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A LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTION INVOLVING THE GAMMA FUNCTION

MIAO-QING AN

Abstract. In this paper ,we present some logarithmically completely mono-

tonic functions . Furthermore ,we obtain a function similar to an open problem

given by FENG QI in 2004.

1. Introduction and Main resluts
A function f is said to be complete monotonic in an interval I if f has derivatives

of all orders in I which alternate successively in sign, that is

(−1)nf (n)(x) ≥ 0 (1)

for x ∈ I and n ≥ 0.If inequality (1) is strict for all x ∈ I and for all n ≥ 0,then f
is said to be strictly complete monotonic.

Completely monotonic functions have remarkable applications in different branches
. For instance ,they play a role in potential theory [5], probability theory [7, 9, 11]
, physics[8] , numerical and asymptotic analysis [10, 13], and combinatorics [3].
A detailed collection of the most important properties of completely monotonic
functions can be found in [12], and in an abstract in [6].

A function f is said to be logarithmically completely monotonic on an interval
I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (2)

for k ∈ N on I. If inequality (2) is strict for all x ∈ I and for all k ≥ 1, then f is
said to be strictly logarithmically completely monotonic. A (strictly) logarthmically
completely monotonic function is also (strictly) completely monotonic[4]. But not
conversely , since a convex function may not be logarithmically convex (see Remark.
1.16 at page 7 in [14]).

The classical gamma function

Γ(z) =
∫ ∞

0

tz−1e−t dt (Re z > 0) (3)

is one of the most important functions in analysis and its applications.The history
and development of this function are described in detail [1]. The psi or digamma
function ψ(x) = Γ′(x)

Γ(x) , the logarithmic derivative of the gamma function, and the
polygamma functions can be expressed[2] for x > 0 and k ∈ N as

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt, (4)

ψ(k)(x) = (−1)k+1

∫ ∞
0

tke−xt

1− e−t
dt, (5)

where γ = 0.57721566490153286 . . . is the Euler-Mascheroni constant.
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In [16] it is proved that the function [Γ(x+1)]
1
x

x (1 + 1
x )x is strictly logarthmically

completely monotonic on (0,∞).In this paper we establish a similar function and
give its logarithmically complete monotonicity.

Let a,b,c, and d be real numbers , and define function

F (x) =
[Γ(x+ 1)]

d
x

xc
(1 +

a

x
)x+b, x > 0 (6)

Theorem 1. The function f(x) = [Γ(x+1)]
d
x

xc is strictly logarithmically comletely
monotonic on (0,∞) where c ≥ 0 and d < 0.

Theorem 2. The function g(x) = (1 + a
x )x+b is strictly logarithmically comletely

monotonic on (0,∞) where a > 0.

Theorem 3. The function F (x) defined by (6) is strictly logarithmically comletely
monotonic on (0,∞) where a > 0, c ≥ 0, d < 0.

2. Proofs of Theorems
Proof of Theorem 1.

Considering f(x) ,taking logarithm and differentiation yields

(log f(x))
′

= dxψ(x+1)−log Γ(x+1)
x2 − c

x

= dψ(x+1)
x − d log Γ(x+1)

x2 − c
x

and

(log f(x))(n) =
dgn(x)
xn+1

+ (−1)n(n− 1)!
c

xn
(7)

where n ≥ 2, ψ(−1)(x+ 1) = log Γ(x+ 1), ψ(0)(x+ 1) = ψ(x+ 1), and

gn(x) =
n∑
k=0

(−1)(n−k)n!xkψ(k−1)(x+ 1)
k!

(8)

g
′

n(x) = xnψ(n)(x+ 1)

{
> 0, if n is odd,
< 0, if n is even.

(9)

Let h(x) = (−1)nxn+1(log f(x))(n), we have

h
′
(x) = (−1)ndxnψ(n)(x+ 1) + (−1)2nc(n− 1)! (10)

It is easy to know h
′
(x) > 0 where c ≥ 0 and d < 0. Thus the function

(−1)nxn+1[log f(x)](n) is increasing in (0,∞).Since

lim
x→0

{
(−1)nxn+1[log f(x)](n)

}
= 0 (11)

we have (−1)nxn+1[log f(x)](n) > 0 , then (−1)n[log f(x)](n) > 0 for n ≥ 2 in
(0,∞). Since [log f(x)]

′′
> 0, the function [log f(x)]

′
increases . It is easy to see

lim
x→∞

[log f(x)]
′
= 0 (12)

so [log f(x)]
′
< 0 and log f(x) is decreasing in (0,∞). The Proof of Theorem 1 is

complete.
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Proof of Theorem 2.

Taking the logarithm of g(x) and differentiating yields

log g(x) = (x+ b)(log(x+ a)− log x) (13)

[log g(x)]
′
= log(x+ a)− log x+

b− a
x+ a

− b

x
(14)

and for n ≥ 2,

[log g(x)](n) = (−1)n−2 (n− 2)!
(x+ a)n−1

+ (−1)n−1 (n− 1)!
xn−1

(−1)n−1 (b− a)(n− 1)!
xn

+ (−1)n
b(n− 1)!

xn

It is also known that (see[15],p.884])

1
xn

=
1

Γ(n)

∫ ∞
0

tn−1e−xtdt, (n ∈ N;x ∈ R+). (15)

Hence,

(−1)n[log f(x)](n) =
∫ ∞

0

tn−2e−(x+a)tdt−
∫ ∞

0

tn−2e−xtd

−(b− a)
∫ ∞

0

tn−1e−xtdt+ b

∫ ∞
0

tn−1e−xtdt

=
∫ ∞

0

[1− eat − (b− a)teat + bteat]tn−2e−(x+a)tdt

,
∫ ∞

0

φ(t)tn−2e−(x+a)tdt

φ(0) = 0

φ
′
(t) = a2teat

So we have φ
′
(t) > 0 for a > 0 . Then we obtain that φ(t) is strictly increasing

in (0,∞). As a result of φ(0) = 0 , we obtain φ(t) > 0 in (0,∞). This means
that (−1)n(log g(x))(n) > 0 for n ≥ 2 in (0,∞). Since [log g(x)]

′′
> 0, the function

[log g(x)]
′
is increasing .

It is not difficult to know that

lim
x→∞

[log g(x)]
′
= 0, (16)

so [log g(x)]
′
< 0 and log g(x) is decreasing in (0,∞). In conclusion, the function

log g(x) is strictly completely monotonic in (0,∞). The Proof of Theorem 2 is
complete.

Proof of Theorem 3.



4 MIAO-QING AN

It is easy to know that the product of (strictly) logarithmically completely mono-
tonic functions is also (strictly) logarithmically completely monotonic functions.
Write

F (x) = f(x)g(x). (17)
Clearly, the function F (x) is strictly logarithmically completely monotonic on

(0,∞). The Proof of Theorem 3 is complete.
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[14] J.pečarić,F.Proschan,and Y.L.Tong,Convex Functions,Partial Orderings,and Statistical Ap-

plications,Mathematics in Science and Engineering 187,Academic Press,1992.
[15] I.S.Gradshteyn,I.M.Ryzhik,Table of Integrals,Series, and Products,6th edition,Academic

Press,New York,2000.
[16] F. Qi ,Bai-ni Guo and Ch-P. Chen, some completely monotonic functions involving the

gamma and polygamma functions, RGMIA Research Report Collection. 7(2004), no. 1, Art.

5.

(miao-qing an) College of Mathematics and Informatics, Henan Polytechnic Univer-
sity, Jiaozuo City, Henan 454003, China

E-mail address: anxv1013@126.com, anxv1013@163.com

mailto: miao-qing an <anxv1013@126.com>
mailto:miao-qing an <anxv1013@163.com>

	References

