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GENERALISED TRAPEZOID TYPE INEQUALITIES FOR
VECTOR-VALUED FUNCTIONS AND APPLICATIONS

C. BUŞE, S.S. DRAGOMIR, J. ROUMELIOTIS, AND A. SOFO

Abstract. A generalisation of the trapezoid formula for vector-valued func-

tions and applications for operatorial inequalities and vector-valued integral
equations are given.

1. Introduction

Let X be a Banach space and −∞ < a < b < ∞. A function f : [a, b] → X is
called measurable if there exists a sequence of simple functions fn : [a, b] → X which
converges punctually almost everywhere on [a, b] at f . We recall that a measurable
function f : [a, b] → X is Bochner integrable if and only if its norm function
(i.e., the function t 7→ ‖f (t)‖ : [a, b] → R+) is Lebesgue integrable on [a, b] . The
Banach space X has the Radon-Nikodym’s property if every X−valued, absolutely
continuous function f defined on [a, b] is differentiable almost everywhere on [a, b].
For other details about the Radon-Nikodym spaces, see [2, pp. 217-219]. It is known
that if g : [a, b] → X (X being an arbitrary Banach space) is a Bochner integrable
function, then its primitive function (i.e., the function given by f (t) =

∫ t

a
g (s) ds,

t ∈ [a, b]) is differentiable almost everywhere and f ′ (t) = g (t) almost everywhere
on [a, b].

In this paper we point out a generalized trapezoid formula for vector-valued
functions and Bochner integral and apply it for operatorial inequalities in Banach
spaces and for approximating the solutions of certain integral equations. Some
numerical experiments are also provided.

2. Integral Inequalities

The following theorem holds.

Theorem 1. Let (X, ‖·‖) be a Banach space with the Radon-Nikodym property and
f : [a, b] → X be an absolutely continuous function on [a, b] with the property that
f ′ ∈ L∞ ([a, b] ; X) , i.e.,

‖|f ′|‖[a,b],∞ := ess sup
t∈[a,b]

‖f ′ (t)‖ < ∞.
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Then we have the inequalities:∥∥∥∥∥ (s− a) f (a) + (b− s) f (b)
b− a

− 1
b− a

(B)
∫ b

a

f (t) dt

∥∥∥∥∥(2.1)

≤ 1
b− a

∫ b

a

|t− s| ‖f ′ (t)‖ dt

≤ 1
2 (b− a)

[
(s− a)2 ‖|f ′|‖[a,s],∞ + (b− s)2 ‖|f ′|‖[s,b],∞

]
≤

1
4

+

(
s− a+b

2

b− a

)2
 (b− a) ‖|f ′|‖[a,b],∞

≤ 1
2

(b− a) ‖|f ′|‖[a,b],∞

for any s ∈ [a, b] .

Proof. Using the integration by parts formula, we may write that

(2.2) (B)
∫ b

a

(t− s) f ′ (t) dt = (b− s) f (b) + (s− a) f (a)− (B)
∫ b

a

f (t) dt

for any s ∈ [a, b] .
Taking the norm on (2.2), we get∥∥∥∥∥(b− s) f (b) + (s− a) f (a)− (B)

∫ b

a

f (t) dt

∥∥∥∥∥
=

∥∥∥∥∥(B)
∫ b

a

(t− s) f ′ (t) dt

∥∥∥∥∥ ≤
∫ b

a

|t− s| ‖f ′ (t)‖ dt =: B (s)

and the first inequality in (2.1) is proved.
We also have

B (s) =
∫ s

a

(s− t) ‖f ′ (t)‖ dt +
∫ b

s

(t− s) ‖f ′ (t)‖ dt

≤ ‖|f ′|‖[a,s],∞

∫ s

a

(s− t) dt + ‖|f ′|‖[s,b],∞

∫ b

s

(t− s) dt

=
1
2

[
(s− a)2 ‖|f ′|‖[a,s],∞ + (b− s)2 ‖|f ′|‖[s,b],∞

]
,

which proves the second inequality in (2.1).
The third and fourth inequalities are obvious and we omit the details.
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Corollary 1. With the assumptions of Theorem 1, we have the trapezoid inequality:∥∥∥∥∥f (a) + f (b)
2

− 1
b− a

(B)
∫ b

a

f (t) dt

∥∥∥∥∥(2.3)

≤ 1
b− a

∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ ‖f ′ (t)‖ dt

≤ b− a

2

[
‖|f ′|‖[a, a+b

2 ],∞ + ‖|f ′|‖[ a+b
2 ,b],∞

]
≤ 1

4
(b− a) ‖|f ′|‖[a,b],∞ .

Remark 1. We observe that for the scalar function B : [a, b] → R defined above,
we have

(2.4) B′ (s) =
∫ s

a

‖f ′ (t)‖ dt−
∫ b

s

‖f ′ (t)‖ dt, s ∈ (a, b)

and

(2.5) B′′ (s) = 2 ‖f ′ (s)‖ ≥ 0, s ∈ (a, b) ,

showing that B (·) is convex on [a, b].
If sm ∈ (a, b) is such that

(2.6)
∫ sm

a

‖f ′ (t)‖ dt =
∫ b

sm

‖f ′ (t)‖ dt,

then

inf
s∈[a,b]

B (s) = B (sm) =
1

b− a

∫ b

a

|t− sm| ‖f ′ (t)‖ dt

=
1

b− a

[∫ b

sm

t ‖f ′ (t)‖ dt−
∫ sm

a

t ‖f ′ (t)‖ dt

]

=
1

b− a

∫ b

a

sgn (t− sm) ‖f ′ (t)‖ dt.

Consequently, for a sm ∈ (a, b) satisfying (2.6), we have∥∥∥∥∥ (sm − a) f (a) + (b− sm) f (b)
b− a

− 1
b− a

(B)
∫ b

a

f (t) dt

∥∥∥∥∥(2.7)

≤ 1
b− a

∫ b

a

sgn (t− sm) ‖f ′ (t)‖ dt.

The version in terms of the p−norms, p ∈ [1,∞) of the derivative f ′ is embodied
in the following theorem.
Theorem 2. Let (X, ‖·‖) be a Banach space with the Radon-Nikodym property and
f : [a, b] → X be an absolutely continuous function on [a, b] with the property that
f ′ ∈ Lp ([a, b] ; X) , p ∈ [1,∞), i.e.,

(2.8) ‖|f ′|‖[a,b],p :=

(∫ b

a

‖f ′ (t)‖p
dt

) 1
p

< ∞.
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Then we have the inequalities:∥∥∥∥∥ (s− a) f (a) + (b− s) f (b)
b− a

− 1
b− a

(B)
∫ b

a

f (t) dt

∥∥∥∥∥(2.9)

≤ 1
b− a

∫ b

a

|t− s| ‖f ′ (t)‖ dt

≤



1
b−a

[
(s− a) ‖|f ′|‖[a,s],1 + (b− s) ‖|f ′|‖[s,b],1

]
if f ′ ∈ L1 ([a, b] ; X) ;

1

(b−a)(q+1)
1
q

[
(s− a)

1
q +1 ‖|f ′|‖[a,s],p + (b− s)

1
q +1 ‖|f ′|‖[s,b],p

]
if f ′ ∈ Lp ([a, b] ; X) , p > 1, 1

p + 1
q = 1;

≤



[
1
2

+

∣∣∣∣∣s− a+b
2

b− a

∣∣∣∣∣
]
‖|f ′|‖[a,b],1

if f ′ ∈ L1 ([a, b] ; X) ;

1

(q + 1)
1
q

[(
s− a

b− a

) 1
q +1

+
(

b− s

b− a

) 1
q +1
]

(b− a)
1
q ‖|f ′|‖[a,b],p

if f ′ ∈ Lp ([a, b] ; X) , p > 1, 1
p + 1

q = 1;

for any s ∈ (a, b).

Proof. We have

B (s) =
∫ s

a

(s− t) ‖f ′ (t)‖ dt +
∫ b

s

(t− s) ‖f ′ (t)‖ dt

≤ (s− a)
∫ s

a

‖f ′ (t)‖ dt + (b− s)
∫ b

s

‖f ′ (t)‖ dt

= (s− a) ‖|f ′|‖[a,s],1 + (b− s) ‖|f ′|‖[s,b],1 .

Using Hölder’s integral inequality, we also have

B (s) ≤
(∫ s

a

(s− t)q
dt

) 1
q
(∫ s

a

‖f ′ (t)‖p
dt

) 1
p

+

(∫ b

s

(t− s)q
dt

) 1
q
(∫ b

s

‖f ′ (t)‖p
dt

) 1
p

=
(s− a)

1
q +1

(q + 1)
1
q

‖|f ′|‖[a,s],p +
(b− s)

1
q +1

(q + 1)
1
q

‖|f ′|‖[s,b],p

and the first inequality in (2.5) is proved.
Now, we observe that

(s− a) ‖|f ′|‖[a,s],1 + (b− s) ‖|f ′|‖[s,b],1

≤ max (s− a, b− s)
[
‖|f ′|‖[a,s],1 + ‖|f ′|‖[s,b],1

]
=

[
1
2

(b− a) +
∣∣∣∣s− a + b

2

∣∣∣∣] ‖|f ′|‖[a,b],1
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and, by the discrete Hölder’s inequality

(s− a)
1
q +1 ‖|f ′|‖[a,s],p + (b− s)

1
q +1 ‖|f ′|‖[s,b],p

≤
[(

(s− a)
1
q +1
)q

+
(
(b− s)

1
q +1
)q] 1

q

×
[
‖|f ′|‖p

[a,s],p + ‖|f ′|‖p
[s,b],p

] 1
p

=
[
(s− a)q+1 + (b− s)q+1

] 1
q ‖|f ′|‖[a,b],p

and the last part of (2.5) is also proved.

The following trapezoid type inequality holds.
Corollary 2. With the assumptions of Theorem 2, we have the inequalities:∥∥∥∥∥f (a) + f (b)

2
− 1

b− a
(B)

∫ b

a

f (t) dt

∥∥∥∥∥(2.10)

≤ 1
b− a

∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ ‖f ′ (t)‖ dt

≤



1
2
‖|f ′|‖[a,b],1 if f ′ ∈ L1 ([a, b] ; X) ;

(b− a)
1
q

21+ 1
q (q + 1)

1
q

[
‖|f ′|‖[a, a+b

2 ],p + ‖|f ′|‖[ a+b
2 ,b],p

]
if f ′ ∈ Lp ([a, b] ; X) , p > 1, 1

p + 1
q = 1;

≤



1
2
‖|f ′|‖[a,b],1 if f ′ ∈ L1 ([a, b] ; X) ;

1

2 (q + 1)
1
q

(b− a)
1
q

[
‖|f ′|‖[a,b],p

]
if f ′ ∈ Lp ([a, b] ; X) , p > 1, 1

p + 1
q = 1;

Remark 2. The above results both generalise and extend for vector-valued functions
the results in [1].

3. Applications for the Operator Inequality

Let X be an arbitrary Banach space and L (X) the Banach space of all bounded
linear operators on X. We recall that if T ∈ L (X) , then its operatorial norm is
defined by

‖T‖ = sup {‖Tx‖ : x ∈ X, ‖x‖ ≤ 1} .

We denote by r (T ), ρ (T ), σ (T ) the spectral radius, the resolvent set and the
spectrum of T , respectively. It is well-known that ρ (T ) is the set of all complex
numbers λ such that λI −T is an invertible operator in L (X). Here T 0 := I is the
identity operator in L (X) . The spectrum of T is σ (T ) := C\ρ (T ) and the spectral
radius of T is given by the following formulae

r (T ) = sup {|λ| : λ ∈ σ (T )} = lim
n→∞

‖Tn‖
1
n = inf

n∈N
n≥1

‖Tn‖
1
n .
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It is clear that r (T ) ≤ ‖T‖ .

If r (T ) < 1, then the series
(∑

n≥0 Tn
)

converges absolutely and its sum is

(I − T )−1
. Indeed, if m is a strictly positive integer number such that ‖Tm‖ < 1

and p > 1, then:
∞∑

n=0

‖Tn‖ ≤
(∥∥T 0

∥∥+ · · ·+
∥∥Tm−1

∥∥) ∞∑
k=0

‖Tm‖k

=
(∥∥T 0

∥∥+ · · ·+
∥∥Tm−1

∥∥) · 1
1− ‖Tm‖

,

and

(I − T )
(
I + T + T 2 + · · ·+ Tmp−1

)
= I − Tmp → I when p →∞

because
‖Tmp‖ ≤ ‖Tm‖p → 0 when p →∞.

Now, let T ∈ L (X) such that 0 < r (T ) < 1 and let 0 < a < b < 1
r(T ) . It is clear that

r (tT ) = tr (T ) for all t > 0. In the following we will consider some operator-valued
functions defined on [a, b] and we write for them the inequalities from Theorem 1.

The series
(∑

n≥0 (tT )n
)

converges absolutely and uniformly on [a, b] and its
sum is given by

s (t) :=
∞∑

n=0

(tT )n = [I − (tT )]−1 = t−1R
(
t−1, T

)
,

where
R (λ, t) := (λI − T )−1

, (λ ∈ ρ (T )) ,

is the resolvent operator of T.

1. Let 0 < a < b < ‖T‖−1 ≤ (r (T ))−1
. Consider the function f defined by

τ 7→ f (τ) := s2 (τ) : [a, b] → L (X) .

In order to apply Theorem 1 for f, we remark that:
(a)

d

dτ

[
R

(
1
τ

, T

)]
= lim

t→τ

R
(

1
t , T

)
−R

(
1
τ , T

)
t− τ

= lim
t→τ

1
tτ

R

(
1
t
, T

)
R

(
1
τ

, T

)
=

1
τ2

R2

(
1
τ

, T

)
= f (τ) , τ ∈ [a, b] .

(b)

d

dτ
[f (τ)] = − 2

τ3
R2

(
1
τ

, T

)
+

2
τ4

R3

(
1
τ

, T

)
=

2
τ

s2 (τ) [I − s (τ)] .

Moreover,

‖s (τ)‖ ≤
∞∑

n=0

‖τT‖n = (1− τ ‖T‖)−1
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and

‖I − s (τ)‖ ≤ τ ‖T‖ ·
∞∑

n=0

‖τT‖n = τ ‖T‖ (1− τ ‖T‖)−1

and thus

‖f ′ (τ)‖ ≤ 2 ‖T‖ (1− τ ‖T‖)−3 , for all τ ∈ [a, b] .

Then from the second estimate of (2.1) we obtain∥∥∥∥s− a

a2
R2

(
1
a
, T

)
+

b− s

b2
R2

(
1
b
, T

)
− b− a

ab
R

(
1
a
, T

)
R

(
1
b
, T

)∥∥∥∥(3.1)

≤

[
(s− a)2 · ‖T‖

(1− s ‖T‖)3
+ (b− s)2 · ‖T‖

(1− b ‖T‖)3

]
.

If T is a real number, 0 < T < 1 and 0 < a ≤ s ≤ b < 1
T then from

(3.1) we get the inequality∣∣∣∣∣ s− a

(1− aT )2
+

b− s

(1− bT )2
− b− a

(1− aT ) (1− bT )

∣∣∣∣∣ ≤ T (s− a)2

(1− sT )3
+

T (b− s)2

(1− bT )3
.

2. Let a and b be two real numbers with a < b and U ∈ L (X) be a non-null
operator. We recall that the series

(∑
n≥0

(tU)n

n!

)
converges absolutely and

locally uniformly for t ∈ R with respect to the operatorial norm in L (X) .
From the third estimate of (2.9), it follows that∥∥∥∥∥ (s− a) eaU + (b− s) ebU

b− a
− 1

b− a

∫ b

a

etUdt

∥∥∥∥∥(3.2)

≤

[
1
2

+

∣∣∣∣∣s− a+b
2

b− a

∣∣∣∣∣
]

(b− a) · p (a, b, U) ,

where

p (a, b, U) =


eb‖U‖ − ea‖U‖, if a ≥ 0;

e−a‖U‖ − e−b‖U‖, if b ≤ 0;

eb‖U‖ + e−a‖U‖ − 2, if a ≤ 0 ≤ b.

If s = a+b
2 and U is an invertible operator in L (X) , then from (3.2) we get

the following inequality∥∥∥∥eaU + ebU

2
− U−1 ebU − eaU

b− a

∥∥∥∥ ≤ 1
2

(b− a) p (a, b, U) .

3. Let a, b ∈ R with a < b and A,B two linear and bounded operators acting
on X such that ‖A‖ 6= ‖B‖ . Then the following inequality holds:∥∥∥∥e(b−a)A (B −A) + (B −A) e(b−a)B

2
−
[
e(b−a)B − e(b−a)A

]∥∥∥∥(3.3)

≤ b− a

2
‖B −A‖ · (‖A‖+ ‖B‖) · e(b−a)‖B‖ − e(b−a)‖A‖

‖B‖ − ‖A‖
.
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In order to prove the inequality (3.3), we consider the function

f : [a, b] → L (X) , f (t) = e(b−t)A (B −A) e(t−a)B

and we apply the first estimate of (2.1) for s = a+b
2 .

We have that∫ b

a

f (t) dt =
∫ b

a

e(b−t)A d

dt

[
e(t−a)B

]
dt +

∫ b

a

d

dt

[
e(b−t)A

]
e(t−a)Bdt(3.4)

= 2
[
e(b−a)B − e(b−a)A

]
−
∫ b

a

f (t) dt

and

‖f ′ (t)‖ = ‖−Af (t) + f (t) B‖

≤ (‖A‖+ ‖B‖) ‖B −A‖
‖B‖ − ‖A‖

· e(b−t)‖A‖ (‖B‖ − ‖A‖) (B −A) e(t−a)‖B‖.

Using (3.4), it follows that∫ b

a

|t− s| ‖f ′ (t)‖ dt

≤ max {b− s, s− a} · (‖A‖+ ‖B‖) ‖B −A‖
‖B‖ − ‖A‖

·
[
e(b−a)‖B‖ − e(b−a)‖A‖

]
.

Now the inequality (3.3) can be easily obtained from the first estimate of
(2.1) if we put s = a+b

2 .

4. A Quadrature Formula of Generalised Trapezoid Type

Now, let In : a = x0 < x1 < · · · < xn−1 < xn = b be a partitioning of the interval
[a, b] and defined hi = xi+1 − xi, ν (h) := max {hi|i = 0, . . . , n− 1} . Consider for
the mapping f : [a, b] → X, where X is a Banach space with the Radon-Nicodym
property, the following generalised trapezoid rule:

(4.1) Tn (f, In, ξ) :=
n−1∑
i=0

[(ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)] ,

where ξ :=
(
ξ0, . . . , ξn−1

)
and ξi ∈ [xi, xi+1] (i = 0, . . . , n− 1) are intermediate

(arbitrarily chosen) points.
The following theorem holds.

Theorem 3. Let f be as in Theorem 1. Then we have

(4.2) (B)
∫ b

a

f (t) dt = Tn (f, In, ξ) + Rn (f, In, ξ) ,
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where Tn (f, In, ξ) is the generalised trapezoid rule defined in (4.1) and the remain-
der Rn (f, In, ξ) in (4.2) satisfies the bound

‖Rn (f, In, ξ)‖(4.3)

≤
n−1∑
i=0

∫ xi+1

xi,

|t− ξi| ‖f ′ (t)‖ dt

≤ 1
2

n−1∑
i=0

[
(ξi − xi)

2 ‖|f ′|‖[xi,ξi],∞
+ (xi+1 − ξi)

2 ‖|f ′|‖[ξi,xi+1],∞

]
≤

n−1∑
i=0

[
1
4
h2

i +
(

ξi −
xi + xi+1

2

)2
]
‖|f ′|‖[xi,xi+1],∞

≤ 1
2

n−1∑
i=0

h2
i ‖|f ′|‖[xi,xi+1],∞ ≤ 1

2
‖|f ′|‖[a,b],∞

n−1∑
i=0

h2
i

≤ 1
2

(b− a) ν (h) ‖|f ′|‖[a,b],∞ .

Proof. Apply the inequality (2.1) on the interval [xi, xi+1] to obtain∥∥∥∥∥(ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)− (B)
∫ xi+1

xi,

f (t) dt

∥∥∥∥∥(4.4)

≤
∫ xi+1

xi,

(t− ξi) ‖f ′ (t)‖ dt

≤ 1
2

[
(ξi − xi)

2 ‖|f ′|‖[xi,ξi],∞
+ (xi+1 − ξi)

2 ‖|f ′|‖[ξi,xi+1],∞

]
≤

[
1
4
h2

i +
(

ξi −
xi + xi+1

2

)2
]
‖|f ′|‖[xi,xi+1],∞

≤ 1
2
h2

i ‖|f ′|‖[xi,xi+1],∞

for any i = 0, . . . , n− 1.
Summing over i from 0 to n− 1 and using the generalised triangle inequality for

sums, we obtain (4.3).

If we consider the trapezoid formula given by

(4.5) Tn (f, In) :=
n−1∑
i=0

hi

[
f (xi) + f (xi+1)

2

]
,

then we may state the following corollary.

Corollary 3. With the assumptions in Theorem 1, we have

(4.6) (B)
∫ b

a

f (t) dt = Tn (f, In) + Wn (f, In) ,
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where Tn (f, In) is the vector-valued trapezoid quadrature rule given in (4.5) and
the remainder Wn (f, In) satisfies the estimate

‖Wn (f, In)‖ ≤
n−1∑
i=0

∫ xi+1

xi,

∣∣∣∣t− xi + xi+1

2

∣∣∣∣ ‖f ′ (t)‖ dt(4.7)

≤ 1
8

n−1∑
i=0

h2
i

[
‖|f ′|‖[

xi,
xi+xi+1

2

]
,∞ + ‖|f ′|‖[

xi+xi+1
2 ,xi+1

]
,∞

]

≤ 1
4

n−1∑
i=0

h2
i ‖|f ′|‖[xi,xi+1],∞ ≤ 1

4
‖|f ′|‖[a,b],∞

n−1∑
i=0

h2
i

≤ 1
4
‖|f ′|‖[a,b],∞ ν (h) .

Remark 3. It is obvious that ‖Wn (f, In)‖ → 0 as ν (h) → 0, showing that
Tn (f, In) is an approximation for the Bochner integral (B)

∫ b

a
f (t) dt with order

one accuracy.
Remark 4. Similar bounds for the remainders Rn (f, In, ξ) and Wn (f, In) may be
obtained in terms of the p−norm (p ∈ [1,∞)) , but we omit the details.

5. Applications for Vector-Valued Integral Equations

We consider the Voltera integral equation:

(A, f) u (t) = f (t) +
∫ t

0

K (t− τ) Au (τ) dτ , t ≥ 0,

where A is a closed linear operator on a Banach space X, f is a X−valued, contin-
uous function defined on R+ := [0,∞) and K (·) is a locally integrable and non-null
scalar kernel on R+. A strongly continuous family {U (t) : t ≥ 0} ⊂ L (X) (that is,
for any x ∈ X the maps t 7→ U (t) x : R+ → X are continuous) is said to be a
solution family for (A, f) if

AU (t)x = U (t) Ax for all x ∈ D (A) , t ≥ 0, and(5.1)

U (t)x = x + A

∫ t

0

K (t− τ)U (τ)xdτ, x ∈ X, t ≥ 0.(5.2)

For example, if A is the infinitesimal generator of the strongly continuous semi-
group T = {T (t) : t ≥ 0} ⊂ L (X), then the family T is a solution family for (A, f),
i.e., (5.1) and (5.2) hold, see [4], [5].

Also, if B is the generator of the strongly continuous cosine function C :=
{C (t) : t ∈ R} ⊂ L (X) then the family {C (t) : t ≥ 0} is a solution family for
(B, f) , see for example [7], [3].

Let h > 0. An X−valued, continuous function v (·) defined on [0, h] is called a
mild solution of (A, f) if,

(5.3) v (t) = f (t) + A

∫ t

0

K (t− τ) v (τ) dτ , for all t ∈ [0, h] .

We denote by W 1,1 ([0, h] , X) the space of all functions f ∈ L1 ([0, h] , X) for which
there exists g ∈ L1 ([0, h] , X) such that

(5.4) f (t) = f (0) +
∫ t

0

g (s) ds, for all t ∈ [0, h] .
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Lemma 1. Let f ∈ W 1,1 ([0, h] , X), K (·) a function of bounded variation on [0, h]
and A a closed, densely defined linear operator acting on X. In these conditions
the integral equation (A, f) has a unique solution v (·). Moreover, there exists a
solution family {V (t) : t ≥ 0} ⊂ L (X) such that

(5.5) v (t) = V (t) f (0) +
∫ t

0

V (t− τ) f ′ (τ) dτ , t ∈ [0, h] .

Here, we only prove the fact that the map given in (5.5) is a solution for the
equation (A, f), i.e., it verifies the relation (5.3). For more details, we refer the
reader to [6, Proposition 1.2]. Using (5.5) and (5.2) we have that:

A

∫ t

0

K (t− τ) v (τ) dτ

= A

∫ t

0

K (t− τ) V (τ) f (0) dτ +
∫ t

0

[
K (t− τ) A

∫ τ

0

V (τ − r) f ′ (τ) dr

]
dτ

= V (t) f (0)− f (0) +
∫ t

0

(∫ t

0

1[0,τ ] (r) K (t− τ) AV (τ − r) f ′ (τ) dr

)
dτ

= V (t) f (0)− f (0) +
∫ t

0

(∫ t

r

K (t− τ) AV (τ − r) f ′ (τ) dτ

)
dr

= V (t) f (0)− f (0) +
∫ t

0

(∫ t−r

0

K (t− r − σ) AV (σ) f ′ (r) dσ

)
dr

= V (t) f (0)− f (0) +
∫ t

0

(V (t− r) f ′ (r)− f ′ (r)) dr

= V (t) f (0)− f (0) +
∫ t

0

V (t− r) f ′ (r) dr − f (t) + f (0)

= v (t)− f (t) ,

i.e., (5.3) holds. Here 1[0,τ ] is the characteristic function of the interval [0, τ ] .

Let 0 = λ0 < λ1 < · · · < λn−1 < λn = 1, µi ∈ [λi, λi+1], i ∈ {0, 1, . . . , n− 1}
and T > 0. We preserve all hypothesis about f , K (·) and A from Lemma 1.
In addition, we consider that the functions V (·) and g (·) (for g see (5.4)) are
continuously differentiable on [0, T ] . Then the solution v (·) of (A, f) given by (5.5),
can be represented as

v (t) = V (t) f (0) + Tn (λ,µ, t) + Rn (λ,µ, t) , t ∈ [0, T ] ,

where

Tn (λ,µ, t)(5.6)

= t

n−1∑
i=0

{(µi − λi) V [t (1− λi)] g (λit) + (λi+1 − µi) V [t (1− λi+1)] g (λi+1t)}

and the remainder Rn (λ,µ, t) satisfies the estimate

(5.7) ‖Rn (λ,µ, t)‖ ≤ 1
2
t2ν (λ) · ρ (t) .

Here
ρ (t) := ‖V ′‖[0,t],∞ · ‖g‖[0,t],∞ + ‖V ‖[0,t],∞ · ‖g′‖[0,t],∞ .
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Indeed, for a fixed t > 0, consider the function

s 7→ G (s) := V (t− s) g (s) , s ∈ [0, t] .

Then G is differentiable on [0, t] and

dG (s)
ds

= −V ′ (t− s) g (s) + V (t− s) g′ (s)

for each s ∈ [0, t]. Moreover,∥∥∥∥dG (s)
ds

∥∥∥∥ ≤ ‖V ′ (t− s)‖ · ‖g (s)‖+ ‖V (t− s)‖ · ‖g′ (s)‖

≤ ρ (t) , for all s ∈ [0, t] .

Now it is easy to see that (5.7) follows by the later estimate of (4.3) if we put
xi = t · λi.

Using Corollary 3, the solution v (·) of (A, f) can be represented as

v (t)(5.8)

=
t

2n

n−1∑
i=0

{
V

[
t (n− i)

n

]
f ′
(

it

n

)
+ V

[
t (n− i− 1)

n

]
f ′
[
(i + 1) t

n

]}
+ Wn,

where ‖Wn‖ ≤ t
4n · ρ (t) .

For the proof of (5.8), it is sufficient to apply Corollary 3, with f replaced by G
and xi replaced by i·t

n .

6. Numerical Examples

1. Let X = R2, x = (ξ, η) ∈ X, ‖x‖2 =
√

ξ2 + η2. We consider the linear,
2-dimensional, inhomogeneous differential system

(6.1)


u̇1 = −u1 +e−t

u̇2 = −2u2 +sin t

u1 (0) = u2 (0) = 0

(t ≥ 0) .

If we let A =
(
−1 0
0 −2

)
; u (t) = (u1 (t) , u2 (t)); g (t) = (e−t, sin t),

V (t) = etA =
(

e−t 0
0 e−2t

)
, K (t) ≡ 1 and f (t) =

∫ t

0
g (τ) dτ = (1− e−t, 1− cos t),

then the above system can be expressed by the integral equation

(6.2) u (t) = f (t) + A

∫ t

0

K (t− τ) u (τ) dτ, t ≥ 0.

The exact solution of (6.1) or (6.2) is

u (t) = etAf (0) +
∫ t

0

e(t−τ)Ag (τ) dτ(6.3)

=
(

te−t;
1
5
(
e−2t − cos t + 2 sin t

))
.
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From (5.8) we obtain the following approximating formula for u (·):

u1 (t) =
t

2n

n−1∑
i=0

[
e
−t(n−i)

n · e
−ti
n + e

−t(n−i−1)
n · e

−t(i+1)
n

]
+ W (1)

n ,

u2 (t) =
t

2n

n−1∑
i=0

[
e
−2t(n−i)

n · sin
(

ti

n

)
+ e

−2t(n−i−1)
n · sin

(
t (i + 1)

n

)]
+ W (2)

n ,

where the remainder Wn =
(
W

(1)
n ,W

(2)
n

)
satisfies the estimate

‖Wn‖2 :=

√(
W

(1)
n

)2

+
(
W

(2)
n

)2

≤ t

4n
· ρ (t) .

The Figure 1 contains the behaviour of the error εn (t) := ‖Wn‖2 .
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2. Let X, A and u be as in 1., B = −A2,

V (t) = C (t) :=
∞∑

n=0

(−1)n (tA)2n

(2n)!
=
(

cos t 0
0 cos 2t

)
, K (t) = t;

u0 = (1, 0) , u1 = (0, 1) and f (t) = u0 + tu1.

Consider the system:

ü1 = −u1

ü2 = −4u2

u1 (0) = 1; u2 (0) = 0

u̇1 (0) = 0; u̇2 (0) = 1.

The above differential system can be written as the following integral equa-
tion

u (t) = f (t) + B

∫ t

0

(t− τ) u (τ) dτ , t ≥ 0.

The exact solution of the above integral equation is

u (t) = C (t) u0 +
∫ t

0

C (t− τ)u1dτ(6.4)

= (cos t, 0) +
(

0,
1
2

sin 2t

)
=

(
cos t,

1
2

sin 2t

)
.

From (5.8) and (6.4) we also obtain the following approximating formula
for u (·):

u1 (t) = cos t + R(1)
n

u2 (t) =
t

2n

n−1∑
i=0

{
cos
[
2t (n− i)

n

]
+ cos

[
2t (n− i− 1)

n

]}
+ R(2)

n ,

where the remainder Rn =
(
R

(1)
n , R

(2)
n

)
satisfies the estimate

‖Rn‖2 =

√(
R

(1)
n

)2

+
(
R

(2)
n

)2

≤ t

4n
· ρ (t) .

The Figure 2 contains the behaviour of the error

εn (t) := ‖Rn‖2 .
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E-mail address: buse@hilbert.math.uvt.ro

URL: http://rgmia.vu.edu.au/BuseCVhtml/index.html

(S.S. Dragomir, J. Roumeliotis and A. Sofo), School of Communications and Informatics,

Victoria University of Technology, PO Box 14428, Melbourne City MC, 8001, Victoria,
Australia.

E-mail address: sever@matilda.vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

E-mail address: John.Roumeliotis@vu.edu.au

URL: http://www.staff.vu.edu.au/johnr/

E-mail address: sofo@matilda.vu.edu.au

URL: http://cams.vu.edu.au/staff/anthonys.html


