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OSTROWSKTI’S INEQUALITY FOR VECTOR-VALUED
FUNCTIONS AND APPLICATIONS

N.S. BARNETT, C. BUSE, P. CERONE, AND S.S. DRAGOMIR

ABSTRACT. Some Ostrowski type inequalities for vector-valued functions are
obtained. Applications for operatorial inequalities and numerical approxima-
tion for the solutions of certain differential equations in Banach spaces are also
given.

1. INTRODUCTION

The concepts of Riemann and Lebesgue integrability are well known for a scalar-
valued function F': [a,b] — K, where K is the field of real or complex numbers and
—00 < a < b < 0. It is known, for example, that if F' is an absolutely continuous
function, then it is differentiable almost everywhere and its derivative function
f := F' is a Lebesgue integrable function. Moreover, in this case, the following
fundamental formula of calculus, holds:

(1.1) F(t)=F(a)+ (L) /t f(s)ds, foralltela,b],

where (L) f: f (s)ds is Lebesgue’s integral. If we replace K with a real or complex
linear space X, that is, if F' is a vector-valued function, then the above result will
not hold. More precisely, if X is a Banach space, then the concept of Lebesgue
integrability can be replaced with the concept of Bochner integrability (see for
example [3], [11], [2]). However, there exist X —valued functions defined on [a, b]
which are absolutely continuous, and the set of points ¢ € [a,b] for which f is not
differentiable with respect to t, is of non-null Lebesgue measure.

A Banach space X with the property that every absolutely continuous X —valued
function is almost everywhere differentiable is said to be a Radon-Nikodym space
[5, pp. 217-219] or [11, 2]. For example, every reflexive Banach space (in partic-
ular, every Hilbert space) is a Radon-Nikodym space, but the space L [0, 1] of
all K—valued, essentially bounded functions defined on the interval [0, 1], endowed
with the norm

lgllo := ess sup [g(t)]
te[0,1]

is a Banach space which is not a Radon-Nikodym space.
However, if f : [a,b] — X (where X is an arbitrary Banach space) is a Bochner
integrable function on [a, b], then the function

t— F(t):= (B)/ f(s)ds:[a,b] = X
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is differentiable almost everywhere on [a,d], i.e., F/ = f a.e. and (1.1) holds. It
should be noted that the integral is being considered in the Bochner sense.

A function f : [a,b] — X is measurable if there exists a sequence of simple
functions (f,,) (with f, : [a,b] — X) which converges punctually a.e. at f on [a, b].

It is well-known that a measurable function f : [a,b] — X is Bochner integrable
if and only if its norm, i.e., the function t — || f]| (¢) := ||f (®)] : [a,b] — Ry is
Lebesgue integrable on [a, b], (see for example [10]).

It is known that if f is a scalar-valued and Riemann integrable function on
[a, b], then its primitive function, that is, the function ¢ — F (t) := (R) fat f(s)ds:
[a,b] — K is differentiable almost everywhere and (1.1) holds a.e. on [a,b]. Such
a result, however, is not valid for vector-valued functions. For example, the func-
tion f : [0,1] — Lo [0,1] given by f(t) = 1194 (-), t € [0,1] (where 1jg 4 is the
characteristic function of the interval [0,%]) is a Riemann integrable vector valued
function and its Riemann integral is given by

(1.2) F)=(B) [ Fe)ds= (=10 (). e,

The function F : [0,1] — L [0,1], defined in (1.2) is absolutely continuous (in
fact, it is even Lipschitz continuous on [0, 1]) but nowhere differentiable because

s hfz =il () =1p,q()+ % (47 =) Lm0

does not converge in Ly, [0,1] as h — 0 for any 0 < ¢ < 1.

Another example can be found in [11, p. 172].

In Section 2, we will use the integration by parts formula. This holds under the
following general conditions:

Let —oo < a <b< oo and f,g be two mappings defined on [a, b] such that f is
C-valued and g is X-valued, where X is a real or complex Banach space. If f, g are
differentiable on [a, b] and their derivatives are Bochner integrable on [a, b], then

b b
(B) / f'g=1®)g®) - f(a)g®) - (B) / 1d.

Using this in Section 2, we obtain some Ostrowski type inequalities for vector-valued
functions and show that the mid-point inequality is the best possible inequality in
the class. In Section 3, a quadrature formula of the Riemann type for the Bochner
integral and the error bounds are considered. Section 4 is devoted to operator
inequalities that can be obtained via Ostrowski type inequalities for vector-valued
functions for which, in the last section, a numerical approximation for the mild
solution of inhomogeneous vector-valued differential equations is given. In the last
section, two numerical examples are considered.

For some results on the Ostrowski inequality for real-valued functions, see [1],
[4], [8] and [9], and the references therein.

2. OSTROWSKI’S INEQUALITY FOR THE BOCHNER INTEGRAL
The following theorem concerning a version of Ostrowski’s inequality for vector-
valued functions holds.

Theorem 1. Let (X;||-||) be a Banach space with the Radon-Nikodym property
and f : [a,b] — X an absolutely continuous function on [a,b] with the property that
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€ Ly ([a,b]; X)), ie.,
L ap),00 7= €55 sup [[f" (£)]| < o0

t€la,b]
Then we have the inequalities:
b
(2.1) Hf(s e RICL
1 s b
< bV =l Old+ [ (b—t>||f'<t>|dt]
1 , ,
< sp=a 6 M M0+ O = 9 1 Mg

IN

2
1 g — atb
{4 N ( —5 ) ] (b= a) 17l 5100

1
9 (b—a) |||f/|H[a b],00

for any s € [a,b], where ( f f (t)dt is the Bochner integral of f.

IN

Proof. Using the integration by parts formula, we may write that

®) [ -0 ®i=6-are-@ [ 1o

(B)/sb(b—t)f()dt /f

for any s € [a, b] ; from which we get the identity:

b
(2.2) (b—a) f(s) - (B) / £ (1)t

s b
= (B)/ (t—a)f (t)dt+(B)/ (b—t) f'(t)dt.

S

and

Taking the norm on X, we obtain

(b—a)f /f t)dt

b

(B)/S(t*a)f()dH(B)/ (b—0) f (t)dt

S

IN

H (t—a) )dt” (B)/Sb(b—t)f’(t)dt

b
< /(t*a)llf’(t)lldH/ (b— ) |If (1)) dt

= :B(s),
which proves the first inequality in (2.1).
We also have
2
a)

[ =l @ <M [ == 17 S5
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and
b b bh—s)?
J o=l @l <1y [ 0= 0d =117 5

from whence, by addition, we get the second part of (2.1).
Since

S LT TP Ty =SV T

and, by the parallelogram identity for real numbers, we have,

%[(s—a)2+(b—s)2} :%(b—a)2+ <s—a;b>2

then the last part of (2.1) is also proved. I

Remark 1. We observe that for the scalar function B : [a,b] — R, we have

B (5= -l @ - 6-917 @l =2 (s 52 17

or any s € [a,b], showing that B is monotonic nonincreasing on [a, “t] and
Yy g g 2

monotonic nondecreasing on [a;b,b] and

(2.3) inf B(s) =B (“ + b)

s€la,b] 2

a+b b

[ e—anronas [ (b—t>|f'<t>||dt].

2

1
b—a

Consequently, the best inequalities we can obtain from (2.1) are embodied in the
following corollary.

Corollary 1. With the assumptions of Theorem 1, we have the inequality:

(2.4 Hf(a;b) e [

a+b b

[ el onas [ (b—t)llf’(t)ldt]

1
—a

b
b—a

= 07 Mg o0+ 118 g 4] |
1

< 7= Mia,p),00 -

Bounds involving the p—norms, p € [1,00), of the derivative f’, are embodied in
the following theorem.

<

Theorem 2. Let (X, ||-||) be a Banach space with the Radon-Nikodym property and
f i ]a,b] = X be an absolutely continuous function on [a,b] with the property that
freLy(la,b];X), pe(l,o0), ie.,

b :
(25) 1 a1 = (/ ||f’(t)||pdt) <o



OSTROWSKI'S INEQUALITY FOR VECTOR-VALUED FUNCTIONS

Then we have the inequalities

b
(26) )= ) [ o
s b
— [/ (t-a) |5 @) de+ | (b—t)f’(t)lldt]
(5= @ Mg + 6= 9) 1 g 01]
if f€Ly(la,b];X);
= 1 141 / 149 ,
T e O I M+ 6= W,
if p>1, 5+ g ="1and f' € Ly (o, B]; X)
1 _ atb
5T b?fl ]Illf’l[a,b],1 if f' € Ly(la,b];X);
: 1 s—a\? b—s q"'l& 1
(¢+1)7 (b—a) F<b—a> ] (b= a) " {11/ llga,01 5

if f' € Ly ([a,b]; X).
Proof. We have

[ a-alr @ldss-o [17Old=6-a 17,0,

and

b b
/ (b— 1)1 (1)) dt < <b—s>/ 1 @)t = (b= 5) [1F .

and the first part of the second inequality in (2.6) is proved.
Using Holder’s integral inequality for scalar functions we have (for p > 1, %—l—% =

1) that

(s—a)t
ﬁlllf |||[a,s],p
q

(/ |b_t|th>é (/ T <t>pdt>

(b_s)%—H /
= ( +1)l H|f |||[S,b]’p7
q q

giving the second part of the second inequality.

Q=

and

3 =

IN

| o-vlrola
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Since

(5= D) 17 Mjag + & = ) 117 M.
mac {5 = 0,0 = 8} [ a1+ 117 W1

S RS | VAT

IA

the first part of the third inequality in (2.6) is proved.
For the last part, we note that for any «, 5, v, d > 0 and p > 1, % + % =1 we
have:

(a?+ B1)T (47 + 67)7 > ay + 36,

and then:

1 1
(s =) "0 1 g + (09"
1

(5= )"0 4 =9 D] P, 0+ 1S 1)

= [0+ +V e ||pd8+/|||f |||’“ds]

— Jls= @ =™ s

IN

The theorem is completely proved. I

Remark 2. The above theorem both generalises and extends for vector-valued func-
tions the results in [6] and [7].

The best inequalities we can obtain from (2.6) in the sense of providing the
tightest bound are embodied in the following corollary concerning the mid-point

rule.

Corollary 2. With the assumptions in Theorem 3, we have

(27) Hf (“37) - 2@ [ 1w

atb b
< bla[/u (t—a)llf()Ildt+/a+b(b—t)llf’(t)lldt]

2
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1
§|Hle|[a,b],1 if f'€ Li([a,b];X);
b 1
SR e (AR PR D[
if p>1, %—l—%:landf’eLp([a,b};X)
1
§|Hle|[a,b],1 if f"€Li(la,b];X);
< L o abue
= 2(q+1)%( @) [[1f" la,51,
if p>1, %—l—%zlandf’ELp([a,b];X).

3. A QUADRATURE FORMULA OF THE RIEMANN TYPE
Now,let I, ;a=x9g < 21 < -+ < Tp_1 < T, = b be a partitioning of the interval
[a,b] and define h; = z;41 — x;, v (h) := max{h;|i =0,...,n — 1}. Consider the
mapping f : [a,b] — X, where X is a Banach space with the Radon-Nikodym
property. Define the Riemann sum by:

(3.1) o (10, €) : Z hif (€

where £ = (&y,...,&,_1) and &; € [xi,xiﬂ] (t=0,...,n—1) are intermediate
(arbitrarily chosen) points.
The following theorem holds.

Theorem 3. Let f be as in Theorem 1. Then we have:

b
(3.2) (B) / F () dt = Ay (f,10,€) + R (f. L0, £).

where Ay, (f,I,,€) is the Riemann quadrature given by (3.1) and the remainder
R, (f, I, &) in (3.2) satisfies the bound

(3.3) R (f; I, €) |
n—1 & , i1 ,
< ¥ / (t— ) || f (t)||dt+/ (@ipr — ) [[f* (£)]| dt
i=0 [V ‘
1 n—1
2 2
S (S i A e Co ey A | P [P
=0
n—1 2
1 Ti + Tit1
=0
n—1
1
< 3 R Moo
=0
1
< |||f lla, b]oozh 5 0= a)v (W)l Ma,p).00
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Proof. Apply the inequality (2.1) on the interval [z;,x;11] to obtain

fri+l
(3.4) ]mf(@)— [ dtH
& / @it1 )
< / (t— ) I/ (¢ >||dt+/ (i1 — ) |1 (1)) dt
; L
< 5 ;= ) |||f || [26,€,],00 + (Tig1 — ) I ||| € mi1],
2
1 f o ll+;z+1 ) ,
1
< D20l
for anyi:(),...,n—l.

Summing over ¢ from 0 to n — 1 and using the generalised triangle inequality for
norms, we obtain (3.3). I

If we consider the midpoint quadrature rule given by
n—1 z, + 7
3.5 M, (f, 1) =Y hif [ —L
(3:5) (£.1n) ; ! ( 5 )
then we may state the following corollary.

Corollary 3. With the assumptions in Theorem 1, we have

b
(3.6) (B) / F () dt = My (£, 1) + W (. 1)

where M, (f,1,) is the vector-valued midpoint quadrature rule given in (3.5) and
the remainder W, (f, I,,) satisfies the estimate:

(3.7) W (f, 1)
S S Tit+1
- (=) | () dt+ (wevr = 1) I ()] dt
; /wz ﬂi+;i+1 +1

IN

1n71 )
§2 N 21t o+ I W ]

1 n—1 1 n—1
< I Mrnrtoo < 7 11 M iap00 D 12
i=0 =0

1
< 7= a) I Map),00v (R)-

Remark 3. It is obvious that |W, (f,I.)|| — 0 as v(h) — 0, showing that
M, (f,I,) is an approzimation for the Bochner integral ( )f:f (t) dt with order
one accuracy.

Remark 4. Similar bounds for the remainder Ry, (f,1,,&) and W,, (f,I,) may be
obtained in terms of the p—norms (p € [1,00)), but we omit the details.
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4. APPLICATIONS FOR THE OPERATOR INEQUALITY

Let X be an arbitrary Banach space and £ (X) the Banach space of all bounded
linear operators on X. We recall that if A € £(X) then its operatorial norm is
defined by

[All = sup {[|Az|| : = € X, [|lz[] < 1}.

We recall also that the series (ano (ts,) ) converges absolutely and locally uni-

formly for ¢ € R. If we denote by e*4 its sum, then
(4.1) e < el for all £ > 0.

Another definition of e* is given in the next section.

Proposition 1. Let X be a Banach space, A € L(X) and 0 < a < b < co. Then
for each s € [a,b], we have:

1 b
esA etAdt

b—a/,

1
—q — slAll . = [ gallAll bIIAll _ 9psllAll
[(25 a—b)e + T4l (e +e 2e )] .

Proof. We apply Theorem 1 with X replaced by £ (X) and f (t) = e*4. Note that
in this case the function f is continuously differentiable, so that it is not necessary
that X be a Radon-Nikodym space. We have, by (4.1), that

/“uf@nfuwﬁ < WM/%@f@dMMt

(s — a) sl ﬁ (et — st

(4.2)

1
b—a

IN

and

b b
[e-oiroia < a1 [ ot

1
— _—(h—g)esIAl L (cbllAl _ gsllAll
(b—s)e + T4l (e e )

On adding the two above inequalities, we obtain the desired inequality (4.2). B

Corollary 4. With the assumptions in Proposition 1, we have the following in-

equality
b
agpy L tA 1 ( g)a| ﬁuAu)
2 - dt) < ———M 2 —e2
‘ bfale DI ‘

Let GL (X) be the subset of £ (X) consisting of all invertible operators. It is
known that GL (X) is an open set in £ (X).
Using (4.3), we may state the following result as well.

Corollary 5. Let A € GL(X). Then the following inequality holds:

2

(4.3)

aetta - L

IN

1A]

b—

1 (e%nAn ,G%HAH)?
b—a

atb 1 _
ez A — A l(ebA—e

aA)

IN
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Proof. The first inequality is obvious. For the second inequality we remark that

b
/ etAdt _ A71 (ebA _ 6aA)
and apply Corollary 4. i

Remark 5. As a consequence of Corollary 5, we can obtain the well-known in-
equality for real numbers eV > 1+ y for each y € R. Indeed, if A =z € (0,00),

then
a+b 1 b 1 a b 2
re z ¥ — e’ —e)| < (eﬂ—eﬂ) .
b—a( ) “b—a
which is equivalent to
a— _b —a b_
e?bzzl—l—a r and eb2’”21+ ax.

Another example of an operatorial inequality is embodied in the following propo-
sition.

Proposition 2. Let X be a Banach space, A € L(X) and 0 < a < b < co. Then
for each s € [a,b], we have:

b

1
sin (sA) — —— [ sin(tA)dt

(4.4) —

a

2
1 g — atb
< 4+< b2) (b)) A].

Proof. We apply the first inequality from Theorem 1 for

R O (7
ﬂmﬂwm_;gn@ﬁﬁ
We have
Jsin (£4)Y || = | Acos (t4)] < |41
Then
S , (s~ o)’
[ e-alrla<al-
and
b s—b)>
[ -1 o< jag- L

On adding the above inequalities, we obtain the desired result (4.4). Here, cos (tA) =
00 n A 2n
D=0 (—1) (2273)! -1

Corollary 6. With the assumptions as in Proposition 2, we have the following

inequality:
a+b 1 b
sin CA) - / sin (tA) dt
2 b—a /,

b—a)’
<00 .
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If in addition A € GL (X), then

1
‘ Asin (a—2|—b -A) + — [cos (bA) — cos (aA)]H
. [a+b 1
< |IA]l - |[sin — A+ 5 A7 [cos (bA) — cos (aA)]
—a
(b—a)’
< D20 e,
Remark 6. In particular, for A =z € R\ {0}, it follows that
. (b—a)z 2
. (a+b sin 5 (b—a)
(45) sin ( B J}) ll — (b—2a)r‘| < 4 |5€| .

The similar result for cos (tA) will be summarised next.

Proposition 3. With the above notations, we have:

b—a

(b—a)’
4

1
(ii) ||cos (“‘2”’ -A) - mf:cos (tA) dtH < Al

If, in addition A € GL (X), then

a+b 1
(i) ||Acos T-A ~3

—a

[sin (bA) — sin (aA)] H

b 1
< || 4|l ||cos <a—2|— : A> i - A1 [sin (bA) — sin(aA)]H
(b—a)*
<O,
Remark 7. In particular, for A =x € R\ {0}, it follows that
a+b sin 059 . ¢ (b — a)?
(4.6) cos( 5 x) . [1 — (b;a) ” < 1 |z] .

1 b 1 s — afb 2
(i) ||cos (sA) — —a J, cos (tA) dtH <7t < 2 ) (b—a)||All.

11

Remark 8. Taking the square of both sides of the inequalities (4.5) and (4.6) and

then adding them, we obtain

. (b—a) .
B Sin ) X

(b;a) .

1

2
< %(bfa)2 |z|, for all x € R*.

In particular, if b —a = 2, then
lsinz — 2| < V2z2, forallz €R,

which is an interesting scalar inequality.

Another type of example is considered in the following.

A densely defined linear operator A on a Banach space X is said to be sectorial

[13] if (0,00) C p(A) and there exists M = M4 > 0 such that
M
(4.7) IR (¢, A)] < e for all t > 0,

where R (t, A) := (tI — A)~" is the resolvent operator of A.
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Proposition 4. Let A be a sectorial operator on a Banach space X. Then for
0<a<s<b< oo, we have:

) |[R?(s,A) — R(a, A) R (b, A)|| < (b_af)v(fjﬂ)z. C (bbfl)z};

and
” a M3 (b—a
(i) HR2 (%3, 4) = R(a, A) R (0, A)H < (a+1)(b+(l)(a)+b+2)'
Proof. By the resolvent identity
R(t,A)—R(s,A)=(s—t)R(t,A)R (s, A),

it follows that

LR (1 A) = R (1, 4).
We apply Theorem 1 in Section 2 for f (t) = R? (t, A) giving, from (4.7)
H [R?(t, A)] H—H—st t, A)|| < 20 5.
(t+1)
Further,
1 [ ? ! b !/
L / t=alf Ollde+ [ -0 <t>|dt]
oM3 | % (t—a) b (b—t)
d d
e / (141 H/S TR
o2 [ (s—a)? (b—s)?
T ob—a2(a+1)(s+ 1) 2(b+1)(s+1)°
_ M3 (s—a)® (b—s)?

a+1 b+1

(b—a)(s+1)°

Statement (7) is thus proved. Taking s =

a

2t gives (id). I

t+1 1
Remark 9. If A =1z € (—00,0), then we can choose M, = sup [ + ] =—— and
t>0 [t — X

from (i) we obtain the interesting inequality:
(a—z)(b—a)(a+b—22)>> (—2)®(b—a)(a+1)(b+1)(a+b+2),
forallz <0 and all 0 <a < b< 0.

5. APPLICATIONS FOR VECTOR-VALUED DIFFERENTIAL EQUATIONS

Many problems of mathematical physics can be modelled using the following
abstract Cauchy problem

w(t)=Au(t), t>0
(4cp,)
u(0) =z,

where A is a linear, usually unbounded, operator with domain D (A4) on a Banach
space X. For every particular mathematical physics problem, X is a suitable Ba-
nach space of functions and A is a partial differential operator. By the classical solu-
tion for (AC'P,), we mean a continuous differentiable function wu,, : [0,00) — D (A)
which satisfies (ACP,). A continuous function w : [0,00) — X is said to be a mild
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solution for (AC P, ) if there exists a sequence (z,,),,cy With z,, € D (A) such that for
each n the problem (ACP,) has a classical solution u,, (-) with lim wu,, (t) = u(t)

locally uniform on [0, 00). We say that the abstract Cauchy problem associated with
a linear operator A is well-posed if for each initial value z € D (A) the problem
(ACP,,) has a unique classical solution. An example of an operator A for which
the associated abstract Cauchy problem is well-posed is presented in the following.

Let X be a Banach space and £ (X)) the space of all bounded linear operators. We
denote by |[|-|| the norms of vectors and operators. A family T = {T (t)},», C £(X)
is called a semigroup of operators if the following conditions hold: -

(S1) T(0) =1, I is the identity operator on X;
(S2) T(t+s)=T(t)oT (s) for all t,s > 0.

A semigroup T is said to be uniformly continuous if the mapping ¢ — T () :
[0,00) — L(X) is continuous at ty = 0 (or equivalently, is continuous on R, ) in
the operatorial norm in £ (X).

A semigroup T is said to be strongly continuous (or Cp—semigroup) if the map-
ping t — T (t) z : [0,00) — X is continuous at tg = 0 (or equivalently on R, ) for
all x € X. It is well known [12] that if T is a uniformly continuous semigroup, then
there exists an operator A € £ (X) such that

T(t) = e = i (tA)n; t>0.

, >
— nl

In this case, the problem (ACP,) associated with A has a unique classical (or mild)

solution and it is given by

uy (t) = u(t) = ez, t>0.
If T is a Cy—semigroup, then its generator A with its domain D (A) are given by

D(A){xeX:IimT(t)mx

exists in X}
t10

and

Ax:limw, x € D(A).
t10 t

It is easy to see that the function t — T (t) z is differentiable on R for all z € D (A).
It is well-known ([13], [12]) that the generator A is a closed and densely defined
operator (i.e., D (A) is dense in X). In this case, the abstract Cauchy problem
associated with A is well-posed. The classical solution is given by wu, (t) = T (t)x
for z € D(A) and the mild solution is given by w(t) = T (¢t)x for x € X. The
converse result is also true.

For example, if A is a linear operator with domain D (A), the abstract Cauchy
problem associated with A is well-posed and the resolvent set of A (p(A4)) is
nonempty, then A is the generator for a strongly continuous semigroup T ( [13],
[12]). Every Cy—semigroup T has a growth bound. That is, there exist M > 0 and
w € R such that

(5.1) IT ()| < Me“t, for all t > 0.
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Let f : Ry — X be a locally Bochner integrable function. We consider the
inhomogeneous abstract Cauchy problem

W(t)=Au()+f(t), t>0

u(0) ==z,

(4, 1,0, )

where A is the generator of a strongly continuous semigroup T and =z € X.

The function T (¢t —-) f (-) is measurable, because if {f,} is a sequence of sim-

ple functions, then g, (-) := T (¢t —-) fn (-) are measurable for eachn € N (we

used the strong continuity of T), and g, (s) — T (t — s) f (s) as n — oo, a.e. on

[0,t]. Moreover, the function T' (¢t —-) f (-) is Bochner integrable on [0, t], because

T (t—-)f() <Me*|f(-)| and the function f is Bochner integrable on [0, ¢].
The mild solution of the problem (A, f,0, ) can be represented by

u(t):x—l—(B)/OtT(t—s)f(s)ds, t>0, z € X,

We may state the following theorem in approximating the mild solutions of the
inhomogeneous system (A, f,0, ).

Theorem 4. Let 0 = Ao < A\ < -+ < M1 < Ay = 1 and p; € [Ai, Nig1]
(i =0,n— 1) . If either

(1) T is a uniformly continuous semigroup and f is a differentiable continuous
X —valued function (X is an arbitrary Banach space)
or

(i¢) T is a strongly continuous semigroup, [ is differentiable continuous and
f(@) € D(A) for allt > 0, and Af(:) is a locally bounded function on
[0, c0)

hold, then the mild solution u (+) of (4, f,0,2) can be represented as

(5.2) u(t)=ax+ S, A p,t)+Qn( A p,t), t>0,
where
n—1
(5.3) Sp A t) =1 > (Nig1 = ) T[(1 = p) t] f (p5t)
1=0

and the remainder Q,, (A, u,t) satisfies, in the first case, the estimates

(5.4) 1@n (A 1, )|

< el Ao .00 + 11 Mio,0,00]
X+ A
X Z [ Aiv1 — Xo)* + <,ui H) 1
1 n—1
2
S §t2€HAHt |:||A|| |||f|||[0,t]oo ] ooi| (/\i+1 — )\,L)
=0
1
< Sr LAY 00 + 115 W 0100] -



OSTROWSKI'S INEQUALITY FOR VECTOR-VALUED FUNCTIONS 15

where v (A) := max (\j+1 — A\;), and, in the second case, the estimates
i=0,n—1
(5.5) [Qn (A, 2, 1)
< M 1A Olllggo0 + 115 o100

XZ[ Aig1 — )2+<ui A JrAlH) ]
n—1

1 2
< LMt [11AS Ol + 11 Moy e] 3 it = A
i=0

1 w
< 5P (1A Ol oo + 117 p00]
for each t € [0,00), where w is a positive number such that the estimate (5.1) holds.

Proof. For a fixed t > 0, consider the function g (s) := T (t —s) f(s), s € [0,¢].
Then g is differentiable on (0,t) and

dg(s) d
ds  ds

for each s € (0,1).
We have, in the first case, that

d
H g HAT (£ =) £ (Yoo + IIT (=) F Ol 100

ds
AT 11 1110,9,00 + €1 M1 110,000
= Al [ oo + Hlf’lll[o,t],oo} )

[T(t—s)f(s)]=—AT(t—s)f(s)+T(t—s)f (s),

IA

[0,t],00

IN

for any t € [0, 00).
In the second case, we have in a similar manner, that

dg wt /
= < Me! [IAf Olllougo0 + I1F Olllo..00]

[0,t],00
for each ¢t € [0, 00).

Now, consider the partitioning of the interval [0, t] given by z; := \;t (2 =0,n— 1)
where 0 = Ayp < A < -+ < A1 < A, = 1 and the intermediate points
& = pit (i=0,n—1) where p; € [N\j,\it1] (i =0,n—1). If we apply Theo-
rem 3 fora=0,b=1, x;, (z =0,n— 1) and g as defined above, then we deduce
the representation (5.2) and the remainder Q,, (X, i, t) satisfies either the estimate
(5.4) or the estimate (5.5). 1

If we define the quadrature formula

n—1
(5.6) My (A t) =t ; (Nig1 =) T [(1 — /\14_2/\”1) t} f <>‘Z+2’\’+1 .t> )

then we may state the following corollary.

Corollary 7. Let 0 = Ao < A\ < -+ < Ap—1 < Ay = 1. If either (i) or (ii) in
Theorem 4 hold, then the mild solution u (-) of (A, f,0,x) can be represented as

(5.7) w(t) =z + My (A1) + L (A1),



16 N.S. BARNETT, C. BUSE, P. CERONE, AND S.S. DRAGOMIR

where My, (X, t) is as given in (5.6) and the remainder L, (X, t) satisfies, in the
first case, the estimates

1 n—1
(5.8) Lo (MO < Zl‘Qe“A“t [||AH 1Lf 1 0,67,00 + H|f/|||[0,t],oo:| th
1=0
13 At y
= 7t v(h)e [||A|| L M0,47,00 + 11 |||[o,t],oo} ;

where h; == Xjiy1 — A >0 (z =0,n— 1) , and, in the second case, the estimates:

1

n—1
69 LDl < MEE IIAF Olllg oo + 11 Mg 0] 342
=0

1 w
< oMy () e [I1AS Olllgugo0 + 17 o]

for each t € (0,00).

Remark 10. In practical applications, it is easier to consider a uniform partition-
ing of [0,t] given by

and then (5.6) becomes

n—1 . .
t 2n—21—1 2141
5.10 M, ) :=-—S"T|[Z—2"")¢ t|.
o o3| (=) s [(550)
In this case, we have the representation of u (-) given by

(5.11) w(t) =+ M, ({t)+V, (1),

where the approximation M, (-) is as defined above in (5.10) and the remainder
V.. (+) satisfies the error bounds

(512) Vo ()1 < gt [l 1]

oo+ 115 1o 1.00]

in the first case, and

(513) IV, ()] < - M (1147 ()]

0,t],00 T |||fl|||[0,t],oo}

in the second case, for each t € [0, 00).

6. NUMERICAL EXAMPLES

Let X = R% = = (£,1) € R, |z|, = V& +n2% We consider the linear,
2-dimensional, inhomogeneous differential systems

up (t) = wup(t) +sint
t>0
U (t) = —ug (t) +cost
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1 0

If welet A = {0 1

], f(t) = (sint,cost), zo = (0,0) and identify (£,7n) b

( f; ) , then the above system is the Cauchy problem (A, f,0,x). We have: e*4 =
et 0
0 et )’

(6.1) u(t)

t
/ =)L () ds
0
t t
= (/ elt=2) sinsds,/ e~ (t=9) cossds>
0 0

= (; (e —sint — cost),

(sint + cost — et)) }

N | =

Now, if we consider

5 e (C PR C ]

then, by (5.11), the exact solution  (-) given in (6.1) may be represented by

(6.2) u(t) = M, (t) + V, (t) for any ¢>0.

and, by (5.12), we know that

(6.3) lim ||V}, (t)H2 =0 for each t>0.
We have
Bu(t) =V

—
S—

3\*

(]!
9]

~—
S

3

v |
Sy
S

|

—

n—1 . 2
i 2 1
— e —sint — cost )Y sin s t
2 = 2n

n—1 . 2
L. —y  t _[(2n=2i=1), 2+ 1
§(S1nt+cost—e )_ﬁ E e[ cos [( 5 >t”

(NI

+

If we implement B, (-) for n = 10° and ¢ € [0, 1], then the plot of the error in
approximating the exact value of u (-) by its approximation M, (-) on the interval
[0,1] is embodied in Figure 1.
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1.29-095
19-09—5
ae-m;
fie-107]
49-102

2e-10]

a 0.2 0.4

0.0005
0.0006
0.0004 1

0.0002

Let us now consider another system

a1 (t) = —uy (t) +sint
(6.4) Ug (1) = —2ug (t) +cost .

U7 (O) = U2 (O) =0.

The solution of this system is given by

(6.5) u(t) = (1 (e™" +sint — cost),

5 (—26_2t +sint + 2 cos t)> .

1
5
Now, if we consider

My, (t) = :Ln—l [e_[(W)t] sin K%;?; 1) t} Le 2 cos [(21';; 1) t”

=0
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then by (5.11) the exact solution of the system (6.4), given in (6.5) may be repre-
sented as in (6.2), and by (5.13), we know that

lim an (t)H2 -0

n—oo

for any ¢ on [0, 00). We have

s ¢ =[],

n—1 .
t [{2n—2i-1 21+ 1
t_gint — t——§ (2201 t
(e Sin COS ) " e S1n m

=0

DN =

[S =

n—1 .
t n—2i— 2 ].
+ (7267% +sint + 2cost) - E 672[(2 =)t cos [( 122 ) t]

=0

If we implement B, () for n = 103, ther~1 the plot of the error in approximating the

exact value u (+) by its approximation M, (-) on the interval [0, 100] is embodied in
Figure 2.
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