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POWER INEQUALITIES FOR THE NUMERICAL RADIUS OF A
PRODUCT OF TWO OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract. Some power inequalities for the numerical radius of a product of
two operators in Hilbert spaces with applications for commutators and self-
commutators are given.

1. Introduction

Let (H; h�; �i) be a complex Hilbert space. The numerical range of an operator
T is the subset of the complex numbers C given by [11, p. 1]:

W (T ) = fhTx; xi ; x 2 H; kxk = 1g :
The numerical radius w (T ) of an operator T on H is given by [11, p. 8]:

(1.1) w (T ) = sup fj�j ; � 2W (T )g = sup fjhTx; xij ; kxk = 1g :
It is well known that w (�) is a norm on the Banach algebra B (H) of all bounded

linear operators T : H ! H: This norm is equivalent to the operator norm. In fact,
the following more precise result holds [11, p. 9]:

(1.2) w (T ) � kTk � 2w (T ) ;
for any T 2 B (H)
For other results on numerical radii, see [12], Chapter 11.
If A;B are two bounded linear operators on the Hilbert space (H; h�; �i) ; then

(1.3) w (AB) � 4w (A)w (B) :
In the case that AB = BA; then

(1.4) w (AB) � 2w (A)w (B) :
The following results are also well known [11, p. 38]:
If A is a unitary operator that commutes with another operator B; then

(1.5) w (AB) � w (B) :
If A is an isometry and AB = BA; then (1.5) also holds true.
We say that A and B double commute if AB = BA and AB� = B�A: If the

operators A and B double commute, then [11, p. 38]

(1.6) w (AB) � w (B) kAk :
As a consequence of the above, we have [11, p. 39]:
Let A be a normal operator commuting with B; then

(1.7) w (AB) � w (A)w (B) :
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For other results and historical comments on the above see [11, p. 39�41]. For
recent inequalities involving the numerical radius, see [1]-[9], [13], [14]-[16] and [17].

2. Inequalities for a Product of Two Operators

Theorem 1. For any A;B 2 B (H) and r � 1, we have the inequality:

(2.1) wr (B�A) � 1

2
k(A�A)r + (B�B)rk :

The constant 12 is best possible.

Proof. By the Schwarz inequality in the Hilbert space (H; h:; :i) we have:
jhB�Ax; xij = jhAx;Bxij � kAxk � kBxk(2.2)

= hA�Ax; xi1=2 � hB�Bx; xi1=2 ; x 2 H:
Utilising the arithmetic mean - geometric mean inequality and then the convexity
of the function f (t) = tr; r � 1; we have successively,

hA�Ax; xi1=2 � hB�Bx; xi1=2 � hA�Ax; xi+ hB�Bx; xi
2

(2.3)

�
�
hA�Ax; xir + hB�Bx; xir

2

� 1
r

for any x 2 H:
It is known that if P is a positive operator then for any r � 1 and x 2 H with

kxk = 1 we have the inequality (see for instance [15])
(2.4) hPx; xir � hP rx; xi :
Applying this property to the positive operator A�A and B�B; we deduce that�

hA�Ax; xir + hB�Bx; xir

2

� 1
r

�
�
h(A�A)r x; xi+ h(B�B)r x; xi

2

� 1
r

(2.5)

=

�
h[(A�A)r + (B�B)r]x; xi

2

� 1
r

for any x 2 H; kxk = 1:
Now, on making use of the inequalities (2.2), (2.3) and (2.5), we get the inequal-

ity:

(2.6) jh(B�A)r x; xijr � 1

2
h[(A�A)r + (B�B)r]x; xi

for any x 2 H; kxk = 1.
Taking the supremum over x 2 H; kxk = 1 in (2.6) and since the operator

[(A�A)
r
+ (B�B)

r
] is self-adjoint, we deduce the desired inequality (2.1).

For r = 1 and B = A; we get in both sides of (2.1) the same quantity kAk2 which
shows that the constant 12 is best possible in general in the inequality (2.1). �
Corollary 1. For any A 2 B (H) and r � 1 we have the inequalities:

(2.7) wr (A) � 1

2
k(A�A)r + Ik

and

(2.8) wr
�
A2
�
� 1

2
k(A�A)r + (AA�)rk ;
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respectively.

A di¤erent approach is considered in the following result:

Theorem 2. For any A;B 2 B (H) and any � 2 (0; 1) and r � 1, we have the
inequality:

(2.9) w2r (B�A) �
� (A�A) r� + (1� �) (B�B) r

1��

 :
Proof. By Schwarz�s inequality, we have:

jh(B�A)x; xij2 � h(A�A)x; xi � h(B�B)x; xi(2.10)

=
Dh
(A�A)

1
�

i�
x; x

E
�
�h
(B�B)

1
1��

i1��
x; x

�
;

for any x 2 H:
It is well known that (see for instance [15]) if P is a positive operator and q 2 (0; 1]

then for any u 2 H; kuk = 1; we have
(2.11) hP qu; ui � hPu; uiq :

Applying this property to the positive operators (A�A)
1
� and (B�B)

1
1�� (� 2 (0; 1)) ;

we have

(2.12)
Dh
(A�A)

1
�

i�
x; x

E
�
�h
(B�B)

1
1��

i1��
x; x

�
�
D
(A�A)

1
� x; x

E�
�
D
(B�B)

1
1�� x; x

E1��
;

for any x 2 H; kxk = 1.
Now, utilising the weighted arithmetic mean - geometric mean inequality, i.e.,

a�b1�� � �a+ (1� �) b; � 2 (0; 1) ; a; b � 0; we get

(2.13)
D
(A�A)

1
� x; x

E�
�
D
(B�B)

1
1�� x; x

E1��
� �

D
(A�A)

1
� x; x

E
+ (1� �)

D
(B�B)

1
1�� x; x

E
for any x 2 H; kxk = 1.
Moreover, by the elementary inequality following from the convexity of the func-

tion f (t) = tr; r � 1; namely

�a+ (1� �) b � (�ar + (1� �) br)
1
r ; � 2 (0; 1) ; a; b � 0;

we deduce that

�
D
(A�A)

1
� x; x

E
+ (1� �)

D
(B�B)

1
1�� x; x

E
(2.14)

�
h
�
D
(A�A)

1
� x; x

Er
+ (1� �)

D
(B�B)

1
1�� x; x

Eri 1r
�
h
�
D
(A�A)

r
� x; x

E
+ (1� �)

D
(B�B)

r
1�� x; x

Ei 1
r

;

for any x 2 H; kxk = 1, where, for the last inequality we used the inequality (2.4)
for the positive operators (A�A)

1
� and (B�B)

1
1�� :

Now, on making use of the inequalities (2.10), (2.12), (2.13) and (2.14), we get

(2.15) jh(B�A)x; xij2r �
Dh
� (A�A)

r
� + (1� �) (B�B)

r
1��

i
x; x

E



4 S.S. DRAGOMIR

for any x 2 H; kxk = 1. Taking the supremum over x 2 H; kxk = 1 in (2.15)
produces the desired inequality (2.9). �

Remark 1. The particular case � = 1
2 produces the inequality

(2.16) w2r (B�A) � 1

2

(A�A)2r + (B�B)2r ;
for r � 1. Notice that 12 is best possible in (2.16) since for r = 1 and B = A we get
in both sides of (2.16) the same quantity kAk4 :

Corollary 2. For any A 2 B (H) and � 2 (0; 1) ; r � 1; we have the inequalities

(2.17) w2r (A) �
� (A�A) r� + (1� �) I

and

(2.18) w2r
�
A2
�
�
� (A�A) r� + (1� �) (AA�) r

1��

 ;
respectively.
Moreover, we have

(2.19) kAk4r �
� (A�A) r� + (1� �) (A�A) r

1��

 :
3. Inequalities for the Sum of Two Products

The following result may be stated:

Theorem 3. For any A;B;C;D 2 B (H) and r; s � 1 we have:

(3.1) w2
�
B�A+D�C

2

�
�
 (A�A)r + (C�C)r2

 1
r

�
 (B�B)s + (D�D)

s

2

 1
s

:

Proof. By the Schwarz inequality in the Hilbert space (H; h:; :i) we have:

jh(B�A+D�C)x; xij2(3.2)

= jhB�Ax; xi+ hD�Cx; xij2

� [jhB�Ax; xij+ jhD�Cx; xij]2

�
h
hA�Ax; xi

1
2 � hB�Bx; xi

1
2 + hC�Cx; xi

1
2 � hD�Dx; xi

1
2

i2
;

for any x 2 H:
Now, on utilising the elementary inequality:

(ab+ cd)
2 �

�
a2 + c2

� �
b2 + d2

�
; a; b; c; d 2 R;

we then conclude that:

(3.3) hA�Ax; xi
1
2 � hB�Bx; xi

1
2 + hC�Cx; xi

1
2 � hD�Dx; xi

1
2

� (hA�Ax; xi+ hC�Cx; xi) � (hB�Bx; xi+ hD�Dx; xi) ;

for any x 2 H:
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Now, on making use of a similar argument to the one in the proof of Theorem
1, we have for r; s � 1 that

(3.4) (hA�Ax; xi+ hC�Cx; xi) � (hB�Bx; xi+ hD�Dx; xi)

� 4
��
(A�A)

r
+ (C�C)

r

2

�
x; x

� 1
r

�
��
(B�B)

s
+ (D�D)

s

2

�
x; x

� 1
s

for any x 2 H; kxk = 1.
Consequently, by (3.2) �(3.4) we have:

(3.5)

������B�A+D�C

2

�
x; x

�����2
�
��
(A�A)

r
+ (C�C)

r

2

�
x; x

� 1
r

�
��
(B�B)

s
+ (D�D)

s

2

�
x; x

� 1
s

for any x 2 H; kxk = 1.
Taking the supremum over x 2 H; kxk = 1 we deduce the desired inequality

(3.1). �

Remark 2. If s = r; then the inequality (3.1) is equivalent with:

(3.6) w2r
�
B�A+D�C

2

�
�
 (A�A)r + (C�C)r2

 �  (B�B)r + (D�D)
r

2

 :
Corollary 3. For any A;C 2 B (H) we have:

(3.7) w2r
�
A+ C

2

�
�
 (A�A)r + (C�C)r2

 ;
where r � 1: Also, we have

(3.8) w2
�
A2 + C2

2

�
�
 (A�A)r + (C�C)r2

 1
r

�
 (AA�)s + (CC�)s2

 1
s

for all r; s � 1; and in particular

(3.9) w2r
�
A2 + C2

2

�
�
 (A�A)r + (C�C)r2

 �  (AA�)r + (CC�)r2


for r � 1:

The inequality (3.7) follows from (3.1) for B = D = I; while the inequality (3.8)
is obtained from the same inequality (3.1) for B = A� and D = C�:
Another particular result of interest is the following one:

Corollary 4. For any A;B 2 B (H) we have:

(3.10)

B�A+A�B2

2 �  (A�A)r + (B�B)r2

 1
r

�
 (A�A)s + (B�B)s2

 1
s

for r; s � 1 and, in particular,

(3.11)

B�A+A�B2

r �  (A�A)r + (B�B)r2


for any r � 1:
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The inequality (3.9) follows from (3.1) for D = A and C = B and taking into
account that the operator 1

2 (B
�A+A�B) is self-adjoint and that

w

�
1

2
(B�A+A�B)

�
=

B�A+A�B2

 :
Another particular case that might be of interest is the following one.

Corollary 5. For any A;D 2 B (H) we have:

(3.12) w2
�
A+D

2

�
�
 (A�A)r + I2

 1
r

�
 (DD�)

s
+ I

2

 1
s

;

where r; s � 1: In particular

(3.13) w2 (A) �
 (A�A)r + I2

 1
r

�
 (AA�)s + I2

 1
s

:

Moreover, for any r � 1 we have

w2r (A) �
 (A�A)r + I2

 �  (AA�)r + I2

 :
The proof is obvious by the inequality (3.1) on choosing B = I; C = I and

writing the inequality for D� instead of D:

Remark 3. If T 2 B (H) and T = A + iC; i.e., A and C are its Cartesian
decomposition, then we get from (3.7) that

w2r (T ) � 22r�1
A2r + C2r ;

for any r � 1:
Also, since A = Re (T ) = T+T�

2 and C = Im (T ) = T�T�
2i ; then from (3.7) we

get the following inequalities as well:

kRe (T )k2r �
 (T �T )r + (TT �)r2


and

kIm (T )k2r �
 (T �T )r + (TT �)r2


for any r � 1:

In terms of the Euclidean radius of two operators we (�; �) ; where, as in [1],

we (T;U) := sup
kxk=1

�
jhTx; xij2 + jhUx; xij2

� 1
2

;

we have the following result as well.

Theorem 4. For any A;B;C;D 2 B (H) and p; q > 1 with 1
p +

1
q = 1; we have

the inequality:

(3.14) w2e (B
�A;D�C) � k(A�A)p + (C�C)pk1=p � k(B�B)q + (D�D)

qk1=q :



POWER INEQUALITIES 7

Proof. For any x 2 H; kxk = 1 we have the inequalities

jhB�Ax; xij2 + jhD�Cx; xij2

� hA�Ax; xi � hB�Bx; xi+ hC�Cx; xi � hD�Dx; xi

� (hA�Ax; xip + hC�Cx; xip)1=p � (hB�Bx; xiq + hD�Dx; xiq)1=q

� (h(A�A)p x; xi+ h(C�C)p x; xi)1=p � (h(B�B)q x; xi+ h(D�D)
q
x; xi)1=q

� h[(A�A)p + (C�C)p]x; xi1=p � h[(B�B)q + (D�D)
q
]x; xi1=q :

Taking the supremum over x 2 H; kxk = 1 and noticing that the operators (A�A)p+
(C�C)

p and (B�B)q + (D�D)
q are self-adjoint, we deduce the desired inequality

(3.14). �

The following particular case is of interest.

Corollary 6. For any A;C 2 B (H) and p; q > 1 with 1
p +

1
q = 1; we have:

w2e (A;C) � 21=q k(A�A)
p
+ (C�C)

pk1=p :

The proof follows from (3.14) for B = D = I:

Corollary 7. For any A;D 2 B (H) and p; q > 1 with 1
p +

1
q = 1; we have:

w2e (A;D) � k(A�A)
p
+ Ik1=p � k(D�D)

q
+ Ik1=q :

4. Vector Inequalities for the Commutator

The commutator of two bounded linear operators T and U is the operator TU �
UT: For the usual norm k�k and for any two operators T and U; by using the
triangle inequality and the submultiplicity of the norm, we can state the following
inequality:

(4.1) kTU � UTk � 2 kTk kUk :

In [10], the following result has been obtained as well

(4.2) kTU � UTk � 2min fkTk ; kUkgmin fkT � Uk ; kT + Ukg :

By utilising Theorem 3 we can state the following result for the numerical radius
of the commutator.

Proposition 1. For any T;U 2 B (H) and r; s � 1 we have

(4.3) w2 (TU � UT ) � 22� 1
r�

1
s k(T �T )r + (U�U)rk

1
r � k(TT �)s + (UU�)sk

1
s :

Proof. Follows by Theorem 3 on choosing B = T �; A = U; D = �U� and C =
T: �

Remark 4. In particular, for r = s we get from (4.3) that

(4.4) w2r (TU � UT ) � 22r�2 k(T �T )r + (U�U)rk � k(TT �)r + (UU�)rk

and for r = 1 we get

(4.5) w2 (TU � UT ) � kT �T + U�Uk � kTT � + UU�k :
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For a bounded linear operator T 2 B (H) ; the self-commutator is the operator
T �T � TT �: Observe that the operator V := �i (T �T � TT �) is self-adjoint and
w (V ) = kV k ; i.e.,

w (T �T � TT �) = kT �T � TT �k :
Now, utilising (4.3) for U = T � we can state the following corollary.

Corollary 8. For any T 2 B (H) we have the inequality:

(4.6) kT �T � TT �k2 � 22� 1
r�

1
s k(T �T )r + (TT �)rk

1
r � k(T �T )s + (TT �)sk

1
s :

In particular, we have

(4.7) kT �T � TT �kr � 2r�1 k(T �T )r + (TT �)rk ;

for any r � 1:
Moreover, for r = 1 we have

(4.8) kT �T � TT �k � kT �T + TT �k :
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