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ON WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR
OPERATORS AND VECTOR-VALUED FUNCTIONS

N.S. BARNETT, C. BUSE, P. CERONE, AND S.S. DRAGOMIR

ABSTRACT. Some weighted Ostrowski type integral inequalities for operators
and vector-valued functions in Banach spaces are given. Applications for linear
operators in Banach spaces and differential equations are also provided.

1. INTRODUCTION

In [12], Pecari¢ and Savié¢ obtained the following Ostrowski type inequality for
weighted integrals (see also [7, Theorem 3)):

Theorem 1. Let w : [a,b] — [0,00) be a weight function on [a,b]. Suppose that
f:a,b] — R satisfies

(1.1) lf ()= f(s)| < N|t—s|”, forallt,s € [a,b],

where N >0 and 0 < o < 1 are some constants. Then for any x € [a, b]

J2w (t) f () dt
[P (t) dt

Further, if for some constants ¢ and A

oy Jalt—alw(tydr
- [P w (t) dt

a

(1.2) ‘f(x) -

0<c<w(t)< e, forall te]a,b],

then for any x € [a,b], we have

CJw(t) f (1) dt  ML(n)J ()
(13) |f O e | T@-T@ @
where
1 a+b[1”
L(x)—b(b—a)%—‘ ~-—3 ]
and ) )
—a)'t® —x)'te
RS O ) e U

1+a)(b—a)
The inequality (1.2) was rediscovered in [4] where further applications for differ-
ent weights and in Numerical Analysis were given.

For other results in connection to weighted Ostrowski inequalities, see [3], [8]
and [10].
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In the present paper we extend the weighted Ostrowski’s inequality for vector-
valued functions and Bochner integrals and apply the obtained results for operato-
rial inequalities and linear differential equations in Banach spaces. Some numerical
experiments are also conducted.

2. WEIGHTED INEQUALITIES

Let X be a Banach space and —oo < a < b < co. We denote by £ (X) the
Banach algebra of all bounded linear operators acting on X. The norms of vectors
or operators acting on X will be denoted by ||-|| .

A function f : [a,b] — X is called measurable if there exists a sequence of simple
functions f,, : [a,b] — X which converges punctually almost everywhere on [a, b] at
f. We recall also that a measurable function f : [a,b] — X is Bochner integrable
if and only if its norm function (i.e. the function t — | f (¢)] : [a,b] — Ry) is
Lebesgue integrable on [a, b].

The following theorem holds.

Theorem 2. Assume that B : [a,b] — L (X) is Hélder continuous on [a,b], i.e.,
(2.1) |B(t)—B(@s)| < HI|t—s|® forall t,sé€[a,b],

where H > 0 and o € (0, 1].
If f : [a,b] — X is Bochner integrable on [a,b], then we have the inequality:

b b
(2.2) B(t)/ f(s)ds—/ B(s) f(s)ds
b
< H [ lt-sllf () ds
b— a+1 _ a+1
OO O il # FE L (o X);
b qa+1 _ qa+1]4q
< Hx [( A ] Wllayy # p>1 L+d=1
and f € L,([a,b];X);
1 b1
0=+ |- Wl

for any t € [a,b].

Proof. Firstly, we prove that the X —valued function s — B (s) f (s) is Bochner
integrable on [a,b]. Indeed, let (f,) be a sequence of X —valued, simple functions
which converge almost everywhere on [a,b] at the function f. The maps s —
B (s) fn (s) are measurable (because they are continuous with the exception of a
finite number of points s in [a,b]). Then

1B (5) fn (s) = B(s) [ ()| < |IB(s)[[[fn (s) = f ()| = O a.e. on [a,b]

when n — oo so that the function s +— B (s) f (s) : [a,b] — X is measurable. Now,
using the estimate

1B (s) f(s)| < sup B [[f(s)], forallsela,b],
§€la,b]
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it is easy to see that the function s — B (s) f (s) is Bochner integrable on [a, b].
We have successively

/f ds—/ () f (s)ds
/ I(B () £ ()] ds

/|| DI (s Hds<H/ 1t — s I/ ()]l ds = M (1

(B (t)—B(s)) f(s)ds

IN

for any t € [a, b], proving the first inequality in (2.2).
Now, observe that

M (t)

IA

b
H e | 1= ol ds

(b o t)Oé+1 + (t . a)aJrl
a+1

H Il gy

and the first part of the second inequality is proved.
Using Holder’s integral inequality, we may state that

H (/abu—swads); (/ IIf(s)IlpdsY

- [(b . t>qa+1 (- a)qa+1

M (t)

IA

qo+1

1
1 /1M ae)

proving the second part of the second inequality.
Finally, we observe that

M(t) < H sup |t—s|" / I1f ()l ds
s€la,b]
= Hmax{(b—)",(t—a)"} [ e
1 a+b
= H{2(b—a)+‘t— 5 ] 1 M fa,00,1

and the theorem is proved. I

The following corollary holds.

Corollary 1. Assume that B : [a,b] — L(X) is Lipschitzian with the constant
L > 0. Then we have the inequality

t)/abf(S)ds—/abB(S)f(S)ds

b
< L/ 1t — S| |17 ()] ds

(2.3)
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:i(b—a)2+<t—a+b>

M0 @ f € Lo ([a,0];X);

<Lxd [0—=0) + @t —a) .
- H|f|||[a7b]7p if p>1, %Jr%:l
(

qg+1
and f €L,

a+b

O B TTFT

for any t € [a,b].

Remark 1. If we choose t = “£2 in (2.2) and (2.3), then we get the following
midpoint inequalities:

b b
(2.4) B(“‘;b>/ f(s)ds—/ B(s)f(s)ds
bOL
< — 22 £ ()l ds
g O Wl S € L (0 8):):
< Hx{| — - s, i p>1 E+l=i
2% (qa + 1)
and f € L, ([a,b]; X);
1 a
Qj(b*a) |||fH|[u,,b],1
and
a+b b b
(2.5) B( ! )/ f(s)ds—/ B(s) f (s)ds
b
< o[ ‘”b\nf )] ds
1
~ (b= ) 11l iff € Lo (b X);:
4
< Ixd — - Wy, ¥ p>1 i+i=1
2(g+1)"
and fELP([a’b]vX)7
1
9 (b—a) H|f|||[a,b],1

respectively.
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Remark 2. Consider the function U, : [a,b] — R, ¥, (t) := f; [t —s| || f (s)| ds,
a € (0,1). If f is continuous on [a,b], then U, is differentiable and

t b
=50 - i{l@@ﬂU@wwa[@wﬂﬂ@w%

e, e,
B [/a (tfs)l_o‘d /t (st)l_ad].
Ifto € (a,b) is such that

S VO] I i IO
/a (to—S)lads_/to (s—to)lfads

and V', (+) is negative on (a,ty) and positive on (to,b), then the best inequality we
can get in the first part of (2.2) is the following one

B(to)/abf(S)ds—/abB(S)f(S)ds

If a =1, then, for

b
(26) <t [ oI I (5] ds.

b
W (1) ::/ it — s 117 ()] ds,

we have
dv t b
dr = [ Wrenas- [l te @),
d>W (t
dt2() = 2|If ()] >0, te(ab),

which shows that ¥ is convex on (a,b).
Ift,, € (a,b) is such that

/atm 1f ()]l ds = /m 1f ()] ds,

then the best inequality we can get from the first part of (2.3) is

b b b
(2.7) B (tm)/ f(s)ds— / B(s) f(s)ds| < L/ sgn (s —tm)s||f (s)] ds.
Indeed, as
b
ok [ =l 17 @)

b tm b
- /Itm*SIIIf(S)IIdSZ/ (tm*S)IIf(S)IIdSJr/t (5 — tu) £ ()] ds

m

tm b b tm
%(/ ||f(8)|\ds—/t ||f(s)||d8>+/t sllf(s)llds—/ SIf ()] ds

b tm b
- /tsllf(s)llds—/ st(s)llds=/sgn(s—tm)sllf(s)lld&

then the best inequality we can get from the first part of (2.8) is obtained for t =
tm € (a,b).
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We recall that a function F : [a,b] — £ (X) is said to be strongly continuous if
for all x € X, the maps s — F (s)z : [a,b] — X are continuous on [a,b]. In this
case the function s — || B (s)|| : [a,b] — Ry is (Lebesgue) measurable and bounded
b

x
| —

([6]). The linear operator L = [ F (s)ds (defined by Lz := fa F (s)zds for all

x € X) is bounded, because

b
L] < (/ ||F(s)||ds> || forall z € X.

In a similar manner to Theorem 2, we may prove the following result as well.

a

Theorem 3. Assume that f : [a,b] — X is Hélder continuous, i.e.,
(2.8) If @) = f(s)| <Kl|t—s® forall tsea,b],

where K > 0 and § € (0,1].
If B : [a,b] — L (X) is strongly continuous on [a,b], then we have the inequality:

(/abms)ds)f(t)—/abms)f(s)ds

(2.9)

qB+1

b
< K [li-sP 1B ds
(b=t)? 1t . ) .
THIBHIQZ,L if |B ()| € Lo ([a,b] ; RL) ;
1
_4)yaB+1 —a aB+17 g '
< KX [(b )7+ 4 (t—a) } H|B|”[a,b],p i el %4’%:1

and ||B ()| € Ly ([a,0] s Ry) 5

a B
(3 (0—a)+ |t — 222] 11BI[l0,01.1
for any t € [a,b].
The following corollary holds.

Corollary 2. Assume that f and B are as in Theorem 3. If, in addition, f: B (s)ds
is invertible in L (X)), then we have the inequality:

b -1
(2.10) £t - ( / B(s)ds) / B(s) f () ds
b |
< K (/ B(s)ds> /|t_sw||3<s>||ds

for any t € [a,b].
Remark 3. It is obvious that the inequality (2.10) contains as a particular case
what is the so called Ostrowski’s inequality for weighted integrals (see (1.2)).

3. INEQUALITIES FOR LINEAR OPERATORS

Let 0 <a<b<ooand A € L(X). We recall that the operatorial norm of A is
given by
[A]l = sup {[|Az| : [lz] < 1}.
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The resolvent set of A (denoted by p(A)) is the set of all complex scalars A for
which AI — A is an invertible operator. Here I is the identity operator in £ (X). The
complementary set of p (A) in the complex plane, denoted by o (A), is the spectrum

of A. Tt is known that o (A4) is a compact set in C. The series (ano (tA)n)

n!
converges absolutely and locally uniformly for ¢ € R. If we denote by e/ its sum,
then

etA]| < e4l ¢ e R.

Proposition 1. Let X be a real or complex Banach space, A € L(X) and (3 be a
non-null real number such that —3 € p(A). Then for all 0 < a < b < oo and each
s € [a,b], we have

el — ePa

B

1 a+b\’
< NAlIAL | Z (p — a)? —
< A oo e (s

Proof. We apply the second inequality from Corollary 1 in the following particular
case.

(3.1)

eSA (BT + A [eb(mm) _ ea(BIJrA)} H

- max {eﬁb,eﬁa} .

B(r):=¢e", f(r)=¢"2, 7€[ab], z€X.

For all £, 7 € [a, b] there exists an « between ¢ and 7 such that

" =) 4 - (ad)”
1B@O-BI = |3 =g -may
n=1 ' n=0 ’
< (AN - 16 = nl < A AT g =)
The function 7 +— €™ is thus Lipschitzian on [a, b] with the constant L := || A|| e> 14l

On the other hand we have

b b b
/ e (FTr)dr = / e (T Ix) dr :/ eTATBD 1 dr
= (A+pD7" [eb(AJrﬁz) _ ea(A+ﬁI)} z,
and

I lgoe = sup_ ™| = max {6, e} - o).
T€|a,

Placing all the above results in the second inequality from (2.3) and taking the
supremum for all x € X, we will obtain the desired inequality (3.1). I

Remark 4. Let A € L(X) such that 0 € p (A). Taking the limit as 3 — 0 in (3.1),
we get the inequality

||(b o a) esA o A71 [ebA o 6aA} H
1 a+b\’
bIAN . | 2 (p — )2 _
< lAle L(b ) +(s : )

where a,b and s are as in Proposition 1.

)
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Proposition 2. Let A € L(X) be an invertible operator, t > 0 and 0 < s < t.

Then the following inequality holds:
253 4 2t3 — 3st2

2
o | i

t
5 sin (sA) — A72 [sin (tA) — tAcos (tA)] H <
In particular, if X =R, A=1 and s =0 it follows the scalar inequality

‘ .
w

|sint — tcost] < —, forallt > 0.

~ w

Proof. We apply the inequality from (2.3

A 2n+1
(r4) T2>0,

B (7) =sin(7A4) := Z (=" e T2
n=0

and

(3.3) f(r)=71-z, forfixed z € X.

For each &,n € [0,t], we have
e 2n
(S i)

1B (§) =B M)

n=0
IAl[1€ —nl - IICOb(aA H < [ A€ =nl,

IN

where « is a real number between £ and 7, i.e., the function 7 — B (7) :

L (X) is | A|| —Lipschitzian.
Moreover, it is easy to see that

/0 B (1) f(r)dr = A=%[sin (tA) — tAcos (tA)]| =

and
(3.4) / s — 7] |f ()| dr =

253 4 2t3 — 3st2
6

]| -

Al

in the following particular case:

R.}rﬂ

Applying the first inequality from (2.3) and taking the supremum for € X with

lz]| <1, we get (3.2). B

4. QUADRATURE FORMULAE

Consider the division of the interval [a, ] given by

(4.1) Inia=tg<t1 < - <tp_1 <tp,=0b

and h; :=t;y1—t;, v (h) := max_h;. For the intermediate points & := (507 ..
1

1=0,n—

with &; € [, tiv1], i = 0,n — 1, define the sum
i+1
(4.2) SW (B, f:1,,¢) : Z B(¢ / f(s)ds.

Then we may state the following result in approximating the integral

/abB(s)f(s) s,

based on Theorem 2.

7£n—1)
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Theorem 4. Assume that B : [a,b] — L (X) is Holder continuous on [a,b], i.e., it
satisfies the condition (2.1) and f : [a,b] — X 1is Bochner integrable on [a,b]. Then
we have the representation

b
(4.3) / B(s)f (s)ds = 8 (B, f: 1,.€) + RV (B, f:1,.€),

where S (B, f; I, €) is as given by (4.2) and the remainder R (B £ In, &) sat-
isfies the estimate

| . 118

a+1 a+1
a+1 111 1,00 ; [(t”l —&)TH &) }
— L s { f [( 1 — &)™ (6 - t*)qaﬂ} }é
T a,b], 7 7 T ’
< Hx (g + 1) .t =t 1,1
p>1, P + ri 1
1 tiv1 + 6 []°
Lo+ max e, et } 1 Mo
1 n—lha+1
? H|f|||[a,b],oo igo i
1
< Hx 1||f|||[ab],p<z htm+1> , p>17]%+%:1
(qa+1)°
1 tign +t]]°
g+ max e - LISy,
1 K
o1 M1Ma,py.00 I ()]
(b—a)"
<
< Hx 7;|Hf|“[ab],p[ v(h)]"
(qa+1)7
1 Ml a,ep,2 [ ()] -
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Proof. Applying Theorem 4 on [z;, ;41] (i = 0,n — 1), we may write that

/ B S5 ds - B / s ds

i i

(tir — )T+ (g, — )™
a+1 istit1],00
_ +1 11 1
< Hx (i1 — &)1 + (& — )" |°
qa_|_1 [h i+1],P
1 iy + 6 []°
3 (s = 8-+ 6= 555 A

Summing over ¢ from 0 to n — 1 and using the generalised triangle inequality we
get

|RD B fi18)|

z+1

n—1 it1 i+1
<y [T e r@a-ne [T i
1 n—1 « a
a1 ZEO {(ti-&-l —&) T (6 - t) +1} LM 00,00
1 n_l atl atl
< Hx [zml €07 4 (€ — )" ]

Ctipi
2

n—1 1
> [hri- 3
i=0 L2

Now, observe that

} Tra—

[

n—

[t = €0 (& = ™ 11l 11100
=0

1110100 Z [(tien =€) 4 (& = t)™ ]

IN

< MM gy o0 Zh?“ <1 M0 (0= @) [ ()]
i=0

Using the discrete Holder inequality, we may write that
1
[n

(tipr — &)+ (& - tz‘)qaﬂl ‘?
< [i([(m & + (- t01]") ] [Z A, .. ]

=0

1

[tistita],p

~
Il
=]

=
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{"1[ (tisr — &)1+ (& —ty) ™™ } </ f(t ||pd3>

n—1 %
< (Z h;]ale)

=0

< (b—a)t 1]l v ()

Finally, we have

n—1

7,+1+t
I e
1 tiy1 + 6 [
< [_max hi—f—_max El—+12] |||f|||[a,b],1
i=0,n—1 i=0,n—1
< [wm)® [a,8],1

and the theorem is proved. 1

The following corollary holds.
Corollary 3. If B is Lipschitzian with the constant L, then we have the represen-
tation (4.3) and the remainder RS}’ (B, f; I, &) satisfies the estimates:

(44 |[RY (B S8

1 n=1 9 n—-1 tiv1 +t; 2
111y [4 P R
_ 1
S g { S, (01— €07 6 -]}
p>1, %—F%: 1
1 1+1 +t
v+ e~ B EE g,
1 1h2
3 e S 1
1 L
< Lxq el (£ 1)
(q+ 1)« =0
1 i 1+t
v+ max [ = LB g,
1=0,n—1
1
S e (b= ) (B)
(b—a)7
S I 1l ()
g+1)7
11y )
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The second possibility we have for approximating the integral ff B(

embodied in the following theorem based on Theorem 3.

Theorem 5. Assume that f : [a,b] — X is Holder continuous, i.e.

s) f(s)dsis

, the condition

(2.8) holds. If B : [a,b] — L (X) is strongly continuous on [a,b], then we have the

representation:
b
(4.5) /’B(@f(@ds:SSMBMﬂL“s»+R§NBMﬁLu@,
where
n—1 ti1
(46) s .=y ([ Bes) e
i=0 Wt

and the remainder R%Q) (B, f;I,,,€) satisfies the estimate:

(4.7) HRSf) (B,f;In,E)H
ﬁ +1 1Bl a4, ;J [(tz‘+1 —&) (g - ti)ﬂH}
ST , {Z[( 41— )T (¢ t)ﬁH”
< KxQ (garni
p>1,
B8
1 tiv1 +1;
§zx(h) +i:rg,i)i1 & — Y } |||B|H[a,b],1
n—1 B+1
h:
5+1mn oo 2 i
1 1 ;
< Kx{ —— 1Bl {Ehﬁ+}, p>1, 5+
@+ni '
B8
1 tiv1 +1;
5u(h) +i213i>i1 §i — Y } 1Bl a,5),1
577 1Bl 0= ) b ()
b—a a
<
< Kx 55+$1mmmmw[umﬁ p>1, t+1=1
q q
1Bl jgp1 v (B

If we consider the quadrature

n—1 tit1
(1.9 By =S8 () [T s

Q|-

1

)
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then we have the representation
b
(49) [ B 6)ds =MD (B 151,) + R (B.1:1,).
a

and the remainder R\ (B, f; I,) satisfies the estimate:

(4.10) HRS) (B, f; 1)

1 n—1
—_— Aot
2(1 (Oé + 1) |||f|||[a,b],oo 1;) 7
1 -1 @
S Y el | S ] e b
2% (qoc + 1) 9 i=0
1 a
o (1Al 00,1
~ s (b @) 11l I )"
—(b— v
2 (a+1) " [a.b].00
(b — a)é oY
< Hx o ————|[lflly, VMW, p>1, 5 +5=1
2% (qau+ 1)
1 a
20 1Ml y,1 [ (R)]
provided that B and f are as in Theorem 4.
Now, if we consider the quadrature
n-l tit1 ) .
aiy  uP @)=Y ([ Beas) (),
i=0 i
then we also have
b
(4.12) / B(s) f(s)ds = MP) (B, f; 1) + R (B, fi 1),
a
and in this case the remainder satisfies the bound
(413)  |[RD (B, fi1)
1 n—1
1] h[‘f-‘rl
25 (ﬁ+1) |H H|[a,b],oo z;O (2
1 d @
< KXY 1Bl (T 07) L po 1 b
2 (gs+1)7 NS ’
1
bYa [v (h)]ﬁ H|B|||[a,b],1

13
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1

SIS (b= a) 1| Bl g,41,00 v (1)

(b—a)s

(414) <Kx{ LZO°
20 (g +1)=

|||B|H[a,b],p [V (h)]ﬁ7 D> 17 % +

1
55 I1Blla .1 v ()

provided B and f satisfy the hypothesis of Theorem 5.
Now, if we consider the equidistant partitioning of [a, b],

b_
En:ti:aJr( a>z i=0,n,
n

then M.V (B, f; E,) becomes

_ at B2 (it1)
(4.15) MY (B, f): ZB<a+< ;)bna)/+ o f(s)ds

a

oy
and then
b
(4.16) [ B (5)ds =2 (B.)+ B (B.1).
where the remainder satisfies the bound
MU TP
20 (o + 1) ne [a,b],00
1
. (1) H < (b—a)*'u
N N e Mg 2> 1 3+ =1
b—a)”
)
Also, we have
b
(4.19 [ B f(5)ds =22 (B.) + B (B.1).
a

where

n—1 4+ —2.(i+1) .
M@ ( Z(/a - B(s)ds>f<a+<i+;>.bna>’
B

(2

0
and the remainder R ( , f) satisfies the estimate

(b_a)ﬂ-H 5
(2) (b—a)ﬁ+%
@19 [m2 B <xxq By, po 1 de =t

(b—a)’
i 1Bl
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5. APPLICATION FOR DIFFERENTIAL EQUATIONS IN BANACH SPACES

We recall that a family of operators U = {U (t,s) : ¢t > s} C L(X) with ¢,s € R

or t,s € Ry is called an evolution family if:
Q) U@t)=Tand U (t,s)U(s,7)=U(t,7) for all t > s > 7; and
(ii) for each = € X, the function (t,s) — U (¢, ) x is continuous for ¢ > s.

Here I is the identity operator in £ (X).

An evolution family {U (t,s) : t > s} is said to be exponentially bounded if, in
addition,

(iii) there exist the constants M > 1 and w > 0 such that
(5.1) U (t,s)|| < Me*t=%) ¢ >s.

Evolution families appear as solutions for abstract Cauchy problems of the form
(5.2)  w(t)=A@)u(t), u(s)=zs xs € D(A(s)), t>s, t,s €R (or Ry),
where the domain D (A (s)) of the linear operator A (s) is assumed to be dense in
X. An evolution family is said to solve the abstract Cauchy problem (5.2) if for
each s € R there exists a dense subset Y C D (A (s)) such that for each x5 € Y
the function

t—u(t)  =U(ts)xs: [s,00) — X,
is differentiable, u (t) € D (A (t)) for all t > s and
d
pri
This later definition can be found in [15]. In this definition the operators A (t) can
be unbounded. The Cauchy problem (5.2) is called well-posed if there exists an
evolution family {U (¢, s) : t > s} which solves it.
It is known that the well-posedness of (5.2) can be destroyed by a bounded

and continuous perturbation [13]. Let f : R —X be a locally integrable function.
Consider the inhomogeneous Cauchy problem:

(5.3) wt)=AW)u@®)+ @), u(s)=xs€ X, t>s, t,s €R (or Ry).

A continuous function ¢t — u (t) : [s,00) — X is said to a mild solution of the
Cauchy problem (5.3) if u (s) = x5 and there exists an evolution family {U (¢,7) : t >
such that

) =A@)u(t), t>s

(5.4) u(t):U(t,S)zs+/tU(t,T)f(T)dT, t>s, zs€ X, t,s €R (or Ry).

The following theorem holds.
Theorem 6. Let U = {U (v,n) : v >n} C L(X) be an evolution family and f :
R —X be a locally Bochner integrable and locally bounded function. We assume
that for all v € R (or Ry ) the function n — U (v,n) : [v,00) — L(X) is locally
Hélder continuous (i.e. for all a,b > v, a < b, there exist a € (0,1] and H > 0
such that
U (v,t) = U (v,s)|| < H|t—s|", forallt,sé€ [a,b]).
We use the notations in Section 4 for a = 0 and b =t > 0. The map u(-) from
(5.4) can be represented as
n—1 tiv1
65 uO=UE0)n+ Y U®E) [ Fe)ds+ B WS008

i=0 ti

7}
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where the remainder RS U, f,I,,€) satisfies the estimate
|B0 @ s < mmuﬂmij[H1 DR GE

Proof. Tt follows by representation (4.3) and the first estimate after it. il

Liand & = (@it1)t

Moreover, if n is a natural number, i € {0,...,n}, t; := = o,

then

n—1 t-(i+1)

(5:6)  wu(t)= t0x0+ZU( @it 1)t )/ f(s)ds + RY

and the remainder Rg) satisfies the estimate
H
5.7 H S
(57) < e

The following theorem also holds.

Theorem 7. Let U = {U (v,n) :v>n} C L(X) be an exponentially bounded
evolution family of bounded linear operators acting on the Banach space X and
f R —=X be a locally Holder continuous function, i.e., for all a,b € R, a < b there
exist f € (0,1] and K > 0 such that (2.8) holds. We use the notations of Section
4 fora=0andb=1t>0. The map u(-) from (5.4) can be represented as

i+1
(5.8)  u(t)= t0$0+2(/ tT)dT>(f(&))*‘Rg)(U,fJn,ﬁ)
where the remainder RS> U, f,I,,€) satisfies the estimate

9 0] < 25 -0 -
i=0

Proof. Tt follows from the first estimate in (4.7) for B (s) := U (¢, s), using the fact
that

1B Ol g = sup I (DI < sup M=) < Met,

T7€[0,t] T€[0,t]
|
Moreover, if n is a natural number, i € {0,...,n}, t; := % and &, = (21;1)'&
then
G
20+ 1)t @)
(5.9)  u(t)= t0x0+z</t t7)d7>f<2n + RC

and the remainder Rg) satisfies the estimate

KM , t°H1

w

5+1e "8 . pB”

(5.10) H
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6. SOME NUMERICAL EXAMPLES

1. Let X =R2, z = (&n) € R?, ||z, = /& +n? We consider the linear
2-dimensional system

iy (t) = (=1 —sin®t) uy (¢) + (=1 +sint cost) us (t) + et
(6.1) Uy (t) = (1 +sintcost)uy (£) + (—1 — cos? t) up (t) + e~

If we denote

—1 —sin?t —1 4+ sintcost
A(l) = , f@)= (e e™), z=1(0,0)

1 +sintcost —1 —cos?t
and we identify (£,n) with ( f? ) , then the above system is a Cauchy problem.
The evolution family associated with A (t) is
U(t,s)=P(@t)P (s), t>s, t,sER,
where

e tcost e 2tgint

(6.2) P(t) = , teR.

—e~tsint et cost

The exact solution of the system (6.1) is u = (u1,u2), where

uy (t) = (e fcost) By (t) + (e *'sint) Es (t)

up (t) = — (e 'sint) By (t) + (e > cost) By (t), t €R,

and
. 1 —t . 1
Ei(t) = s1nt+§e (cost—i—smt)—5,
1 1
Ey(t) = sint+§(sint—cost)~et+§,

see [2, Section 4] for details. The function t — A (¢) is bounded on R and therefore
there exist M > 1 and w > 0

|U (t,s)|| < Me**=5l, for all t,s € R.

Let £ > 0 be fixed and ¢,s > £. Then there exists a real number u between t and s
such that

[U(&,1) = U (&)l = [t = sl [[U (& p) Aw)l] < Me* [[JA )| - [t = sl

that is, the function n — U (§,n) is locally Lipschitz continuous on [€, c0).
Using (6.2), it follows

ail (t, 8) ai12 (t, 8)
U (t, S) = )
a921 (t7 S) a2 (t, S)
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where

= et Ycosteoss+ 2 Dgintsins;
_ . 1 o)

578 costsins + —e>5 D sint cos s;

s—t)

= —l sint cos s + 2579 cos ¢ sin s;

5=1) cost oS S.

)

t,s) = —el
)
)

1
= e Dgintsins + 562(

Then from (5.6) we obtain the following approximating formula for u (-) :

n—1 .
204+ 1)t _t(i41) _ti
ui (t) = —Z[aH(t,( 2n) )(e noo—e n)
i=0
1 21+ 1)t (i1 ti
N (2i4+1) (6’7 2u(it1) 6727) n Rgl,)L
2 2n ’

and

n—1 .
2 1)t t(d ti
ug (t) = —Z [021 (t,(224;1)> (67 Ea —67%>
=0

1 (2t +1)t _2t(i+1) _2ti 1
+ 5022 (t, 2n> (6 e m )} +R§,7)z7

where the remainder RS = (Rﬁlﬂb,RS}L) satisfies the estimate (5.7) with a = 1,
H = Me“ [[|A ()|l and [[[£lljg,,00 < 2-

The Figure 1 contains the behaviour of the error g, () := H (Rglr)” Réi)
n = 200.

‘ for
2

Se-05+
4e-051
Je-051
2e-057

1e-057

0 R S
2. Let X = R and U (¢, 5) := E%, t > s > 0. It is clear that the family
{U(t,s):t>s>0} C L(R) is an exponentially bounded evolution family which

solves the Cauchy problem

W(t)=——u(t), u(s)=zs€R, t>s>0.
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Consider the inhomogeneous Cauchy problem

ql(t):t_%lu(t)+cos[ln(t+l)], t>0

(6.3)

u (0) = 0.

The solution of (6.3) is given by

u(t):/o f_illcos(ln(TJrl))dT:(t+1)sin[ln(t+1)}, t>0.

From (5.9) we obtain the approximating formula for « (-) as,

n+ti+t (2i 4+ 1)t
u(t) Zl { T }cos{ln{l—i—Qn }}—l—Rn,
where R,, satisfies the estimate (5.10) with K = M = w = 8 = 1. Indeed,
P ot frallt> s3>0
s+ 1

and

|cos[In(t 4+ 1)] — cos[ln(s+1)]| = |t — s|

1
1sin[ln(c—|—1)]’ < |t — s

for all £ > s > 0, where ¢ is some real number between s and ¢.
The Figure 2 contains the behaviour of the error €, (t) := |R,| for n = 400.
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