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THE COMPOSITE THEOREM OF TERNARY QUADRATIC
INEQUALITIES AND ITS APPLICATIONS

JIAN LIU

Abstract. In this paper, we establish the composite theorem of ternary quadratic in-
equalities by using the Decision Theorem and Hölder inequality. Its applications in triangle
inequalities are discussed, and serval problems and conjectures are put forward.

1. Introduction and preliminaries

For all real numbers x, y, z the following inequality holds

(1.1) x2 + y2 + z2 ≥ yz + zx + xy,

This is the simplest ternary quadratic inequality.
Another well-known ternary quadratic inequality which generalizes inequality (1.1) is the

Wolstenholme inequality

(1.2) x2 + y2 + z2 ≥ 2yz cos A + zx cos B + xy cos C,

where A, B, C are angles of triangle ABC. Equality holds if and only if x : y : z = sin A :
sin B : sin C.

The above inequality (1.2) first appeared in 1867 in Wolstenholme’s book [1], many triangle
inequalities can be deduced from it and its equivalent form.(see, e.g. [2]-[7]).

The form of general ternary quadratic inequalities is

(1.3) p1x
2 + p2y

2 + p3z
2 ≥ q1yz + q2zx + q3xy,

where p1, p2, p3, q1, q2, q3 are real coefficients.
Taking into account the condition of which inequality (1.3) holds for any real numbers

x, y, z, we have the following conclusion

Theorem 1. (The Decision Theorem) The inequality (1.3) holds for all real numbers x, y, z
if and only if p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, 4p2p3 − q2

1 ≥ 0, 4p3p1 − q2
2 ≥ 0, 4p1p2 − q2

3 ≥ 0, and

(1.4) M ≡ 4p1p2p3 − (q1q2q3 + p1q
2
1 + p2q

2
2 + p3q

2
3) ≥ 0.

Clearly, the above Decision Theorem is very important for ternary quadratic inequalities.
In fact, we have already known that the necessary and sufficient conditions of general positive
semi-definite quadratic form with n variables are given in Linear Algebra, inequality (1.3)
is only the simple special case of it. Certainly, the Decision Theorem can also be proved by
using elementary methods ([8]), and its applications see [8]-[12]. It will be used to prove the
main result of this paper in the sequel.

Remark 1 We can prove the following conclusion for the equality condition of inequality
(1.3):

Assume p1 > 0, p2 > 0, p3 > 0. Then
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(i)if M ≥ 0 and two of 4p2p3 − q2
1 = 0, 4p3p1 − q2

2 = 0, 4p1p2 − q2
3 = 0 hold, then the other

holds too, and equality in (1.3) occurs if and only if 2p1x = q3y + q2z.
(ii)if M ≥ 0, 4p3p1 − q2

2 = 0, 4p2p3 − q2
1 > 0, 4p1p2 − q2

3 > 0, then equality in (1.3) occurs
if and only if y = 0, 2p1x = q2z.

(iii)if M ≥ 0, 4p2p3 − q2
1 > 0, 4p3p1 − q2

2 > 0, 4p1p2 − q2
3 > 0, then equality in (1.3) occurs

if and only if(2p1q1 + q2q3)x = (2p2q2 + q3q1)y = (2p3q3 + q1q2)z.
(iv)if M ≥ 0, q1 > 0, q2 > 0, q3 > 0, 4p2p3 − q2

1 > 0, 4p3p1 − q2
2 > 0, 4p1p2 − q2

3 > 0, then

equality in (1.3) occurs if and only if M = 0, x : y : z =
√

4p2p3 − q2
1 :

√
4p3p1 − q2

2 :√
4p1p2 − q2

3.
In 1996, the author ([8]) established the Decline Exponent Theorem of the ternary qua-

dratic inequality:

Theorem 2. (The Decline Exponent Theorem) Let p1, p2, p3, q1, q2, q3and m be positive real
numbers. If the following inequality holds for all real numbers x, y, z:

(1.5) pm
1 x2 + pm

2 y2 + pm
3 z2 ≥ qm

1 yz + qm
2 zx + qm

3 xy.

Then

(1.6) pk
1x

2 + pk
2y

2 + pk
3z

2 ≥ qk
1yz + qk

2zx + qk
3xy,

where k ≤ m.

If coefficients p1, p2, p3, q1, q2, q3 satisfy p2p3 ≥ q2
1, p3p1 ≥ q2

2, p1p2 ≥ q2
3, then using inequal-

ity (1.1) we know (1.5) holds for all positive exponent m, and inequality (1.5) is trivial in
this case.

If the ternary quadratic inequality (1.5) is nontrivial, the Decline Exponent Theorem
naturally suggest the question: Find the maximum exponent k such that inequality (1.6)
holds for all real numbers x, y, z. It is usually very difficult to solve this kind of problems in
many specific cases(see e.g., the problem 1–3 in the section 4 below). The Decline Exponent
Theorem seems remarkable.

The main aim of this paper is to establish the Composite Theorem of ternary quadratic
inequalities, we will see the Decline Exponent Theorem is actually a simple consequence
of the Composite Theorem. Moreover, the Composite Theorem has many applications in
triangle inequalities.

2. The composite theorem and its proof

The Composite Theorem of ternary quadratic inequalities can be stated the following:

Theorem 3. (The Composite Theorem) Let α1, β1, γ1, λ1, µ1, ν1, α2, β2, γ2, λ2, µ2, ν2 be pos-
itive numbers. If the following inequalities

(2.1) α1x
2 + β1y

2 + γ1z
2 ≥ λ1yz + µ1zx + ν1xy

and

(2.2) α2x
2 + β2y

2 + γ2z
2 ≥ λ2yz + µ2zx + ν2xy

hold for all real numbers x, y, z. Then holds

(2.3) αk1
1 αk2

2 x2 + βk1
1 βk2

2 y2 + γk1
1 γk2

2 z2 ≥ λk1
1 λk2

2 yz + µk1
1 µk2

2 zx + νk1
1 νk2

2 xy,

where k1, k2 are positive numbers and k1 + k2 = 1.
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Proof. Since inequality (2.1) is valid, according to Theorem 1( the Decision Theorem ) we
have

(2.4) α1λ
2
1 + β1µ

2
1 + γ1ν

2
1 + λ1µ1ν1 ≤ 4α1β1γ1,

and

(2.5) 4β1γ1 ≥ λ2
1,

etc.
Similarly, from inequality (2.2) we get

(2.6) α2λ
2
2 + β2µ

2
2 + γ2ν

2
2 + λ2µ2ν2 ≤ 4α2β2γ2,

and

(2.7) 4β2γ2 ≥ λ2
2,

etc.
Note that 0 < k1 < 1, 0 < k2 < 1, from (2.5) and (2.7) we have

(4β1γ1)
k1 ≥ λ2k1

1 , (4β2γ2)
k2 ≥ λ2k2

2 .

Multiplying these two inequalities and using k1 + k2 = 1, it follows that

(2.8) 4(β1γ1)
k1(β2γ2)

k2 ≥
(
λk1

1 λk2
2

)2
.

Similarly, we obtain 4(γ1α1)
k1(γ2α2)

k2 ≥
(
µk1

1 µk2
2

)2
, 4(α1β1)

k1(α2β2)
k2 ≥

(
νk1

1 νk2
2

)2
.

By Theorem 1 again, in order to prove inequality (2.3), it remains to prove that

αk1
1 αk2

2 (λk1
1 λk2

2 )2 + βk1
2 βk2

2 (µk1
1 µk2

2 )2 + γk1
1 γk2

2 (νk1
1 νk2

2 )2 + (λ1µ1ν1)
k1(λ2µ2ν2)

k2

≤ 4(α1β1γ1)
k1(α2β2γ2)

k2 ,

namely

(α1λ
2
1)

k1(α2λ
2
2)

k2 + (β1µ
2
1)

k1(β2µ
2
2)

k2 + (γ1ν
2
1)

k1(γ2ν
2
2)

k2 + (λ1µ1ν1)
k1(λ2µ2ν2)

k2

≤ 4(α1β1γ1)
k1(α2β2γ2)

k2 .(2.9)

In view of (2.4) and (2.6), applying the Hölder inequality we have

(α1λ
2
1)

k1(α2λ
2
2)

k2 + (β1µ
2
1)

k1(β2µ
2
2)

k2 + (γ1ν
2
1)

k1(γ2ν
2
2)

k2 + (λ1µ1ν1)
k1(λ2µ2ν2)

k2

≤ (α1λ
2
1 + β1µ

2
1 + γ1ν

2
1 + λ1µ1ν1)

k1(α2λ
2
2 + β2µ

2
2 + γ2ν

2
2 + λ2µ2ν2)

k2

≤ (4α1β1γ1)
k1(4α2β2γ2)

k2

= 4k1+k2(α1β1γ1)
k1(α2β2γ2)

k2

= 4(α1β1γ1)
k1(α2β2γ2)

k2 .

Hence, the claimed inequality follows. This completes the proof of the Theorem 3. �

Since inequality (1.1) is valid, we can take α2 = β2 = γ2 = λ2 = µ2 = ν2 = 1 in the
Composite Theorem, then inequality (2.3) becomes

(2.10) αk1
1 x2 + βk1

1 y2 + γk1
1 z2 ≥ λk1

1 yz + µk1
1 zx + νk1

1 xy,

where 0 < k1 < 1. Replacing k1 by t, we get the following conclusion:

Corollary 1. Let α1, β1, γ1, λ1, µ1, ν1 be positive numbers, If the inequality

(2.11) α1x
2 + β1y

2 + γ1z
2 ≥ λ1yz + µ1zx + ν1xy

holds for all real numbers x, y, z. Then

(2.12) αt
1x

2 + βt
1y

2 + γt
1z

2 ≥ λt
1yz + µt

1zx + νt
1xy,
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where 0 < t ≤ 1.

Remark 2 In fact, we easily know that the above corollary is equivalent to the Decline
Exponent Theorem.

Obviously, from the Composite Theorem we have

Corollary 2. Let α1, β1, γ1, λ1, µ1, ν1 be positive numbers, If inequality (2.1) and (2.2) hold
for all real numbers x, y, z. Then the inequality

(2.13)
√

α1α2x
2 +

√
β1β2y

2 +
√

γ1γ2z
2 ≥

√
λ1λ2yz +

√
µ1µ2zx +

√
ν1ν2xy

holds for all real numbers x, y, z.

In particular, we have

Corollary 3. Let α1, β1, γ1, λ1, µ1, ν1 be positive numbers. If the inequality (2.1) and (2.2)
hold for all real numbers x, y, z. Then

(2.14)
√

α1α2 +
√

β1β2 +
√

γ1γ2 ≥
√

λ1λ2 +
√

µ1µ2 +
√

ν1ν2.

Now, we state the more general Composite Theorem of ternary quadratic form inequality.

Theorem 4. (The General Composite Theorem) Let αi, βi, γi, λi, µi, νi(i = 1, 2, . . . , n), and
k be positive numbers. If the ternary quadratic form inequalities

(2.15) x2αk
i + y2βk

i + z2γk
i ≥ yzλk

i + zxµk
i + xyνk

i

(i = 1, 2, . . . , n) hold for all real numbers. Then the following inequality holds:

(2.16) x2

n∏
i=1

αki
i + y2

n∏
i=1

βki
i + z2

n∏
i=1

γki
i ≥ yz

n∏
i=1

λki
i + zx

n∏
i=1

µki
i + xy

n∏
i=1

νki
i ,

where ki(i = 1, 2, . . . ) are positive numbers and
∑n

i=1 ki ≤ k.

Proof. Firstly, using the method to prove Theorem 3 we easily get the following more general
conclusion:

Let ki(i = 1, 2, . . . , n) and k be positive numbers such that
∑n

i=1 ki = 1. If the inequality

(2.17) x2αi + y2βi + z2γi ≥ yzλi + zxµi + xyνi

(i = 1, 2, . . . , n) hold for all real numbers x, y, z. Then inequality (2.16) holds.
In this conclusion, taking the substitutions: αi → αk

i , βi → βk
i , γi → γk

i , λi → λk
i , µi →

µk, νi → νk
i , ki →

ki

m
(m > 0, i = 1, 2, . . . , n), we get again the equivalent conclusion:

Let ki(i = 1, 2, . . . , n) and k be positive numbers such that
∑n

i=1 ki = m. If inequality
(21) holds for all real numbers x, y, z. Then the inequality

(2.18) x2

n∏
i=1

α
kki
m

i + y2

n∏
i=1

β
kki
m

i + z2

n∏
i=1

γ
kki
m

i ≥ yz
n∏

i=1

λ
kki
m

i + zx
n∏

i=1

µ
kki
m

i + xy
n∏

i=1

ν
kki
m

i

holds for all real numbers x, y, z.
According to inequality (2.18) and Theorem 2(Decline Exponent Theorem), we have

x2

n∏
i=1

(
α

kki
m

i

)m
k

+ y2

n∏
i=1

(
β

kki
m

i

)m
k

+ z2

n∏
i=1

(
γ

kki
m

i

)m
k

≥ yz

n∏
i=1

(
λ

kki
m

i

)m
k

+ zx
n∏

i=1

(
µ

kki
m

i

)m
k

+ xy
n∏

i=1

(
ν

kki
m

i

)m
k

,
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where m
k
≤ 1. Thus inequality (2.16) follows from the above one. Therefore, when inequalities

(21) hold and
∑n

i=1 ki = m ≤ k, we have the inequality (2.16). This completes the Theorem
4. �

3. Applications of the Composite Theorem

The Composite Theorem of ternary quadratic form inequalities has many applications in
triangle inequalities, but it must be combined with ternary quadratic form inequalities for
triangle inequalities which is proved. We shall give some examples.

In what follows, as usual, let a, b, c be the sides BC, CA, AB of triangle ABC and let
s be its semi-perimeter, wa, wb, wc denote the internal angle-bisectors, ha, hb, hc denote the
altitudes, ma, mb, mc denote the medians. In addition, suppose P is an arbitrary interior
point of ABC, that its distances from the vertices A, B, C are R1, R2, R3 respectively, that
its distances from the sides BC, CA, AB are r1, r2, r3 respectively.

3.1 Generalizing the well known inequalities
The Composite Theorem tell us, if there is a ternary quadratic form inequality whose type

as (1.3) and its coefficients are positive, then we can easily get its generalization. We start
with the following result

(3.1) x2 cos2 A

2
+ y2 cos2 B

2
+ z2 cos2 C

2
≥ yz sin2 A + zx sin2 B + xy sin2 C,

which is proved by the author in [8].
According to the Composite Theorem and inequality (3.1), we obtain the generalization

for the case of n triangles:

Proposition 1. For 4AiBiCi(i = 1, 2, . . . , n) and all real numbers x, y, z the following
inequality holds

x2

n∏
i=1

coski
Ai

2
+ y2

n∏
i=1

coski
Bi

2
+ z2

n∏
i=1

coski
Ci

2

≥ yz

n∏
i=1

sinki Ai + zx

n∏
i=1

sinki Bi + xy

n∏
i=1

sinki Ci,(3.2)

where k1, k2, . . . , kn are positive numbers and
∑n

i=1 ki = 2.

In particular, we have the beautiful inequality for two triangles

x2 cos
A1

2
cos

A2

2
+ y2 cos2 B1

2
cos

B2

2
+ z2 cos

C1

2
cos

C2

2
≥ yz sin A1 sin A2 + zx sin B1 sin B2 + xy sin C1 sin C2.(3.3)

As is known to all, the classical Erdös-Mordell inequality

(3.4) R1 + R2 + R3 ≥ 2(r1 + r2 + r3)

can be generalized to the ternary quadratic form (see [2]):

(3.5) R1x
2 + R2y

2 + R3z
2 ≥ 2(r1yz + r2zx + r3xy).

Applying the Composite Theorem 3 to the inequality (3.5), we get the following general-
ization of (3.5):

Proposition 2. Let Pi(i = 1, 2, . . . , n) are arbitrary interior points of4ABC whose distance
are the distances it Ri1, Ri2, Ri3(i = 1, 2, . . . , n) from the vertices A, B, C and ri1, ri2, ri3(i =
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1, 2, . . . , n) from the sides BC, CA, AB, respectively. If positive numbers ki(i = 1, 2, . . . , n)
satisfy

∑n
i=1 ki = 1, then the following inequality holds for any real numbers x, y, z

(3.6) x2

n∏
i=1

Rki
i1 + y2

n∏
i=1

Rki
i2 + z2

n∏
i=1

Rki
i3 ≥ 2yz

n∏
i=1

rki
i1 + 2zx

n∏
i=1

rki
i2 + 2xy

n∏
i=1

rki
i3 ,

with equality if and only if Pi(i = 1, 2, . . . , n) coincide with the circumcenter of triangle ABC
and x : y : z = sin A : sin B : sin C.

For x = y = z = 1, inequality (3.6) becomes

(3.7)
n∏

i=1

Rki
i1 +

n∏
i=1

Rki
i2 +

n∏
i=1

Rki
i3 ≥ 2

n∏
i=1

rki
i1 + 2

n∏
i=1

rki
i2 + 2

n∏
i=1

rki
i3 .

This result has been proved by M.S.Kalmkin (see [2,P315]). In deed, by the Composite
Theorem we can generalize further inequality (3.6) to the case for n-triangle. By the way,
the author generalized (3.4) to the case of m-polygon and n-point via the Hölder inequality
(see [13]).

Remark 3 The references [2,P318] only pointed out that inequality (3.5) holds for positive
real numbers x, y, z. In fact, if inequality (1.3) holds for any positive real numbers x, y, z
when coefficients p1, p2, p3, q1, q2, q3 are all positive, then we easily show that it is valid for
all real numbers x, y, z. Hence, from the proof of the positive case, we know inequality (3.5)
holds for any real numbers x, y, z actually.

In recent paper [14]-[15], we proved the ternary quadratic Erdös-Mordell type inequality

(3.8)
s− a

rk
1

x2 +
s− b

rk
2

y2 +
s− c

rk
3

z2 ≥ 2k

(
yz

s− a

Rk
1

+ zx
s− b

Rk
2

+ yz
s− a

Rk
3

)
,

where k = 1, 2, 3, 4.
By the Composite Theorem 4, we also easily give the generalization of (3.8). Since in-

equality (3.8) is true, according to Theorem 4 we can take

αi =
(s− a)

1
k

ri1

, βi =
(s− b)

1
k

ri2

, γi =
(s− c)

1
k

ri3

, λi =
2(s− a)

1
k

Ri1

, µi =
2(s− b)

1
k

Ri2

, νi =
2(s− c)

1
k

Ri3

,

where i = 1, 2, . . . , n. and k = 1, 2, 3, 4. Note that

n∏
i=1

[
(s− a)

1
k

ri1

]ki

=
(s− a)k0

n∏
i=1

rki
i1

,

n∏
i=1

[
2(s− a)

1
k

Ri1

]ki

=
2kt(s− a)k0

n∏
i=1

Rki
i1

,

where k0 = 1
k

∑n
i=1 ki. Since inequality (3.8) is valid, it follows from Theorem 4 that

(3.9)
(s− a)k0

n∏
i=1

rki
i1

x2 +
(s− b)k0

n∏
i=1

rki
i2

+
(s− c)k0

n∏
i=1

rki
i3

≥ 2kk0yz(s− a)k0

n∏
i=1

Rki
i1

+
2kk0zx(s− b)k0

n∏
i=1

Rki
i2

+
2kk0xy(s− c)k0

n∏
i=1

Rki
i3

,

where i = 1, 2, . . . , n and k = 1, 2, 3, 4. Note that Since
∑n

i=1 ki = k(k = 1, 2, 3, 4), hence
k0 = 1, then we obtain
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Proposition 3. Let Ri1, Ri2, Ri3, ri1, ri2, ri3 be as in Proposition 2. Then the following in-
equality holds for any real numbers x, y, z

(3.10)
s− a
n∏

i=1

rki
i1

x2 +
s− b
n∏

i=1

rki
i2

y2 +
s− c
n∏

i=1

rki
i3

z2 ≥ 2kyz(s− a)
n∏

i=1

Rki
i1

+
2kzx(s− b)

n∏
i=1

Rki
i2

+
2kxy(s− c)

n∏
i=1

Rki
i3

,

where k1, k2, . . . , kn be positive numbers and
∑n

i=1 ki = k(k = 1, 2, 3, 4).

Remark 4 The author conjectured that inequality (3.8) holds for 0 < k < 4 in [15], if
this is true, then we know inequality (3.10) holds for

∑n
i=1 ki ≤ 4.

3.2 Deducing new inequalities
If we apply the Composite Theorem or its corollary 3.3 to the two ternary quadratic form

inequalities which are proved, then one often get some new results of triangle inequality.
We begin with the Wolstenholme inequality (2). Using the substitutions A → π−A

2
, B →

π−B
2

, C → π−C
2

, we obtain from (2)

(3.11) x2 + y2 + z2 ≥ 2yz sin
A

2
+ 2zx sin

B

2
+ 2xy sin

C

2
.

Again, we easy see that the following simple inequality holds:

(3.12) (v + w)x2 + (w + u)y2 + (u + v)z2 ≥ 2(yzu + zxv + xyw),

where u, v, w are positive numbers.
Applying Corollary 3.1 to (3.11) and (3.12), we get

Proposition 4. Let u, v, w be positive numbers and x, y, zbe real numbers. Then the following
inequality holds for every 4ABC:

x2
√

v + w + y2
√

w + u + z2
√

u + v

≥ 2yz

√
u sin

A

2
+ 2zx

√
v sin

B

2
+ 2xy

√
w sin

C

2
.(3.13)

For x = y = z = 1, we have

√
v + w +

√
w + u +

√
u + v ≥ 2

√
u sin

A

2
+ 2

√
v sin

B

2
+ 2

√
w sin

C

2
,(3.14)

it seems difficult to prove this inequality directly.
Remark 5 The inequality (3.13) was posed as a conjecture by the author in [16], it was

recently proved by Yu-Dong Wu in [12].
Replacing 4ABC with 4A′B′C ′ in (3.1) we have

(3.15) x2 cos2 A′

2
+ y2 cos2 B′

2
+ z2 cos2 C ′

2
≥ yz sin2 A′ + zx sin2 B′ + xy sin2 C ′,

since again we have the proved inequality (see [17]):
(3.16)

x2 cos2 B

2
cos2 C

2
+ y2 cos2 C

2
cos2 A

2
≥ yz sin2 B sin2 C + zx sin2 C sin2 A + xy sin2 A sin2 B.

So, by Corollary 3.3 we get the following interesting inequality for two triangles:

Proposition 5. For any two triangles the following inequality holds:

cos
B

2
cos

C

2
cos

A′

2
+ cos

C

2
cos

A

2
cos

B′

2
+ cos

A

2
cos

B

2
cos

C ′

2
≥ sin B sin C sin A′ + sin C sin A sin B′ + sin A sin B sin C ′.(3.17)
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Many years ago, the author established the ternary quadratic form inequality of an acute
triangle (see [18])

(3.18) x2 + y2 + z2 ≥ 4(yz cos B cos C + zx cos C cos A + xy cos A cos B),

this is equivalent to

(3.19)
x2

cos2 A
+

y2

cos2 B
+

z2

cos2 C
≥ 4(yz + zx + xy).

Later, the author given again the generalization of (3.19) in [19]:

(3.20)
x2

cos2 A
+

y2

cos2 B
+

z2

cos2 C
≥ 4

(
yz

sin2 A′

sin2 A
+ zx

sin2 B′

sin2 B
+ xy

sin2 C ′

sin2 C

)
,

in which 4ABC is acute triangle.
Applying Corollary 3.3 to (3.19) and (3.20) we get the following three-triangle inequality

immediately:

Proposition 6. Let ABC and A0B0C0 be two acute triangles and let A′B′C ′ be an arbitrary
triangle, then

(3.21)
1

cos A cos A0

+
1

cos B cos B0

+
1

cos C cos C0

≥ 4

(
sin A′

sin A
+

sin B′

sin B
+

sin C ′

sin C

)
.

In [20], we proved that

(3.22) a
R1

r1

x2 + b
R2

r2

y2 + c
R3

r3

z2 ≥ 2(yza + zxb + xyc).

with equality if and only if x : y : z = cos A : cos B : cos C and P coincide with the
orthocenter of 4ABC.

In addition, we know that (see [6])

(3.23)
R1

r1

x2 +
R2

r2

y2 +
R3

r3

z2 ≥ 2(yz + zx + xy).

Using the Composite Theorem 3 to (3.22) and (3.23), it follows that

x2

(
a
R1

r1

)k (
R1

r1

)1−k

+ y2

(
a
R2

r2

)k (
R2

r2

)1−k

y2 + z2

(
c
R3

r3

)k (
R3

r3

)1−k

≥ 2k · 21−k(yzak + zxbk + xyck),

thus we obtain the following exponent generalization of inequality (3.22):

Proposition 7. Let P be an interior point of 4ABC, then the following inequality holds
for real numbers x, y, z

(3.24) ak R1

r1

x2 + bk R2

r2

y2 + ck R3

r3

z2 ≥ 2
(
yzak + zxbk + xyck

)
.

where 0 < k ≤ 1

In [6]–[11] and [13]–[20], the author have given a number of quadratic form inequalities
for triangles. If we apply the Composite Theorem and its corollaries to these results, we will
get many new triangle inequalities.
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4. Several problems and conjectures

In this section, we will state some conjectures in relation to our results.
Firstly, we pose the following conjecture which is the popularization of the Composite

Theorem 3:

Conjecture 1. Let p1, . . . , pn, q1, . . . , qn, r1, . . . , rn, s1, . . . , sn be positive numbers. If the fol-
lowing n-ary quadratic form inequalities:

(4.1)
n∑

i=1

pix
2
i ≥

n∑
i=1

qixixi+1

and

(4.2)
n∑

i=1

rix
2
i ≥

n∑
i=1

sixixi+1

hold for all real numbers x1, . . . , xn(xn+1 = x1). Then holds

(4.3)
n∑

i=1

pk1
i rk2

i x2
i ≥

n∑
i=1

qk1
i sk2

i xixi+1,

where k1, k2 are positive numbers and k1 + k2 = 1.

Remark 6 By apply the Hölder inequality we easily prove the case p1 = · · · = pn, r1 =
· · · = rn of the above conjecture.

Using Cauchy inequality, we know the inequality

x2

sin2 A
+

y2

sin2 B
+

z2

sin2 C
≥ (x + y + z)2

sin2 A + sin2 B + sin2 C

holds for any triangle ABC and positive numbers x, y, z. Since (x+y+z)2 ≥ 3(yz+zx+xy)
and sin2 A + sin2 B + sin2 ≤ 9

4
, we get the quadratic form inequality:

(4.4)
x2

sin2 A
+

y2

sin2 B
+

z2

sin2 C
≥ 4

3
(yz + zx + xy).

By the description of remark 4, the above inequality holds for any real numbers x, y, z
actually. The inequality (4.4) and Theorem 2 lead us to put forward the following

Problem 1. Find the maximal k such that the ternary quadratic form inequality

(4.5)
x2

sink A
+

y2

sink B
+

z2

sink C
≥

(
2√
3

)k

(yz + zx + xy)

holds for any triangle ABC and real numbers x, y, z.

Remark 7 The author have proven the case k = 4 of the above problem by using Theorem
1, and find kmax ≈ 4.82 with the computer checking.

Recently, we proved the ternary quadratic inequality for the triangle ABC:

(4.6) x2a4 + y2b4 + z2c4 ≥ 16

9

(
yzw4

a + zxw4
b + xyw4

c

)
.

From this and The Decline Exponent Theorem, we have the unsolve problem:

Problem 2. Find the maximal k such that the ternary quadratic inequality

(4.7) x2ak + y2bk + z2ck ≥
(

2√
3

)k (
yzwk

a + zxwk
b + xywk

c

)
holds for any 4ABC and real numbers x, y, z.
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Note that wa ≥ ha, etc., it easily follows from (4.6):

(4.8)
x2

h4
a

+
y2

h4
b

+
z2

h4
c

≥ 16

9

(yz

a4
+

zx

b4
+

xy

c4

)
.

Again, we come up with the following:

Problem 3. Find the maximal k such that the ternary quadratic inequality

(4.9)
x2

hk
a

+
y2

hk
b

+
z2

hk
c

≥
(

2√
3

)k (yz

ak
+

zx

bk
+

xy

ck

)
holds for any 4ABC and real numbers x, y, z.

For x = y = z = 1, the inequality in Proposition 7 becomes

(4.10) ak R1

r1

+ bk R2

r2

+ ck R3

r3

≥ 2
(
ak + bk + ck

)
.

Here, we give a similar conjecture:

Conjecture 2. Let P be an arbitrary interior point of the triangle ABC, then

(4.11) mk
a

R1

r1

+ mk
b

R2

r2

+ mk
c

R3

r3

≥ 2
(
mk

a + mk
b + mk

c

)
,

where 0 < k ≤ 4.

Finally, we pose the following conjecture which is similar to inequality (3.22):

Conjecture 3. Let P be an arbitrary interior of the triangle ABC, then

(4.12) (lb + lc)
R1

r1

x2 + (lc + la)
R2

r2

y2 + (la + lb)
R3

r3

z2 ≥ 4(yzla + zxlb + xylc),

where la, lb, lc denote the altitudes or medians or internal angle-bisectors of the triangle ABC.
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