)g(x))dx

]
,

and is a generalization of the Cauchy-Bunyakovsky inequality for A∗
i = B∗

i = C∗
i =

0, i = 1, 2, 3. The equality holds if f(x) = g(x) and A∗
i = B∗

i = C∗
i for each

i = 1, 2, 3.
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Although the proof is similar to the proof of Theorem 1, by defining the positive
quadratic polynomial

(4.4) R(x; p, q, r, s) =
∫ b

a

[(
f(t) +

p

b− a

∫ b

a

f(x)dx +
q

b− a

∫ b

a

g(x)dx

)
x

+

(
g(t) +

r

b− a

∫ b

a

f(x)dx +
s

b− a

∫ b

a

g(x)dx

)]2

dt ≥ 0,

we should however note that the following relations are to be used in the proof:

(4.5)
∫ b

a

(
f(x) +

p

b− a

∫ b

a

f(x)dx +
q

b− a

∫ b

a

g(x)dx

)

×

(
g(x) +

r

b− a

∫ b

a

f(x)dx +
s

b− a

∫ b

a

g(x)dx

)
dx

=
∫ b

a

f(x)g(x)dx +
p + s + ps + qr

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx

+
r(1 + p)
b− a

(∫ b

a

f(x)dx

)2

+
q(1 + s)
b− a

(∫ b

a

g(x)dx

)2

,

and

∫ b

a

(
f(x) +

p

b− a

∫ b

a

f(x)dx +
q

b− a

∫ b

a

g(x)dx

)2

dx

=
∫ b

a

f2(x)dx +
2q(1 + p)

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx

+
p(p + 2)
b− a

(∫ b

a

f(x)dx

)2

+
q2

b− a

(∫ b

a

g(x)dx

)2

,

and

∫ b

a

(
g(x) +

r

b− a

∫ b

a

f(x)dx +
s

b− a

∫ b

a

g(x)dx

)2

dx

=
∫ b

a

g2(x)dx +
2r(1 + s)

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx

+
r2

b− a

(∫ b

a

f(x)dx

)2

+
s(s + 2)
b− a

(∫ b

a

g(x)dx

)2

,

respectively. Moreover, we note that all the mentioned sub-cases for inequality (2.1)
could similarly be considered for the continuous case (4.2).

For the sake of completeness, we can state, for instance, the following result:

Corollary 2 (A refinement of the Cauchy- Bunyakovsky inequality).
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Let f, g : [a, b] → R be two positive integrable functions on [a, b] and α ∈ [0, 1].
Then (∫ b

a

f(x)g(x)dx

)2

(4.6)

≤

(
α

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx +

√√√√∫ b

a

f2(x)dx− α

b− a

(∫ b

a

f(x)dx

)2

×

√√√√∫ b

a

g2(x)dx− α

b− a

(∫ b

a

g(x)dx

)2


2

≤
∫ b

a

f2(x)dx

∫ b

a

g2(x)dx.

5. A Unified Approach for the Classification of (2.1) and (4.2)

As we observed in the previous sections, there were respectively two special
matrices M and M∗ for inequalities (2.1) and (4.2) having 9 elements. Hence, each
sub-case of these two inequalities can be characterized by M or M∗ directly. For
instance, the discrete inequality

(5.1)

 n∑
k=1

akbk −
s + 2

n

n∑
k=1

ak

n∑
k=1

bk −
r

n

(
n∑

k=1

ak

)2
2

≤
n∑

k=1

a2
k

[
n∑

k=1

b2
k +

1
n

n∑
k=1

(rak + sbk)
n∑

k=1

(rak + (s + 2)bk)

]
,

which is a generalization of (1.1) for r = 0 and s = −2, has the characteristic matrix

(5.2) M(Ineq. (5.1)) =
1
n

 −s− 2 −r 0
0 0 0
2r(1 + s) r2 s(s + 2)

 ,

while the continuous inequality

(5.3)

∫ b

a

f(x)g(x)dx +
p

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx +
q

b− a

(∫ b

a

g(x)dx

)2
2

≤

[∫ b

a

f2(x)dx +
1

b− a

∫ b

a

(pf(x) + qg(x))dx

×
∫ b

a

((p + 2)f(x) + qg(x))dx

](∫ b

a

g2(x)dx

)
,

corresponds to the matrix

(5.4) M∗(Ineq. (5.3)) =
1

b− a

 p 0 q
2q(1 + p) p(p + 2) q2

0 0 0

 .
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Similarly, for inequalities (3.2), (3.9), (3.11) and (3.12) we have

M(Ineq. (3.2)) =
p(p + 2)

n

 1 0 0
0 1 0
0 0 1

 ,(5.5)

M(Ineq. (3.9)) =
1
n

 −1 0 0
2q(1 + p) p(p + 2) q2

0 0 −1

 ,

M(Ineq. (3.11)) =
1
n

 qr − 1 0 0
0 −1 q2

0 r2 −1

 ,

M(Ineq. (3.12)) =
1
n

 0 0 0
0 −1 1
0 1 −1

 .

Finally we mention that the usual Cauchy-Schwarz and Cauchy-Bunyakovsky in-
equalities correspond to respectively M = 0 and M∗ = 0, which can be obtained
for p = q = r = s = 0.
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