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OSTROWSKI’S INEQUALITY FOR VECTOR-VALUED
FUNCTIONS AND APPLICATIONS

N.S. BARNETT, C. BUŞE, P. CERONE, AND S.S. DRAGOMIR

Abstract. Some Ostrowski type inequalities for vector-valued functions are

obtained. Applications for operatorial inequalities and numerical approxima-
tion for the solutions of certain differential equations in Banach spaces are also

given.

1. Introduction

The concepts of Riemann and Lebesgue integrability are well known for a scalar-
valued function F : [a, b] → K, where K is the field of real or complex numbers and
−∞ < a < b < ∞. It is known, for example, that if F is an absolutely continuous
function, then it is differentiable almost everywhere and its derivative function
f := F ′ is a Lebesgue integrable function. Moreover, in this case, the following
fundamental formula of calculus, holds:

(1.1) F (t) = F (a) + (L)
∫ t

a

f (s) ds, for all t ∈ [a, b] ,

where (L)
∫ t

a
f (s) ds is Lebesgue’s integral. If we replace K with a real or complex

linear space X, that is, if F is a vector-valued function, then the above result will
not hold. More precisely, if X is a Banach space, then the concept of Lebesgue
integrability can be replaced with the concept of Bochner integrability (see for
example [3], [11], [2]). However, there exist X−valued functions defined on [a, b]
which are absolutely continuous, and the set of points t ∈ [a, b] for which f is not
differentiable with respect to t, is of non-null Lebesgue measure.

A Banach space X with the property that every absolutely continuous X−valued
function is almost everywhere differentiable is said to be a Radon-Nikodym space
[5, pp. 217–219] or [11, 2]. For example, every reflexive Banach space (in partic-
ular, every Hilbert space) is a Radon-Nikodym space, but the space L∞ [0, 1] of
all K−valued, essentially bounded functions defined on the interval [0, 1], endowed
with the norm

‖g‖∞ := ess sup
t∈[0,1]

|g (t)|

is a Banach space which is not a Radon-Nikodym space.
However, if f : [a, b] → X (where X is an arbitrary Banach space) is a Bochner

integrable function on [a, b], then the function

t 7→ F (t) := (B)
∫ t

a

f (s) ds : [a, b] → X
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is differentiable almost everywhere on [a, b], i.e., F ′ = f a.e. and (1.1) holds. It
should be noted that the integral is being considered in the Bochner sense.

A function f : [a, b] → X is measurable if there exists a sequence of simple
functions (fn) (with fn : [a, b] → X) which converges punctually a.e. at f on [a, b].

It is well-known that a measurable function f : [a, b] → X is Bochner integrable
if and only if its norm, i.e., the function t 7−→ ‖f‖ (t) := ‖f (t)‖ : [a, b] → R+ is
Lebesgue integrable on [a, b], (see for example [10]).

It is known that if f is a scalar-valued and Riemann integrable function on
[a, b], then its primitive function, that is, the function t 7→ F (t) := (R)

∫ t

a
f (s) ds :

[a, b] → K is differentiable almost everywhere and (1.1) holds a.e. on [a, b]. Such
a result, however, is not valid for vector-valued functions. For example, the func-
tion f : [0, 1] → L∞ [0, 1] given by f (t) = 1[0,t] (·), t ∈ [0, 1] (where 1[0,t] is the
characteristic function of the interval [0, t]) is a Riemann integrable vector valued
function and its Riemann integral is given by

(1.2) F (t) := (R)
∫ t

0

f (s) ds = (t− ·) 1[0,t] (·) , t ∈ [0, 1] .

The function F : [0, 1] → L∞ [0, 1], defined in (1.2) is absolutely continuous (in
fact, it is even Lipschitz continuous on [0, 1]) but nowhere differentiable because

F (t + h)− F (t)
h

(·) = 1[0,t] (·) +
1
h

(t + h− ·) 1[t,t+h] (·)

does not converge in L∞ [0, 1] as h → 0 for any 0 ≤ t ≤ 1.
Another example can be found in [11, p. 172].
In Section 2, we will use the integration by parts formula. This holds under the

following general conditions:
Let −∞ < a < b < ∞ and f, g be two mappings defined on [a, b] such that f is

C-valued and g is X-valued, where X is a real or complex Banach space. If f, g are
differentiable on [a, b] and their derivatives are Bochner integrable on [a, b], then

(B)
∫ b

a

f ′g = f (b) g (b)− f (a) g (b)− (B)
∫ b

a

fg′.

Using this in Section 2, we obtain some Ostrowski type inequalities for vector-valued
functions and show that the mid-point inequality is the best possible inequality in
the class. In Section 3, a quadrature formula of the Riemann type for the Bochner
integral and the error bounds are considered. Section 4 is devoted to operator
inequalities that can be obtained via Ostrowski type inequalities for vector-valued
functions for which, in the last section, a numerical approximation for the mild
solution of inhomogeneous vector-valued differential equations is given. In the last
section, two numerical examples are considered.

For some results on the Ostrowski inequality for real-valued functions, see [1],
[4], [8] and [9], and the references therein.

2. Ostrowski’s Inequality for the Bochner Integral

The following theorem concerning a version of Ostrowski’s inequality for vector-
valued functions holds.
Theorem 1. Let (X; ‖·‖) be a Banach space with the Radon-Nikodym property
and f : [a, b] → X an absolutely continuous function on [a, b] with the property that
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f ′ ∈ L∞ ([a, b] ; X), i.e.,

|‖f ′‖|[a,b],∞ := ess sup
t∈[a,b]

‖f ′ (t)‖ < ∞.

Then we have the inequalities:∥∥∥∥∥f (s)− 1
b− a

(B)
∫ b

a

f (t) dt

∥∥∥∥∥(2.1)

≤ 1
b− a

[∫ s

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

s

(b− t) ‖f ′ (t)‖ dt

]

≤ 1
2 (b− a)

[
(s− a)2 |‖f ′‖|[a,s],∞ + (b− s)2 |‖f ′‖|[s,b],∞

]
≤

1
4

+

(
s− a+b

2

b− a

)2
 (b− a) |‖f ′‖|[a,b],∞

≤ 1
2

(b− a) |‖f ′‖|[a,b],∞

for any s ∈ [a, b], where (B)
∫ b

a
f (t) dt is the Bochner integral of f .

Proof. Using the integration by parts formula, we may write that

(B)
∫ s

a

(t− a) f ′ (t) dt = (s− a) f (s)− (B)
∫ s

a

f (t) dt

and

(B)
∫ b

s

(b− t) f ′ (t) dt = (b− s) f (s)− (B)
∫ b

s

f (t) dt,

for any s ∈ [a, b] ; from which we get the identity:

(b− a) f (s)− (B)
∫ b

a

f (t) dt(2.2)

= (B)
∫ s

a

(t− a) f ′ (t) dt + (B)
∫ b

s

(b− t) f ′ (t) dt.

Taking the norm on X, we obtain∥∥∥∥∥(b− a) f (s)− (B)
∫ b

a

f (t) dt

∥∥∥∥∥ =

∥∥∥∥∥(B)
∫ s

a

(t− a) f ′ (t) dt + (B)
∫ b

s

(b− t) f ′ (t) dt

∥∥∥∥∥
≤

∥∥∥∥(B)
∫ s

a

(t− a) f ′ (t) dt

∥∥∥∥+

∥∥∥∥∥(B)
∫ b

s

(b− t) f ′ (t) dt

∥∥∥∥∥
≤

∫ s

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

s

(b− t) ‖f ′ (t)‖ dt

= : B (s) ,

which proves the first inequality in (2.1).
We also have∫ s

a

(t− a) ‖f ′ (t)‖ dt ≤ |‖f ′‖|[a,s],∞

∫ s

a

(t− a) dt = |‖f ′‖|[a,s],∞ · (s− a)2

2
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and ∫ b

s

(b− t) ‖f ′ (t)‖ dt ≤ |‖f ′‖|[s,b],∞

∫ b

s

(b− t) dt = |‖f ′‖|[s,b],∞ · (b− s)2

2

from whence, by addition, we get the second part of (2.1).
Since

max
{
|‖f ′‖|[a,s],∞ , |‖f ′‖|[s,b],∞

}
≤ |‖f ′‖|[a,b],∞

and, by the parallelogram identity for real numbers, we have,

1
2

[
(s− a)2 + (b− s)2

]
=

1
4

(b− a)2 +
(

s− a + b

2

)2

then the last part of (2.1) is also proved.

Remark 1. We observe that for the scalar function B : [a, b] → R, we have

B′ (s) = (s− a) ‖f ′ (s)‖ − (b− s) ‖f ′ (s)‖ = 2
(

s− a + b

2

)
‖f ′ (s)‖

for any s ∈ [a, b], showing that B is monotonic nonincreasing on
[
a, a+b

2

]
and

monotonic nondecreasing on
[

a+b
2 , b

]
and

inf
s∈[a,b]

B (s) = B

(
a + b

2

)
(2.3)

=
1

b− a

[∫ a+b
2

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

a+b
2

(b− t) ‖f ′ (t)‖ dt

]
.

Consequently, the best inequalities we can obtain from (2.1) are embodied in the
following corollary.

Corollary 1. With the assumptions of Theorem 1, we have the inequality:∥∥∥∥∥f
(

a + b

2

)
− 1

b− a
(B)

∫ b

a

f (t) dt

∥∥∥∥∥(2.4)

≤ 1
b− a

[∫ a+b
2

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

a+b
2

(b− t) ‖f ′ (t)‖ dt

]

≤ b− a

2

[
|‖f ′‖|[a, a+b

2 ],∞ + |‖f ′‖|[ a+b
2 ,b],∞

]
≤ 1

4
(b− a) |‖f ′‖|[a,b],∞ .

Bounds involving the p−norms, p ∈ [1,∞), of the derivative f ′, are embodied in
the following theorem.

Theorem 2. Let (X, ‖·‖) be a Banach space with the Radon-Nikodym property and
f : [a, b] → X be an absolutely continuous function on [a, b] with the property that
f ′ ∈ Lp ([a, b] ; X), p ∈ [1,∞), i.e.,

(2.5) |‖f ′‖|[a,b],p :=

(∫ b

a

‖f ′ (t)‖p
dt

) 1
p

< ∞.
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Then we have the inequalities∥∥∥∥∥f (s)− 1
b− a

(B)
∫ b

a

f (t) dt

∥∥∥∥∥(2.6)

≤ 1
b− a

[∫ s

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

s

(b− t) ‖f ′ (t)‖ dt

]

≤



1
b− a

[
(s− a) |‖f ′‖|[a,s],1 + (b− s) |‖f ′‖|[s,b],1

]
if f ′ ∈ L1 ([a, b] ; X) ;

1

(b− a) (q + 1)
1
q

[
(s− a)

1
q +1 |‖f ′‖|[a,s],p + (b− s)

1
q +1 |‖f ′‖|[s,b],p

]
if p > 1, 1

p + 1
q = 1 and f ′ ∈ Lp ([a, b] ; X)

≤



[
1
2

+

∣∣∣∣∣s− a+b
2

b− a

∣∣∣∣∣
]
|‖f ′‖|[a,b],1 if f ′ ∈ L1 ([a, b] ; X) ;

1

(q + 1)
1
q

[(
s− a

b− a

)q+1

+
(

b− s

b− a

)q+1
] 1

q

(b− a)
1
q |‖f ′‖|[a,b],p

if f ′ ∈ Lp ([a, b] ; X) .

Proof. We have∫ s

a

(t− a) ‖f ′ (t)‖ dt ≤ (s− a)
∫ s

a

‖f ′ (t)‖ dt = (s− a) |‖f ′‖|[a,s],1

and ∫ b

s

(b− t) ‖f ′ (t)‖ dt ≤ (b− s)
∫ b

s

‖f ′ (t)‖ dt = (b− s) |‖f ′‖|[s,b],1

and the first part of the second inequality in (2.6) is proved.
Using Hölder’s integral inequality for scalar functions we have (for p > 1, 1

p + 1
q =

1) that ∫ s

a

(t− a) ‖f ′ (t)‖ dt ≤
(∫ s

a

|t− a|q dt

) 1
q
(∫ s

a

‖f ′ (t)‖p
dt

) 1
p

=
(s− a)

1
q +1

(q + 1)
1
q

|‖f ′‖|[a,s],p

and ∫ b

s

(b− t) ‖f ′ (t)‖ dt ≤

(∫ b

s

|b− t|q dt

) 1
q
(∫ b

s

‖f ′ (t)‖p
dt

) 1
p

=
(b− s)

1
q +1

(q + 1)
1
q

|‖f ′‖|[s,b],p ,

giving the second part of the second inequality.
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Since

(s− a) |‖f ′‖|[a,s],1 + (b− s) |‖f ′‖|[s,b],1

≤ max {s− a, b− s}
[
|‖f ′‖|[a,s],1 + |‖f ′‖|[s,b],1

]
=

[
1
2

(b− a) +
∣∣∣∣s− a + b

2

∣∣∣∣] |‖f ′‖|[a,b],1 ,

the first part of the third inequality in (2.6) is proved.
For the last part, we note that for any α, β, γ, δ > 0 and p > 1, 1

p + 1
q = 1 we

have:

(αq + βq)
1
q (γp + δp)

1
p ≥ αγ + βδ,

and then:

(s− a)1+
1
q |‖f ′‖|[a,s],p + (b− s)1+

1
q |‖f ′‖|[s,b],p

≤
[
(s− a)q(1+ 1

q ) + (b− s)q(1+ 1
q )
] 1

q
[
|‖f ′‖|p[a,s],p + |‖f ′‖|p[s,b],p

] 1
p

=
[
(s− a)1+q + (b− s)1+q

] 1
q

[∫ s

a

‖f ′ (s)‖p
ds +

∫ b

s

|‖f ′ (s)‖|p ds

] 1
p

=
[
(s− a)1+q + (b− s)1+q

] 1
q |‖f ′‖|[a,b],p .

The theorem is completely proved.

Remark 2. The above theorem both generalises and extends for vector-valued func-
tions the results in [6] and [7].

The best inequalities we can obtain from (2.6) in the sense of providing the
tightest bound are embodied in the following corollary concerning the mid-point
rule.

Corollary 2. With the assumptions in Theorem 3, we have

∥∥∥∥∥f
(

a + b

2

)
− 1

b− a
(B)

∫ b

a

f (t) dt

∥∥∥∥∥(2.7)

≤ 1
b− a

[∫ a+b
2

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

a+b
2

(b− t) ‖f ′ (t)‖ dt

]



OSTROWSKI’S INEQUALITY FOR VECTOR-VALUED FUNCTIONS 7

≤



1
2
|‖f ′‖|[a,b],1 if f ′ ∈ L1 ([a, b] ; X) ;

(b− a)
1
q

21+ 1
q (q + 1)

1
q

[
|‖f ′‖|[a, a+b

2 ],p + |‖f ′‖|[ a+b
2 ,b],p

]
if p > 1, 1

p + 1
q = 1 and f ′ ∈ Lp ([a, b] ; X)

≤



1
2
|‖f ′‖|[a,b],1 if f ′ ∈ L1 ([a, b] ; X) ;

1

2 (q + 1)
1
q

(b− a)
1
q |‖f ′‖|[a,b],p

if p > 1, 1
p + 1

q = 1 and f ′ ∈ Lp ([a, b] ; X) .

3. A Quadrature Formula of the Riemann Type

Now, let In : a = x0 < x1 < · · · < xn−1 < xn = b be a partitioning of the interval
[a, b] and define hi = xi+1 − xi, ν (h) := max {hi|i = 0, . . . , n− 1}. Consider the
mapping f : [a, b] → X, where X is a Banach space with the Radon-Nikodym
property. Define the Riemann sum by:

(3.1) An (f, In, ξ) :=
n−1∑
i=0

hif (ξi) ,

where ξ =
(
ξ0, . . . , ξn−1

)
and ξi ∈ [xi, xi+1] (i = 0, . . . , n− 1) are intermediate

(arbitrarily chosen) points.
The following theorem holds.

Theorem 3. Let f be as in Theorem 1. Then we have:

(3.2) (B)
∫ b

a

f (t) dt = An (f, In, ξ) + Rn (f, In, ξ) ,

where An (f, In, ξ) is the Riemann quadrature given by (3.1) and the remainder
Rn (f, In, ξ) in (3.2) satisfies the bound

‖Rn (f, In, ξ)‖(3.3)

≤
n−1∑
i=0

[∫ ξi

xi

(t− xi) ‖f ′ (t)‖ dt +
∫ xi+1

ξi

(xi+1 − t) ‖f ′ (t)‖ dt

]

≤ 1
2

n−1∑
i=0

[
(ξi − xi)

2 |‖f ′‖|[xi,ξi],∞
+ (xi+1 − ξi)

2 |‖f ′‖|[ξi,xi+1],∞

]
≤

n−1∑
i=0

[
1
4
h2

i +
(

ξi −
xi + xi+1

2

)2
]
|‖f ′‖|[xi,xi+1],∞

≤ 1
2

n−1∑
i=0

h2
i |‖f ′‖|[xi,xi+1],∞

≤ 1
2
|‖f ′‖|[a,b],∞

n−1∑
i=0

h2
i ≤

1
2

(b− a) ν (h) |‖f ′‖|[a,b],∞ .
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Proof. Apply the inequality (2.1) on the interval [xi, xi+1] to obtain∥∥∥∥hif (ξi)−
∫ xi+1

xi

f (t) dt

∥∥∥∥(3.4)

≤
∫ ξi

xi

(t− xi) ‖f ′ (t)‖ dt +
∫ xi+1

ξi

(xi+1 − t) ‖f ′ (t)‖ dt

≤ 1
2

[
(ξi − xi)

2 |‖f ′‖|[xi,ξi],∞
+ (xi+1 − ξi)

2 |‖f ′‖|[ξi,xi+1],∞

]
≤

1
4

+

(
ξi −

xi+xi+1
2

hi

)2
h2

i |‖f ′‖|[xi,xi+1],∞

≤ 1
2
h2

i |‖f ′‖|[xi,xi+1],∞

for any i = 0, . . . , n− 1.
Summing over i from 0 to n− 1 and using the generalised triangle inequality for

norms, we obtain (3.3).

If we consider the midpoint quadrature rule given by

(3.5) Mn (f, In) :=
n−1∑
i=0

hif

(
xi + xi+1

2

)
then we may state the following corollary.

Corollary 3. With the assumptions in Theorem 1, we have

(3.6) (B)
∫ b

a

f (t) dt = Mn (f, In) + Wn (f, In)

where Mn (f, In) is the vector-valued midpoint quadrature rule given in (3.5) and
the remainder Wn (f, In) satisfies the estimate:

‖Wn (f, In)‖(3.7)

≤
n−1∑
i=0

∫ xi+xi+1
2

xi

(t− xi) ‖f ′ (t)‖ dt +
∫ xi+1

xi+xi+1
2

(xi+1 − t) ‖f ′ (t)‖ dt


≤ 1

8

n−1∑
i=0

h2
i

[
|‖f ′‖|[

xi,
xi+xi+1

2

]
,∞ + |‖f ′‖|[ xi+xi+1

2 ,xi+1

]
,∞

]

≤ 1
4

n−1∑
i=0

h2
i |‖f ′‖|[xi,xi+1],∞ ≤ 1

4
|‖f ′‖|[a,b],∞

n−1∑
i=0

h2
i

≤ 1
4

(b− a) |‖f ′‖|[a,b],∞ ν (h) .

Remark 3. It is obvious that ‖Wn (f, In)‖ → 0 as ν (h) → 0, showing that
Mn (f, In) is an approximation for the Bochner integral (B)

∫ b

a
f (t) dt with order

one accuracy.

Remark 4. Similar bounds for the remainder Rn (f, In, ξ) and Wn (f, In) may be
obtained in terms of the p−norms (p ∈ [1,∞)) , but we omit the details.
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4. Applications for the Operator Inequality

Let X be an arbitrary Banach space and L (X) the Banach space of all bounded
linear operators on X. We recall that if A ∈ L (X) then its operatorial norm is
defined by

‖A‖ = sup {‖Ax‖ : x ∈ X, ‖x‖ ≤ 1} .

We recall also that the series
(∑

n≥0
(tA)n

n!

)
converges absolutely and locally uni-

formly for t ∈ R. If we denote by etA its sum, then

(4.1)
∥∥etA

∥∥ ≤ et‖A‖, for all t ≥ 0.

Another definition of etA is given in the next section.
Proposition 1. Let X be a Banach space, A ∈ L (X) and 0 ≤ a < b < ∞. Then
for each s ∈ [a, b], we have:∥∥∥∥∥esA − 1

b− a

∫ b

a

etAdt

∥∥∥∥∥(4.2)

≤ 1
b− a

[
(2s− a− b) es‖A‖ +

1
‖A‖

(
ea‖A‖ + eb‖A‖ − 2es‖A‖

)]
.

Proof. We apply Theorem 1 with X replaced by L (X) and f (t) = etA. Note that
in this case the function f is continuously differentiable, so that it is not necessary
that X be a Radon-Nikodym space. We have, by (4.1), that∫ s

a

(t− a) ‖f ′ (t)‖ dt ≤ ‖A‖
∫ s

a

(t− a) et‖A‖dt

= (s− a) es‖A‖ − 1
‖A‖

(
ea‖A‖ − es‖A‖

)
,

and ∫ b

s

(b− t) ‖f ′ (t)‖ dt ≤ ‖A‖
∫ b

s

(b− t) et‖A‖dt

= − (b− s) es‖A‖ +
1
‖A‖

(
eb‖A‖ − es‖A‖

)
.

On adding the two above inequalities, we obtain the desired inequality (4.2).

Corollary 4. With the assumptions in Proposition 1, we have the following in-
equality

(4.3)

∥∥∥∥∥e a+b
2 A − 1

b− a

∫ b

a

etAdt

∥∥∥∥∥ ≤ 1
(b− a) ‖A‖

(
e

a
2 ‖A‖ − e

b
2‖A‖

)2

.

Let GL (X) be the subset of L (X) consisting of all invertible operators. It is
known that GL (X) is an open set in L (X).

Using (4.3), we may state the following result as well.
Corollary 5. Let A ∈ GL (X). Then the following inequality holds:∥∥∥∥Ae

a+b
2 A − 1

b− a

(
ebA − eaA

)∥∥∥∥ ≤ ‖A‖
∥∥∥∥e a+b

2 A − 1
b− a

A−1
(
ebA − eaA

)∥∥∥∥
≤ 1

b− a

(
e

a
2 ‖A‖ − e

b
2‖A‖

)2

.
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Proof. The first inequality is obvious. For the second inequality we remark that∫ b

a

etAdt = A−1
(
ebA − eaA

)
and apply Corollary 4.

Remark 5. As a consequence of Corollary 5, we can obtain the well-known in-
equality for real numbers ey ≥ 1 + y for each y ∈ R. Indeed, if A = x ∈ (0,∞),
then ∣∣∣∣xe

a+b
2 x − 1

b− a

(
ebx − eax

)∣∣∣∣ ≤ 1
b− a

(
e

a
2 x − e

b
2 x
)2

.

which is equivalent to

e
a−b
2 x ≥ 1 +

a− b

2
x and e

b−a
2 x ≥ 1 +

b− a

2
x.

Another example of an operatorial inequality is embodied in the following propo-
sition.

Proposition 2. Let X be a Banach space, A ∈ L (X) and 0 ≤ a < b < ∞. Then
for each s ∈ [a, b], we have:

(4.4)

∥∥∥∥∥sin (sA)− 1
b− a

∫ b

a

sin (tA) dt

∥∥∥∥∥ ≤
1

4
+

(
s− a+b

2

b− a

)2
 (b− a) ‖A‖ .

Proof. We apply the first inequality from Theorem 1 for

f (t) = sin (tA) :=
∞∑

n=0

(−1)n (tA)2n+1

(2n + 1)!
.

We have ∥∥(sin (tA))′
∥∥ = ‖A cos (tA)‖ ≤ ‖A‖ .

Then ∫ s

a

(t− a) ‖f ′ (t)‖ dt ≤ ‖A‖ · (s− a)2

2

and ∫ b

s

(b− t) ‖f ′ (t)‖ dt ≤ ‖A‖ · (s− b)2

2
.

On adding the above inequalities, we obtain the desired result (4.4). Here, cos (tA) =∑∞
n=0 (−1)n (tA)2n

(2n)! .

Corollary 6. With the assumptions as in Proposition 2, we have the following
inequality: ∥∥∥∥∥sin

(
a + b

2
·A
)
− 1

b− a

∫ b

a

sin (tA) dt

∥∥∥∥∥ ≤ (b− a)2

4
· ‖A‖ .
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If in addition A ∈ GL (X), then∥∥∥∥A sin
(

a + b

2
·A
)

+
1

b− a
[cos (bA)− cos (aA)]

∥∥∥∥
≤ ‖A‖ ·

∥∥∥∥sin(a + b

2
·A
)

+
1

b− a
A−1 [cos (bA)− cos (aA)]

∥∥∥∥
≤ (b− a)2

4
· ‖A‖2

.

Remark 6. In particular, for A = x ∈ R\ {0}, it follows that

(4.5)

∣∣∣∣∣sin
(

a + b

2
· x
)[

1−
sin (b−a)x

2
(b−a)x

2

]∣∣∣∣∣ ≤ (b− a)2

4
|x| .

The similar result for cos (tA) will be summarised next.
Proposition 3. With the above notations, we have:

(i)
∥∥∥∥cos (sA)− 1

b− a

∫ b

a
cos (tA) dt

∥∥∥∥ ≤
1

4
+

(
s− a+b

2

b− a

)2
 (b− a) ‖A‖ .

(ii)
∥∥∥∥cos

(
a + b

2
·A
)
− 1

b− a

∫ b

a
cos (tA) dt

∥∥∥∥ ≤ (b− a)2

4
‖A‖ .

If, in addition A ∈ GL (X), then

(iii)
∥∥∥∥A cos

(
a + b

2
·A
)
− 1

b− a
[sin (bA)− sin (aA)]

∥∥∥∥
≤ ‖A‖

∥∥∥∥cos
(

a + b

2
·A
)
− 1

b− a
·A−1 [sin (bA)− sin (aA)]

∥∥∥∥
≤ (b− a)2

4
‖A‖2

.

Remark 7. In particular, for A = x ∈ R\ {0}, it follows that

(4.6)

∣∣∣∣∣cos
(

a + b

2
· x
)
·

[
1−

sin (b−a)
2 · x

(b−a)
2 · x

]∣∣∣∣∣ ≤ (b− a)2

4
|x| .

Remark 8. Taking the square of both sides of the inequalities (4.5) and (4.6) and
then adding them, we obtain∣∣∣∣∣1− sin (b−a)

2 · x
(b−a)

2 · x

∣∣∣∣∣ ≤
√

2
4

(b− a)2 |x| , for all x ∈ R∗.

In particular, if b− a = 2, then

|sinx− x| ≤
√

2x2, for all x ∈ R,

which is an interesting scalar inequality.
Another type of example is considered in the following.
A densely defined linear operator A on a Banach space X is said to be sectorial

[13] if (0,∞) ⊂ ρ (A) and there exists M = MA > 0 such that

(4.7) ‖R (t, A)‖ ≤ M

1 + t
, for all t > 0,

where R (t, A) := (tI −A)−1 is the resolvent operator of A.
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Proposition 4. Let A be a sectorial operator on a Banach space X. Then for
0 ≤ a ≤ s ≤ b < ∞, we have:

(i)
∥∥R2 (s,A)−R (a,A)R (b, A)

∥∥ ≤ M3

(b−a)(s+1)2
·
[

(s−a)2

a+1 + (b−s)2

b+1

]
;

and
(ii)

∥∥R2
(

a+b
2 , A

)
−R (a,A) R (b, A)

∥∥ ≤ M3(b−a)
(a+1)(b+1)(a+b+2) .

Proof. By the resolvent identity

R (t, A)−R (s,A) = (s− t)R (t, A) R (s,A) ,

it follows that
d

dt
[R (t, A)] = −R2 (t, A) .

We apply Theorem 1 in Section 2 for f (t) = R2 (t, A) giving, from (4.7)∥∥∥∥ d

dt

[
R2 (t, A)

]∥∥∥∥ =
∥∥−2R3 (t, A)

∥∥ ≤ 2M3

(t + 1)3
.

Further,

1
b− a

[∫ s

a

(t− a) ‖f ′ (t)‖ dt +
∫ b

s

(b− t) ‖f ′ (t)‖ dt

]

≤ 2M3

b− a

[∫ s

a

(t− a)
(1 + t)3

dt +
∫ b

s

(b− t)
(1 + t)3

dt

]

≤ 2M3

b− a

[
(s− a)2

2 (a + 1) (s + 1)2
+

(b− s)2

2 (b + 1) (s + 1)2

]

≤ M3

(b− a) (s + 1)2

[
(s− a)2

a + 1
+

(b− s)2

b + 1

]
.

Statement (i) is thus proved. Taking s = a+b
2 gives (ii).

Remark 9. If A = x ∈ (−∞, 0), then we can choose Mx = sup
t>0

[
t + 1
t− x

]
= − 1

x
and

from (i) we obtain the interesting inequality:

(a− x) (b− x) (a + b− 2x)2 ≥ (−x)3 (b− a) (a + 1) (b + 1) (a + b + 2) ,

for all x ≤ 0 and all 0 ≤ a < b < ∞.

5. Applications for Vector-Valued Differential Equations

Many problems of mathematical physics can be modelled using the following
abstract Cauchy problem

(ACPx)

 u̇ (t) = Au (t) , t ≥ 0

u (0) = x ,

where A is a linear, usually unbounded, operator with domain D (A) on a Banach
space X. For every particular mathematical physics problem, X is a suitable Ba-
nach space of functions and A is a partial differential operator. By the classical solu-
tion for (ACPx), we mean a continuous differentiable function ux : [0,∞) → D (A)
which satisfies (ACPx). A continuous function u : [0,∞) → X is said to be a mild
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solution for (ACPx) if there exists a sequence (xn)n∈N with xn ∈ D (A) such that for
each n the problem (ACPx) has a classical solution uxn

(·) with lim
n→∞

uxn
(t) = u (t)

locally uniform on [0,∞). We say that the abstract Cauchy problem associated with
a linear operator A is well-posed if for each initial value x ∈ D (A) the problem
(ACPxn) has a unique classical solution. An example of an operator A for which
the associated abstract Cauchy problem is well-posed is presented in the following.

Let X be a Banach space and L (X) the space of all bounded linear operators. We
denote by ‖·‖ the norms of vectors and operators. A family T = {T (t)}t≥0 ⊂ L (X)
is called a semigroup of operators if the following conditions hold:

(S1) T (0) = I, I is the identity operator on X;
(S2) T (t + s) = T (t) ◦ T (s) for all t, s ≥ 0.

A semigroup T is said to be uniformly continuous if the mapping t 7−→ T (t) :
[0,∞) → L (X) is continuous at t0 = 0 (or equivalently, is continuous on R+) in
the operatorial norm in L (X).

A semigroup T is said to be strongly continuous (or C0−semigroup) if the map-
ping t 7−→ T (t) x : [0,∞) → X is continuous at t0 = 0 (or equivalently on R+) for
all x ∈ X. It is well known [12] that if T is a uniformly continuous semigroup, then
there exists an operator A ∈ L (X) such that

T (t) = etA :=
∞∑

n=0

(tA)n

n!
; t ≥ 0.

In this case, the problem (ACPx) associated with A has a unique classical (or mild)
solution and it is given by

ux (t) = u (t) = etAx, t ≥ 0.

If T is a C0−semigroup, then its generator A with its domain D (A) are given by

D (A) =
{

x ∈ X : lim
t↓0

T (t) x− x

t
exists in X

}
and

Ax = lim
t↓0

T (t) x− x

t
, x ∈ D (A) .

It is easy to see that the function t 7→ T (t) x is differentiable on R+ for all x ∈ D (A).
It is well-known ([13], [12]) that the generator A is a closed and densely defined
operator (i.e., D (A) is dense in X). In this case, the abstract Cauchy problem
associated with A is well-posed. The classical solution is given by ux (t) = T (t)x
for x ∈ D (A) and the mild solution is given by u (t) = T (t) x for x ∈ X. The
converse result is also true.

For example, if A is a linear operator with domain D (A), the abstract Cauchy
problem associated with A is well-posed and the resolvent set of A (ρ (A)) is
nonempty, then A is the generator for a strongly continuous semigroup T ( [13],
[12]). Every C0−semigroup T has a growth bound. That is, there exist M > 0 and
ω ∈ R such that

(5.1) ‖T (t)‖ ≤ Meωt, for all t ≥ 0.
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Let f : R+ → X be a locally Bochner integrable function. We consider the
inhomogeneous abstract Cauchy problem

(A, f, 0, x)

 u̇ (t) = Au (t) + f (t) , t ≥ 0

u (0) = x ,

where A is the generator of a strongly continuous semigroup T and x ∈ X.
The function T (t− ·) f (·) is measurable, because if {fn} is a sequence of sim-
ple functions, then gn (·) := T (t− ·) fn (·) are measurable for eachn ∈ N (we
used the strong continuity of T), and gn (s) → T (t− s) f (s) as n → ∞, a.e. on
[0, t]. Moreover, the function T (t− ·) f (·) is Bochner integrable on [0, t], because
‖T (t− ·) f (·)‖ ≤ Meωt ‖f (·)‖ and the function f is Bochner integrable on [0, t].

The mild solution of the problem (A, f, 0, x) can be represented by

u (t) = x + (B)
∫ t

0

T (t− s) f (s) ds, t ≥ 0, x ∈ X,

We may state the following theorem in approximating the mild solutions of the
inhomogeneous system (A, f, 0, x).

Theorem 4. Let 0 = λ0 < λ1 < · · · < λn−1 < λn = 1 and µi ∈ [λi, λi+1](
i = 0, n− 1

)
. If either

(i) T is a uniformly continuous semigroup and f is a differentiable continuous
X−valued function (X is an arbitrary Banach space)
or

(ii) T is a strongly continuous semigroup, f is differentiable continuous and
f (t) ∈ D (A) for all t ≥ 0, and Af (·) is a locally bounded function on
[0,∞)

hold, then the mild solution u (·) of (A, f, 0, x) can be represented as

(5.2) u (t) = x + Sn (λ,µ, t) + Qn (λ,µ, t) , t ≥ 0,

where

(5.3) Sn (λ,µ, t) := t
n−1∑
i=0

(λi+1 − λi) T [(1− µi) t] f (µit)

and the remainder Qn (λ,µ, t) satisfies, in the first case, the estimates

‖Qn (λ,µ, t)‖(5.4)

≤ t2e‖A‖t
[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

]
×

n−1∑
i=0

[
1
4

(λi+1 − λi)
2 +

(
µi −

λi + λi+1

2

)2
]

≤ 1
2
t2e‖A‖t

[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

] n−1∑
i=0

(λi+1 − λi)
2

≤ 1
2
ν (λ) t3e‖A‖t

[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

]
,
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where ν (λ) := max
i=0,n−1

(λi+1 − λi), and, in the second case, the estimates

‖Qn (λ,µ, t)‖(5.5)

≤ Mt2eωt
[
‖|Af (·)|‖[0,t],∞ + ‖|f ′|‖[0,t],∞

]
×

n−1∑
i=0

[
1
4

(λi+1 − λi)
2 +

(
µi −

λi + λi+1

2

)2
]

≤ 1
2
t2Meωt

[
‖|Af (·)|‖[0,t],∞ + ‖|f ′|‖[0,t],∞

] n−1∑
i=0

(λi+1 − λi)
2

≤ 1
2
ν (λ) t3eωt

[
‖|Af (·)|‖[0,t],∞ + ‖|f ′|‖[0,t],∞

]
,

for each t ∈ [0,∞), where ω is a positive number such that the estimate (5.1) holds.

Proof. For a fixed t > 0, consider the function g (s) := T (t− s) f (s), s ∈ [0, t].
Then g is differentiable on (0, t) and

dg (s)
ds

=
d

ds
[T (t− s) f (s)] = −AT (t− s) f (s) + T (t− s) f ′ (s) ,

for each s ∈ (0, t).
We have, in the first case, that∥∥∥∥∣∣∣∣dg

ds

∣∣∣∣∥∥∥∥
[0,t],∞

≤ ‖|AT (t− ·) f (·)|‖[0,t],∞ + ‖|T (t− ·) f ′ (·)|‖[0,t],∞

≤ ‖A‖ e‖A‖t ‖|f |‖[0,t],∞ + e‖A‖t ‖|f ′|‖[0,t],∞

= e‖A‖t
[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

]
,

for any t ∈ [0,∞).
In the second case, we have in a similar manner, that∥∥∥∥∣∣∣∣dg

ds

∣∣∣∣∥∥∥∥
[0,t],∞

≤ Meωt
[
‖|Af (·)|‖[0,t],∞ + ‖|f ′ (·)|‖[0,t],∞

]
,

for each t ∈ [0,∞).
Now, consider the partitioning of the interval [0, t] given by xi := λit

(
i = 0, n− 1

)
where 0 = λ0 < λ1 < · · · < λn−1 < λn = 1 and the intermediate points
ξi = µit

(
i = 0, n− 1

)
where µi ∈ [λi, λi+1]

(
i = 0, n− 1

)
. If we apply Theo-

rem 3 for a = 0, b = t, xi, ξi

(
i = 0, n− 1

)
and g as defined above, then we deduce

the representation (5.2) and the remainder Qn (λ,µ, t) satisfies either the estimate
(5.4) or the estimate (5.5).

If we define the quadrature formula

(5.6) Mn (λ, t) := t

n−1∑
i=0

(λi+1 − λi) T

[(
1− λi + λi+1

2

)
t

]
f

(
λi + λi+1

2
· t
)

,

then we may state the following corollary.
Corollary 7. Let 0 = λ0 < λ1 < · · · < λn−1 < λn = 1. If either (i) or (ii) in
Theorem 4 hold, then the mild solution u (·) of (A, f, 0, x) can be represented as

(5.7) u (t) = x + Mn (λ, t) + Ln (λ, t) ,
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where Mn (λ, t) is as given in (5.6) and the remainder Ln (λ, t) satisfies, in the
first case, the estimates

‖Ln (λ, t)‖ ≤ 1
4
t2e‖A‖t

[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

] n−1∑
i=0

h2
i(5.8)

≤ 1
4
t3ν (h) e‖A‖t

[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

]
,

where hi := λi+1 − λi > 0
(
i = 0, n− 1

)
, and, in the second case, the estimates:

‖Ln (λ, t)‖ ≤ 1
4
Mt2eωt

[
‖|Af (·)|‖[0,t],∞ + ‖|f ′|‖[0,t],∞

] n−1∑
i=0

h2
i(5.9)

≤ 1
4
Mν (h) t3eωt

[
‖|Af (·)|‖[0,t],∞ + ‖|f ′|‖[0,t],∞

]
for each t ∈ (0,∞).

Remark 10. In practical applications, it is easier to consider a uniform partition-
ing of [0, t] given by

En : xi =
(

i

n

)
· t, i = 0, n,

and then (5.6) becomes

(5.10) Mn (t) :=
t

n

n−1∑
i=0

T

[(
2n− 2i− 1

2n

)
t

]
f

[(
2i + 1

2n

)
t

]
.

In this case, we have the representation of u (·) given by

(5.11) u (t) = x + Mn (t) + Vn (t) ,

where the approximation Mn (·) is as defined above in (5.10) and the remainder
Vn (·) satisfies the error bounds

(5.12) ‖Vn (t)‖ ≤ 1
4n

t3e‖A‖t
[
‖A‖ |‖f‖|[0,t],∞ + |‖f ′‖|[0,t],∞

]
in the first case, and

(5.13) ‖Vn (t)‖ ≤ 1
4n

Mt3eωt
[
|‖Af (·)‖|[0,t],∞ + |‖f ′‖|[0,t],∞

]
in the second case, for each t ∈ [0,∞).

6. Numerical Examples

Let X = R2, x = (ξ, η) ∈ R2, ‖x‖2 =
√

ξ2 + η2. We consider the linear,
2-dimensional, inhomogeneous differential systems

u̇1 (t) = u1 (t) + sin t
t ≥ 0

u̇2 (t) = −u2 (t) + cos t

u1 (0) = u2 (0) = 0

.
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If we let A =
[

1 0
0 −1

]
, f (t) = (sin t, cos t), x0 = (0, 0) and identify (ξ, η) by(

ξ
η

)
, then the above system is the Cauchy problem (A, f, 0, x0). We have: etA =(

et 0
0 e−t

)
,

u (t) =
∫ t

0

e(t−s)Af (s) ds(6.1)

=
(∫ t

0

e(t−s) sin sds,

∫ t

0

e−(t−s) cos sds

)
=

(
1
2
(
et − sin t− cos t

)
,
1
2
(
sin t + cos t− e−t

))
.

Now, if we consider

M̃n (t) :=
t

n

n−1∑
i=0

[
e[(

2n−2i−1
2n )t] sin

[(
2i + 1

2n

)
t

]
, e−[( 2n−2i−1

2n )t] cos
[(

2i + 1
2n

)
t

]]

then, by (5.11), the exact solution u (·) given in (6.1) may be represented by

(6.2) u (t) = M̃n (t) + Ṽn (t) for any t ≥ 0.

and, by (5.12), we know that

(6.3) lim
n→∞

∥∥∥Ṽn (t)
∥∥∥

2
= 0 for each t ≥ 0.

We have

Bn (t) : =
∥∥∥Ṽn (t)

∥∥∥
2

=


[

1
2
(
et − sin t− cos t

)
− t

n

n−1∑
i=0

e[(
2n−2i−1

2n )t] sin
[(

2i + 1
2n

)
t

]]2

+

[
1
2
(
sin t + cos t− e−t

)
− t

n

n−1∑
i=0

e−[( 2n−2i−1
2n )t] cos

[(
2i + 1

2n

)
t

]]2


1
2

.

If we implement Bn (·) for n = 106 and t ∈ [0, 1], then the plot of the error in
approximating the exact value of u (·) by its approximation M̃n (·) on the interval
[0, 1] is embodied in Figure 1.
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Let us now consider another system

(6.4)


u̇1 (t) = −u1 (t) + sin t

u̇2 (t) = −2u2 (t) + cos t

u1 (0) = u2 (0) = 0.

.

The solution of this system is given by

(6.5) u (t) =
(

1
2
(
e−t + sin t− cos t

)
,
1
5
(
−2e−2t + sin t + 2 cos t

))
.

Now, if we consider

M̃n (t) :=
t

n

n−1∑
i=0

[
e−[( 2n−2i−1

2n )t] sin
[(

2i + 1
2n

)
t

]
, e−2[( 2n−2i−1

2n )t] cos
[(

2i + 1
2n

)
t

]]
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then by (5.11) the exact solution of the system (6.4), given in (6.5) may be repre-
sented as in (6.2), and by (5.13), we know that

lim
n→∞

∥∥∥Ṽn (t)
∥∥∥

2
= 0

for any t on [0,∞). We have

Bn (t) : =
∥∥∥Ṽn (t)

∥∥∥
2

=


[

1
2
(
et − sin t− cos t

)
− t

n

n−1∑
i=0

e−[( 2n−2i−1
2n )t] sin

[(
2i + 1

2n

)
t

]]2

+

[
1
5
(
−2e−2t + sin t + 2 cos t

)
− t

n

n−1∑
i=0

e−2[( 2n−2i−1
2n )t] cos

[(
2i + 1

2n

)
t

]]2


1
2

.

If we implement Bn (·) for n = 103, then the plot of the error in approximating the
exact value u (·) by its approximation M̃n (·) on the interval [0, 100] is embodied in
Figure 2.
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[12] R. NAGEL (Ed.), One-Parameter Semigroups of Positive Operators, Springer Lect. Notes

in Math., 1184 (1986).
[13] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Springer Verlag, (1983).
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