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GENERALIZATIONS OF AN INTEGRAL INEQUALITY

QUÓ̂C ANH NGÔ AND FENG QI

Abstract. In this short paper, an integral inequality posed in the 11th Inter-

national Mathematical Competition for University Students, Skopje, Macedo-
nia, 25–26 July 2004 is generalized.

1. introduction

The Problem 2 of the 11th International Mathematical Competition for Univer-
sity Students, Skopje, Macedonia, 25–26 July 2004 (see [1]) reads as follows.

Proposition 1 ([1]). Let f, g : [a, b]→ [0,∞) be two continuous and non-decreasing
functions such that ∫ x

a

√
f(t) dt ≤

∫ x

a

√
g(t) dt (1)

for x ∈ [a, b] and ∫ b

a

√
f(t) dt =

∫ b

a

√
g(t) dt. (2)

Then ∫ b

a

√
1 + f(t) dt ≥

∫ b

a

√
1 + g(t) dt. (3)

It is clear that, considering (2), inequality (1) can be rewritten as∫ b

x

√
f(t) dt ≥

∫ b

x

√
g(t) dt. (4)

If replacing f(x) by
√
f(x) and g(x) by

√
g(x) , then Proposition 1 can be

simplified into the following Proposition 2.

Proposition 2. Let f, g : [a, b] → [0,∞) be two continuous and non-decreasing
functions such that ∫ b

x

f(t) dt ≥
∫ b

x

g(t) dt (5)

for x ∈ [a, b] and ∫ b

a

f(t) dt =
∫ b

a

g(t) dt. (6)
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Then ∫ b

a

√
1 + f2(t) dt ≥

∫ b

a

√
1 + g2(t) dt. (7)

If denoting

F (x) =
∫ x

a

f(t) dt and G(x) =
∫ x

a

g(t) dt, (8)

then F (x) ≤ G(x) for x ∈ [a, b] and G(x) is a convex function on [a, b]. On
the other hand, since F (a) = G(a) and F (b) = G(b), then inequality (7) is valid
apparently, because the length of the curve y = F (x) is not less than that of the
curve y = G(x). This explains the geometric meaning of Proposition 2 and gives a
solution to Proposition 1.

The main aim of this paper is to generalize Proposition 1 and Proposition 2
above.

Our main results are included in a couple of theorems below.

Theorem 1. Let f : [a, b]→ [0,∞) be a continuous function and g : [a, b]→ [0,∞)
a continuous and non-decreasing function satisfying (5) and (6). Then∫ b

a

h(f(t)) dt ≥
∫ b

a

h(g(t)) dt (9)

validates for every convex function h on [0,∞).

Theorem 2. Let f : [a, b]→ [0,∞) be a continuous function and g : [a, b]→ [0,∞)
a continuous and non-increasing function satisfying (6) and the reverse of (5).
Then inequality (9) holds true for every convex function h on [0,∞).

Remark 1. It is easy to see that the function
√

1 + x2 is convex on [a, b]. Hence,
inequality (7) can be deduced easily from (9).

2. Proofs of Theorem 1 and Theorem 2

In order to prove our theorems, the well known second mean value theorem for
integrals will be availble.

Lemma 1 ([2, p. 35]). Let f(x) be bounded and monotonic and g(x) integrable on
[a, b]. Then there exists some ξ ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(a)
∫ ξ

a

g(x) dx+ f(b)
∫ b

ξ

g(x) dx. (10)

Proof of Theorem 1. Denote

φ(x) = −
∫ b

x

f(t) dt and ϕ(x) = −
∫ b

x

g(t) dt. (11)

Since h is convex, then
h(t) ≥ h(s) + (t− s)h′(s)

for a ≤ s, t ≤ b, therefore,

h(φ′(t)) ≥ h(ϕ′(t)) + [φ′(t)− ϕ′(t)]h′(ϕ′(t)) (12)

which gives∫ b

a

h(φ′(t)) dt ≥
∫ b

a

h(ϕ′(t)) dt+
∫ b

a

[φ′(t)− ϕ′(t)]h′(ϕ′(t)) dt. (13)
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Now it is sufficient to prove that∫ b

a

[φ′(t)− ϕ′(t)]h′(ϕ′(t)) dt ≥ 0. (14)

Since h(t) is convex, the function h′(t) is non-decreasing; Since g(t) is non-decreasing,
the function ϕ′(t) is also non-decreasing. Thus, the composite function h′(ϕ′(t)) is
non-decreasing with respect to t. Using Lemma 1 yields∫ b

a

[φ′(t)− ϕ′(t)]h′(ϕ′(t)) dt

= h′(ϕ′(a))
∫ ξ

a

[φ′(t)− ϕ′(t)] dt+ h′(ϕ′(b))
∫ b

ξ

[φ′(t)− ϕ′(t)] dt

= h′(g(a))[φ(ξ)− φ(a)− ϕ(ξ) + ϕ(a)] + h′(g(b))[φ(b)− φ(ξ)− ϕ(b) + ϕ(ξ)]

= [φ(ξ)− ϕ(ξ)][h′(g(a))− h′(g(b))]
≥ 0,

where ξ ∈ [a, b], since φ(ξ) ≤ ϕ(ξ) and h′(g(a)) ≤ h′(g(b)). The proof of Theorem 1
is complete. �

Proof of Theorem 2. Denote

ψ(x) =
∫ x

a

f(t) dt and θ(x) =
∫ x

a

g(t) dt (15)

for a ≤ x ≤ b. Along with the proof of Theorem 1, it is obtained that, in order to
show Theorem 2, it suffices to prove∫ b

a

[ψ′(t)− θ′(t)][−h′(θ′(t))] dt ≤ 0. (16)

Since h is convex, then −h′ is non-increasing; Since g is non-increasing, then θ′

is also non-increasing. Consequently, the composite function −h′(θ′(t)) is non-
increasing with respect to t. Utilizing Lemma 1 leads to∫ b

a

[ψ′(t)− θ′(t)]h′(θ′(t)) dt

= h′(θ′(a))
∫ ξ

a

[ψ′(t)− θ′(t)] dt+ h′(θ′(b))
∫ b

ξ

[ψ′(t)− θ′(t)] dt

= [ψ(ξ)− θ(ξ)][h′(g(a))− h′(g(b))]
≥ 0,

where ξ ∈ [a, b], since ψ(ξ) ≥ θ(ξ) and h′(g(a)) ≥ h′(g(b). The proof of Theorem 2
is complete. �
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