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A TWO POINTS TAYLOR’S FORMULA FOR THE
GENERALISED RIEMANN INTEGRAL

S.S. DRAGOMIR AND H.B. THOMPSON

Abstract. A two points Taylor’s formula for the generalised Riemann integral

and various bounds for the remainder are established. Moreover, particular
instances of interest are given.

1. Introduction

The generalised Riemann integral is variously known as the Kurzweil, the Rie-
mann complete, and the gauge integral. It is also equivalent to the Perron integral,
the descriptive D∗-integral of Luzin, and the restricted total integral (also called
the T ∗-integral) of Denjoy.

Newton introduced integration as antidifferentiation. Between 1912 and 1915,
Denjoy [3], Luzin [10], and Perron [15], realising that the Lebesgue and Newton
integrals did not properly contain one another, gave new definitions of the integral
to encompass both the Newton and Lebesgue integrals. The equivalence of the
Denjoy and Luzin integrals is not difficult to prove while the equivalence of these
to the Perron integral is due to Hake [4], Looman [9], and Aleksandrov [1].

Kurzweil [7] introduced his integral for application to ordinary differential equa-
tions, and showed that it is equivalent to the Perron integral. Henstock [5] inde-
pendently introduced this integral and developed its properties (see, e.g., [6]).

By a tagged partition T of [a, b] we mean a set {x0, x1, . . . , xn; t1, t2, . . . , tn}
satisfying

a = x0 ≤ t1 ≤ x1 ≤ t2 ≤ x2 ≤ · · · ≤ xn = b

for some n > 0. A positive function δ : [a, b] → R+ = (0,∞) is called a gauge on
[a, b]. Let δ be a gauge on [a, b]. Then the partition T is said to be δ-fine if

[xi−1, xi] ⊆ (ti − δ(ti), ti + δ(ti))

for i = 1, 2, ..., n.
Using bisection and the nested interval theorem it is easy to prove that for every

gauge δ on [a, b] there exists a δ-fine partition of [a, b].

Definition 1. Let f : [a, b] → R. Then I is said to be the generalised Riemann
integral of f on [a, b] (denoted by

∫ b

a
f(t) dt) if, given ε > 0, there exists a gauge δ

on [a, b] such that

|
n∑

i=1

f(ti)(xi − xi−1)− I| < ε,

2000 Mathematics Subject Classification. Primary 41A55, Secondary 26D15, 26D10.
Key words and phrases. Generalised Riemann integral, Kurzweil integral, Perron integral,

Taylor’s formula, Integral inequalities,

1



2 S.S. DRAGOMIR AND H.B. THOMPSON

whenever the partition T is δ-fine. We call f integrable on [a, b] if its generalised
Riemann integral exists.

We are ready to state the fundamental theorem and its associated theorem on
integration by parts.

Definition 2. (See [14]) Let f : [a, b] → R be given. A function F : [a, b] → R is a
primitive of f on [a, b] provided F is continuous on [a, b] and F ′(x) = f(x) for all
x in [a, b], except possibly at a finite or countably infinite set of values of x.

Theorem 1. (The fundamental theorem, [18, Theorem 5]) If f has a primitive F
on [a, b], then f is integrable and

(1.1)
∫ b

a

f(t) dt = F (b)− F (a).

Remark 1. To guarantee the validity of (1.1) and of the integral form of Taylor’s
theorem in the case of the Riemann or Lebesgue integrals, additional assumptions
such as the integrability of f are required. In particular, there is a function F having
a bounded derivative everywhere on [a, b] but such that f = F ′ is not Riemann
integrable on [a, b] . Also, the function F defined by F (x) = x2 sin 1/x2, for x 6=
0, F (0) = 0 is differentiable everywhere but f = F ′ is not Lebesgue integrable on
[a, b] if a 6= b and 0 ∈ [a, b].

As an immediate consequence of the fundamental theorem, one obtains the fol-
lowing.

Theorem 2. (Integration by parts; See [14]) If g and h have primitives G and H,
respectively, on [a, b], then gH is integrable if and only if Gh is integrable. Moreover

(1.2)
∫ b

a

g(t)H(t) dt = G(b)H(b)−G(a)H(a)−
∫ b

a

G(t)h(t) dt.

Remark 2. The integrability of gH and hence of Gh is necessary for (1.2) to hold
as can be seen by setting

F (x) = x2 sinx−4, G(x) = x2 cos x−4 for x 6= 0 and F (0) = 0 = G(0).

See [11, Ex. 13]. In our case g will be continuous on [a, b] so gH will be integrable
on [a, b].

We also recall Taylor’s theorem for the generalised Riemann integral obtained
in [21]:

Lemma 1. Let f, f (1), ..., f (n) be continuous on [α, β] and suppose that f (n+1) exists
on [α, β] , except possibly at a countable number of points. Then

(1.3) f (β) =
n∑

k=0

1
k!

f (k) (α) (β − α)k + Rn,α (β) ,

where

(1.4) Rn,α (β) =
1
n!

∫ β

α

f (n+1) (t) (β − t)n
dt

and the integral in (1.4) is taken in the generalised Riemann sense.
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The main aim of this paper is to provide a two points Taylor’s formula for
the generalised Riemann integral and establish various bounds for the remainder.
Particular instances of interest also will be given.

2. Identities

The following identity can be stated:

Theorem 3. Let f, f (1), . . . , f (n) be continuous on [a, b] and suppose that f (n+1)

exists on [a, b] , except possibly at a countable number of points. Then for any
x ∈ [a, b] and for any λ ∈ [0, 1] we have the representation

f (x) = λf (a) + (1− λ) f (b)

(2.1)

+
n∑

k=1

1
k!

[
λf (k) (a) (x− a)k + (−1)k (1− λ) f (k) (b) (b− x)k

]
+ Sn,λ (x) ,

where the remainder Sn,λ (x) is given by

(2.2) Sn,λ (x) :=
1
n!

∫ b

a

f (n+1) (t) Kn,λ (x, t) dt

and the kernel Kn,λ (·, ·) : [a, b]2 → R is defined by

(2.3) Kn,λ (x, t) :=

 λ (x− t)n if a ≤ t ≤ x,

(−1)n+1 (1− λ) (t− x)n if x < t ≤ b.

Proof. Using Lemma 1 we can write the following two identities

(2.4) f (x) =
n∑

k=0

1
k!

f (k) (a) (x− a)k +
1
n!

∫ x

a

f (n+1) (t) (x− t)n
dt

and

(2.5) f (x) =
n∑

k=0

(−1)k

k!
f (k) (b) (b− x)k +

(−1)n+1

n!

∫ b

x

f (n+1) (t) (t− x)n
dt

for each x ∈ [a, b] .
Now, if we multiply (2.4) with λ and (2.5) with (1− λ) and add the resulting

equalities, a simple calculation yields the desired identity (2.1).

Corollary 1. With the assumptions in Theorem 3 we have for each x ∈ [a, b]

f (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)]

+
(b− x) (x− a)

b− a
·

n∑
k=1

1
k!

{
(x− a)k−1

f (k) (a) + (−1)k (b− x)k−1
f (k) (b)

}
+

1
n! (b− a)

∫ b

a

Ln (x, t) f (n+1) (t) dt,

where

Ln (x, t) =

 (x− t)n (b− x) if a ≤ t ≤ x,

(−1)n+1 (t− x)n (x− a) if x < t ≤ b,
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and

f (x) =
1

b− a
[(x− a) f (a) + (b− x) f (b)]

+
1

b− a

n∑
k=1

1
k!

{
(x− a)k+1

f (k) (a) + (−1)k (b− x)k+1
f (k) (b)

}
+

1
n! (b− a)

∫ b

a

Pn (x, t) f (n+1) (t) dt,

where

Pn (x, t) =

 (x− t)n (x− a) if a ≤ t ≤ x,

(−1)n+1 (t− x)n (b− x) if x < t ≤ b,

respectively.

The proof is obvious. Choose λ = (b− x) / (b− a) and λ = (x− a) / (b− a) ,
respectively, in Theorem 3. The details are omitted.

Remark 3. We observe that each of the identities from Corollary 1 provide the
possibility to approximate the value of a function at the midpoint in terms of its
values at the end points as well as in terms of the values of its derivatives at the
same points. To be more precise, we can state the identity

f

(
a + b

2

)
=

f (a) + f (b)
2

+
n∑

k=1

1
2k+1k!

[
f (k) (a) + (−1)k

f (k) (b)
]
(b− a)k

+
1

2 · n!

∫ b

a

Mn (t) f (n+1) (t) dt,

where

Mn (t) =

{ (
a+b
2 − t

)n
if a ≤ t ≤ a+b

2 ,

(−1)n+1 (
t− a+b

2

)n
if a+b

2 < t ≤ b.

Corollary 2. With the assumption in Theorem 3 we have for each λ ∈ [0, 1]

f [λa + (1− λ) b] = λf (a) + (1− λ) f (b)

+ λ (1− λ)
n∑

k=1

1
k!

[
(1− λ)k−1

f (k) (a) + (−1)k
λk−1f (k) (b)

]
(b− a)k

+
1
n!

∫ b

a

f (n+1) (t) Kn,λ (t) dt,

where

Kn,λ (t) :=

 λ [λa + (1− λ) b− t]n if a ≤ t ≤ λa + (1− λ) b,

(−1)n+1 (1− λ) {t− [λa + (1− λ) b]}n if λa + (1− λ) b < t ≤ b.

Remark 4. To the best of our knowledge the representation results from this section
are new even in the non Kurzweil setting.
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3. Upper and Lower Bounds for the Remainder

Consider the polynomials

(3.1) Tn,λ (x) :=
n∑

k=1

1
k!

[
λf (k) (a) (x− a)k + (−1)k (1− λ) f (k) (b) (b− x)k

]
,

where x ∈ [a, b] and λ ∈ [0, 1] .
When upper and lower bounds for the (n + 1)th derivative of the function f are

available, we may state the following result.

Theorem 4. Assume that f : [a, b] → R is such that f (1), . . . , f (n) are continuous
on [a, b] and f (n+1) exists, except possibly at a countable number of points of [a, b] .
Assume that for x ∈ (a, b) there exists the constants γ

(i)
n+1 (x) , Γ(i)

n+1 (x) , i ∈ {1, 2}
so that

(3.2) γ
(1)
n+1 (x) ≤ f (n+1) (t) ≤ Γ(1)

n+1 (x) for t ∈ [a, x]

and

(3.3) γ
(2)
n+1 (x) ≤ f (n+1) (t) ≤ Γ(2)

n+1 (x) for t ∈ [x, b] .

If n = 2m− 1 (m ≥ 1) , then
1

(2m)!

[
λγ

(1)
2m (x) (x− a)2m + (1− λ) γ

(2)
2m (x) (b− x)2m

]
(3.4)

≤ f (x)− T2m−1,λ (x)

≤ 1
(2m)!

[
λΓ(1)

2m (x) (x− a)2m + (1− λ) Γ(2)
2m (x) (b− x)2m

]
,

for any λ ∈ [0, 1] .
If n = 2m (m ≥ 1) , then

1
(2m + 1)!

[
λγ

(1)
2m+1 (x) (x− a)2m+1 − (1− λ) Γ(2)

2m+1 (x) (b− x)2m+1
]

(3.5)

≤ f (x)− T2m,λ (x)

≤ 1
(2m + 1)!

[
λΓ(1)

2m+1 (x) (x− a)2m+1 − (1− λ) γ
(2)
2m+1 (x) (b− x)2m+1

]
for any λ ∈ [0, 1] .

Proof. For n = 2m− 1, we have the representation

f (x)− T2m−1,λ (x)

(3.6)

=
1

(2m− 1)!

[
λ

∫ x

a

(x− t)2m−1
f (2m) (t) dt + (1− λ)

∫ b

x

(t− x)2m−1
f (2m) (t) dt

]
for any x ∈ [a, b] and λ ∈ [0, 1] . Using assumptions (3.2) and (3.3) for n = 2m− 1,
we get

γ
(1)
2m (x) · (x− a)2m

2m
≤

∫ x

a

(x− t)2m−1
f (2m) (t) dt(3.7)

≤ Γ(1)
2m (x) · (x− a)2m

2m
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and

γ
(2)
2m (x) · (b− x)2m

2m
≤

∫ b

x

(t− x)2m−1
f (2m) (t) dt(3.8)

≤ Γ(2)
2m (x) · (b− x)2m

2m
.

Using (3.6) – (3.8) we easily deduce (3.4).
For n = 2m, we have the representation

f (x)− T2m,λ (x)

(3.9)

=
1

(2m)!

[
λ

∫ x

a

(x− t)2m
f (2m+1) (t) dt− (1− λ)

∫ b

x

(t− x)2m
f (2m+1) (t) dt

]
.

On making use of assumptions (3.2) and (3.3) for n = 2m, we get

γ
(1)
2m+1 (x) · (x− a)2m+1

2m + 1
≤

∫ x

a

(x− t)2m
f (2m+1) (t) dt(3.10)

≤ Γ(1)
2m+1 (x) · (x− a)2m+1

2m + 1

and

−Γ(2)
2m+1 (x) · (b− x)2m+1

2m + 1
≤ −

∫ b

x

(t− x)2m
f (2m+1) (t) dt(3.11)

≤ −γ
(2)
2m+1 (x) · (b− x)2m+1

2m + 1
.

Finally, the identity (3.9) and the inequalities (3.10) and (3.11) yield the desired
result (3.5). The details are omitted.

When global bounds for the (n + 1)th derivative are available, the following more
convenient result may be stated.

Corollary 3. Under the assumptions of Theorem 4, if there exist constants γn+1,
Γn+1 so that

(3.12) −∞ < γn+1 ≤ f (n+1) (t) ≤ Γn+1 < ∞ for t ∈ [a, b] ,

then for n = 2m− 1 (m ≥ 1) we have

γ2m

(2m)!

[
λ (x− a)2m + (1− λ) (b− x)2m

]
(3.13)

≤ f (x)− T2m−1,λ (x)

≤ Γ2m

(2m)!

[
λ (x− a)2m + (1− λ) (b− x)2m

]
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for any x ∈ [a, b] and for any λ ∈ [0, 1] while for n = 2m (m ≥ 1) we have
1

(2m + 1)!

[
λγ2m+1 (x− a)2m+1 − (1− γ) Γ2m+1 (b− x)2m+1

]
(3.14)

≤ f (x)− T2m,λ (x)

≤ 1
(2m + 1)!

[
λΓ2m+1 (x− a)2m+1 − (1− γ) γ2m+1 (b− x)2m+1

]
for each x ∈ [a, b] and λ ∈ [0, 1] .

Now, let us consider the polynomials

Pn (x) =
1

b− a
[(b− x) f (a) + (x− a) f (b)]

(3.15)

+
(b− x) (x− a)

b− a
·

n∑
k=1

1
k!

{
(x− a)k−1

f (k) (a) + (−1)k (b− x)k−1
f (k) (b)

}
and

Qn (x) =
1

b− a
[(x− a) f (a) + (b− x) f (b)](3.16)

+
1

b− a

n∑
k=1

1
k!

{
(x− a)k+1

f (k) (a) + (−1)k (b− x)k+1
f (k) (b)

}
which are obtained from Tn,λ (x) by choosing λ = (b− x) / (b− a) and λ = (x− a) / (b− a) ,
respectively. Then we may state the following additional result.

Corollary 4. Under the assumptions of Theorem 4, if there exist constants γn+1,
Γn+1 so that (3.12) is valid, then for n = 2m− 1 (m ≥ 1) we have

γ2m

(2m)!
· (x− a) (b− x)

b− a

[
(x− a)2m−1 + (b− x)2m−1

]
(3.17)

≤ f (x)− P2m−1 (x)

≤ Γ2m

(2m)!
· (x− a) (b− x)

b− a

[
(x− a)2m−1 + (b− x)2m−1

]
for any x ∈ [a, b], while for n = 2m (m ≥ 1) we have

1
(2m + 1)!

· (x− a) (b− x)
b− a

[
γ2m+1 (x− a)2m − Γ2m+1 (b− x)2m

]
(3.18)

≤ f (x)− P2m (x)

≤ 1
(2m + 1)!

· (x− a) (b− x)
b− a

[
Γ2m+1 (x− a)2m − γ2m+1 (b− x)2m

]
for each x ∈ [a, b] .

Also, for n = 2m− 1 (m ≥ 1) we have
γ2m

(2m)! (b− a)

[
(x− a)2m+1 + (b− x)2m+1

]
(3.19)

≤ f (x)−Q2m−1 (x)

≤ Γ2m

(2m)! (b− a)

[
(x− a)2m+1 + (b− x)2m+1

]
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for any x ∈ [a, b] , while for n = 2m (m ≥ 1) we have

1
(2m + 1)! (b− a)

[
γ2m+1 (x− a)2m+2 − Γ2m+1 (b− x)2m+2

]
(3.20)

≤ f (x)−Q2m (x)

≤ 1
(2m + 1)! (b− a)

[
Γ2m+1 (x− a)2m+2 − γ2m+1 (b− x)2m+2

]

for any x ∈ [a, b] .

Remark 5. Assume f : [a, b] → R is 2m−differentiable. If f is 2m−convex, that
is, f (2m) (t) ≥ 0 for any t ∈ (a, b) , it follows from (2.1) - (2.3) that

f (x) ≥ λf (a) + (1− λ) f (b)(3.21)

+
2m−1∑
k=1

1
k!

[
λ (x− a)k

f (k) (a) + (−1)k (1− λ) f (k) (b) (b− x)k
]

for any x ∈ [a, b] and λ ∈ [0, 1] . Moreover, if we choose x = λa+(1− λ) b in (2.1),
then we get the inequality

f (λa + (1− λ) b) ≥ λf (a) + (1− λ) f (b)

+ λ (1− λ)
2m−1∑
k=1

1
k!

[
(1− λ)k−1

f (k) (a) + (−1)k
λk−1f (k) (b)

]
(b− a)k

that holds for any λ ∈ [0, 1] .

4. Error Bounds in Terms of p-Norms

Moreover, the following result providing error bounds for the approximation of
f in terms of the polynomials

(4.1) Tn,λ (x) :=
n∑

k=1

1
k!

[
λf (k) (a) (x− a)k + (−1)k (1− λ) f (k) (b) (b− x)k

]

may be stated.

Theorem 5. Assume that f : [a, b] → R is such that f (1), . . . , f (n) are continuous
on [a, b] and f (n+1) exists, except possibly at a countable number of points of [a, b] .
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Then, for any x ∈ [a, b] and λ ∈ [0, 1] , we have

|f (x)− Tn,λ (x)|(4.2)

≤ λ

n!
×



(x−a)n+1

n+1

∥∥f (n+1)
∥∥

[a,x],∞ if f (n+1) ∈ L∞ [a, x] ,

(x−a)
n+ 1

q

(nq+1)
1
q

∥∥f (n+1)
∥∥

[a,x],p
if f (n+1) ∈ Lp [a, x]

for p > 1, 1
p + 1

q = 1,

(x− a)n ∥∥f (n+1)
∥∥

[a,x],1
if f (n+1) ∈ L1 [a, x] ,

+
(1− λ)

n!
×



(b−x)n+1

n+1

∥∥f (n+1)
∥∥

[x,b],∞ if f (n+1) ∈ L∞ [x, b] ,

(b−x)
n+ 1

β

(nβ+1)
1
β

∥∥f (n+1)
∥∥

[x,b],α
if f (n+1) ∈ Lα [x, b]

for α > 1, 1
α + 1

β = 1,

(b− x)n ∥∥f (n+1)
∥∥

[x,b],1
if f (n+1) ∈ L1 [x, b] ,

where (4.2) should be seen as all nine possible combinations.

Proof. Using the representation (2.1), we have

|f (x)− Tn,λ (x)|(4.3)

=
1
n!

∣∣∣∣λ ∫ x

a

(x− t)n
f (n+1) (t) dt

+ (1− λ) (−1)n+1
∫ b

x

(t− x)n
f (n+1) (t) dt

∣∣∣∣∣
≤

[
λ

∫ x

a

(x− t)n
∣∣∣f (n+1) (t)

∣∣∣ dt + (1− λ)
∫ b

x

(t− x)n
∣∣∣f (n+1) (t)

∣∣∣ dt

]
.

It follows from Hölder’s integral inequality, that

∫ x

a

(x− t)n
∣∣∣f (n+1) (t)

∣∣∣ dt ≤



(x−a)n+1

n+1

∥∥f (n+1)
∥∥

[a,x],∞ if f (n+1) ∈ L∞ [a, x] ,

(x−a)
n+ 1

q

(nq+1)
1
q

∥∥f (n+1)
∥∥

[a,x],p
if f (n+1) ∈ Lp [a, x]

for p > 1, 1
p + 1

q = 1,

(x− a)n ∥∥f (n+1)
∥∥

[a,x],1
if f (n+1) ∈ L1 [a, x] ,

and

∫ b

x

(t− x)n
∣∣∣f (n+1) (t)

∣∣∣ dt ≤



(b−x)n+1

n+1

∥∥f (n+1)
∥∥

[x,b],∞ if f (n+1) ∈ L∞ [x, b] ,

(b−x)
n+ 1

β

(nβ+1)
1
β

∥∥f (n+1)
∥∥

[x,b],α
if f (n+1) ∈ Lα [x, b]

for α > 1, 1
α + 1

β = 1,

(b− x)n ∥∥f (n+1)
∥∥

[x,b],1
if f (n+1) ∈ L1 [x, b] ,

which together with (4.3) provide the desired result (4.2).

Remark 6. The result in (4.2) has some instances of interest which are perhaps
more useful for applications. Namely, if f (n+1) ∈ L∞ [a, b] , then for each x ∈ [a, b]
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we have

|f (x)− Tn,λ (x)|(4.4)

≤ 1
(n + 1)!

[
λ (x− a)n

∥∥∥f (n+1)
∥∥∥

[a,x],∞
+ (1− λ) (b− x)n

∥∥∥f (n+1)
∥∥∥

[x,b],∞

]
≤ 1

(n + 1)!
[λ (x− a)n + (1− λ) (b− x)n]

∥∥∥f (n+1)
∥∥∥

[a,b],∞

=: N1 (λ, x) .

If we denote by

M1 (λ, x) := λ (x− a)n + (1− λ) (b− x)n
,

then we also have the following upper bounds for M1 (λ, x) :

(4.5) M1 (λ, x) ≤



[
1
2 +

∣∣λ− 1
2

∣∣] [(x− a)n + (b− x)n] ,

[λs + (1− λ)s]
1
s [(x− a)wn + (b− x)wn]

1
w ,[

1
2 (b− a) +

∣∣x− a+b
2

∣∣]n−1
,

which yield three different bounds for N1 (λ, x) .

Now, in the case where f (n+1) ∈ Lp [a, b]
(
p > 1, 1

p + 1
q = 1

)
, then we have

|f (x)− Tn,λ (x)|(4.6)

≤ 1

n! (nq + 1)
1
q

[
λ (x− a)n+ 1

q

∥∥∥f (n+1)
∥∥∥

[a,x],p

+ (1− λ) (b− x)n+ 1
q

∥∥∥f (n+1)
∥∥∥

[x,b],p

]
≤ 1

n! (nq + 1)
1
q

[
λq (x− a)nq+1 + (1− λ)q (b− x)nq+1

] 1
q

∥∥∥f (n+1)
∥∥∥

[a,b],p

=: Np (λ, x) , x ∈ [a, b] , λ ∈ [0, 1] .

If we denote

Mq (λ, x) := λq (x− a)nq+1 + (1− λ)q (b− x)nq+1
, q > 1

then we also have the following upper bounds for Mq (λ, x)

(4.7) Mq (λ, x) ≤



[
1
2 +

∣∣λ− 1
2

∣∣]q
[
(x− a)nq+1 + (b− x)nq+1

]
,

[λsq + (1− λ)sq]
1
s

[
(x− a)(nq+1)w + (b− x)(nq+1)w

] 1
w

for s > 1, 1/s + 1/w = 1,
[λq + (1− λ)q]

[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]nq+1
,

which provides three different bounds for Np (λ, x) .
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Finally, we have

|f (x)− Tn,λ (x)|(4.8)

≤ 1
n!

[
λ (x− a)n

∥∥∥f (n+1)
∥∥∥

[a,x],1
+ (1− λ) (b− x)n

∥∥∥f (n+1)
∥∥∥

[x,b],1

]
≤ 1

n!
max {λ (x− a)n

, (1− λ) (b− x)n}
∥∥∥f (n+1)

∥∥∥
[a,b],1

≤ 1
n!

(
1
2

+
∣∣∣∣λ− 1

2

∣∣∣∣) (
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣)n ∥∥∥f (n+1)
∥∥∥

[a,b],1

for any x ∈ [a, b] and λ ∈ [0, 1] .

Remark 7. If in the above inequalities we chose λ = (b− x) / (b− a) or λ =
(x− a) / (b− a) , then we obtain various error bounds resulting from approximating
the function f by the polynomials Pn and Qn which are defined in the equations
(3.15) and (3.16), respectively. The details are left to the interested reader.
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[10] N.N. Luzin, Sur les propriétés de l’intégrale de M. Denjoy, C. R. Acad. Sci. Paris, 155 (1912)

1475–1478.
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