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HERMITE-HADAMARD-TYPE INEQUALITIES FOR
INCREASING CONVEX-ALONG-RAYS FUNCTIONS

S.S. DRAGOMIR, J. DUTTA, AND A.M. RUBINOV

Abstract. Some inequalities of Hermite-Hadamard type for increasing convex-

along-rays functions are given. Examples for particular domains including tri-
angles, squares, and the part of the unit disk in the first quadrant are also

presented.

1. Introduction

Hermite-Hadamard type inequalities for convex functions has attracted and con-
tinues to attract much attention in the rapidly developing literature devoted to
inequalities and their application, as shown for example in the books [1] and [7].

It is well known that, if f : [a, b] → IR is a convex function on [a, b] , then the
HH−inequality states that

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ 1
2

[f (a) + f (b)] ,

holds, and both inequalities in (1.1) are sharp.
For different generalisations, refinements, companion results and counterpart

inequalities, see [1] and [7] where many other references are provided. Recently,
a number of authors have started to look for extensions of the HH−inequality
to various classes of functions including: quasiconvex function [2, 9], p−functions
[3, 6], Godnova-Levin type functions [3], r-convex functions [4], multiplicatively
convex functions [5], etc.

For instance [3], if f is a function of Godunova-Levin type and we denote this
by f ∈ Q (I) (I is an interval in IR), i.e.,

f (λx + (1− λ) y) ≤ f (x)
λ

+
f (y)
1− λ

, x, y ∈ I, λ ∈ (0, 1)

and f ∈ L1 [a, b] , then

(1.2) f

(
a + b

2

)
≤ 4

b− a

∫ b

a

f (x) dx.

The constant 4 is sharp in (1.2).
If f : [0, 1] → IR is an arbitrary nonnegative quasiconvex function, then for any

u ∈ (0, 1) one has [8]

(1.3) f (u) ≤ 1
min (u, 1− u)

∫ 1

0

f (u) du
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and the inequality (1.3) is sharp.
In the present paper some HH−type inequalities for increasing convex-along-

rays functions defined on IR2
+ are given. Examples for particular domains including

triangles, squares and the part of the unit disk in the first quadrant are also pre-
sented.

2. Preliminaries

A function f defined on the quarter IR2
+ = {(x, y) ∈ IR2 : x ≥ 0, y ≥ 0} is called

increasing if (x1 ≥ x2, y1 ≥ y2) =⇒ f(x1, y1) ≥ f(x2, y2). The function f is
called convex-along-rays if its restriction to each ray starting from zero is a convex
function of one variable. In other words, it means that the function

fx,y(α) = f(αx, αy), α ≥ 0

is convex for each (x, y) ∈ IR2
+ \ {0}. We shall study increasing convex-along-rays

(ICAR) functions. The class of ICAR functions is broad enough. It contains, for
example all convex increasing functions and all functions of the form

f(x, y) =
∞∑

i,j=0

aijx
iyj

with aij ≥ 0 for i + j > 0. The function f(x, y) =
√

xy is concave, however this
function is convex-along-rays, hence ICAR.

It is known ([8]) that an ICAR function is continuous on the IR2
++ := {(x, y) ∈

IR2
+ : x > 0, y > 0} and lower semicontinuous on IR2

+. We assume in the sequel

that
x

0
= +∞ for all x ≥ 0.

Let (x̄, ȳ) ∈ IR2
+. Consider the function

(2.1) l(x, y) = min
(

x

x̄
,
y

ȳ

)
.

We shall call a function of the form (2.1) min-type function. Min-type functions
are the simplest nonlinear concave ICAR functions. The study of arbitrary ICAR
functions can be accomplished by means of min-type functions. The following result
holds.
Theorem 2.1. [8] Let f be an ICAR function defined on IR2

+. Then for each
(x̄, ȳ) ∈ IR2

+ \ {0} there exists a number b = b(x̄, ȳ) > 0 such that

(2.2) b(min
(

x

x̄
,
y

ȳ

)
− 1) ≤ f(x, y)− f(x̄, ȳ) for all (x, y).

We shall apply Theorem 2.1 in the study of H-H type inequalities for ICAR
functions.

3. The Main Result

Let D ⊂ IR2
+ be a closed domain, that is D is a bounded set such that cl int D =

D. Let A(D) be the area of D. Denote by Q(D) the set of points (x̄, ȳ) ∈ D ∩ IR2
+

such that

(3.1)
1

A(D)

∫
D

min
(

x

x̄
,
y

ȳ

)
dxdy = 1.
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Proposition 3.1. The set Q(D) is compact.

Proof: We only need to prove that Q(D) is closed. Let (x̄n, ȳn) ∈ Q(D), (x̄n, ȳn) →
(x̄, ȳ). It is clear that if (x̄ > 0, ȳ > 0 then (x̄, ȳ) ∈ Q(D). Assume now that
x̄ = 0, ȳ > 0. Then for each (x, y) ∈ D \ {0} there exists an integer N such that

min
(

x

x̄n
,

y

ȳn

)
=

y

ȳn
, n > N.

We also have:

min
(

x

x̄
,
y

ȳ

)
=

y

ȳ
.

Thus

min
(

x

x̄n
,

y

ȳn

)
→ min

(
x

x̄
,
y

ȳ

)
, (x, y) ∈ D \ {0}.

It follows from this assertion that (x̄, ȳ) ∈ Q(D). The same argument demonstrates
that (x̄, ȳ) ∈ Q(D) if x̄ > 0, ȳ = 0. We now show that (x̄, ȳ) 6= 0. Let ε > 0 be a
small enough number and Dε = {(x, y) ∈ D : x ≥ ε, y ≥ ε}. If x̄ = 0, ȳ = 0 then

min
(

x

x̄n
,

y

ȳn

)
→ +∞ uniformly on Dε,

hence ∫
Dε

min
(

x

x̄n
,

y

ȳn

)
dxdy → +∞,

which is impossible.

Proposition 3.2. Assume that the set Q(D) is nonempty and let f be a continuous
ICAR function defined on D. Then the following inequality holds:

(3.2) max
(x̄,ȳ)∈Q(D)

f(x̄, ȳ) ≤ 1
A(D)

∫
D

f(x, y)dxdy.

Proof: Let (x̄, ȳ) ∈ Q(D). It follows from (2.2) and the definition of Q(D) that

(3.3) 0 = b

[
1

A(D)

∫
D

min
(

x

x̄
,
y

ȳ

)
dxdy − 1

]
≤ 1

A(D)

∫
D

f(x, y)dxdy − f(x̄, ȳ).

Thus

f(x̄, ȳ) ≤ 1
A(D)

∫
D

f(x, y)dxdy.

Since Q(D) is compact and f is continuous, it follows that the maximum in (3.2)
is attained.

Assume that the set Q(D) is nonempty and denote by Qm(D) the set of all
maximal elements of Q(D). By definition (x̄, ȳ) ∈ Qm(D) means that

(x̄1, ȳ1) ∈ Q(D), x̄1 ≥ x̄, ȳ1 ≥ ȳ =⇒ (x̄1, ȳ1) = (x̄, ȳ).

It follows from the compactness of Q(D) and the Zorn Lemma that the set Qm(D)
is nonempty and for each (x̄, ȳ) ∈ Q(D) there exists a point (x̄1, ȳ1) ∈ Qm(D) such
that (x̄1, ȳ1) ≥ (x̄, ȳ). It is easy to show that Qm(D) is compact.

Let f be an ICAR function. Since f is increasing it follows that max(x̄,ȳ)∈Q(D) f(x̄, ȳ) =
max(x̄,ȳ)∈Qm(D) f(x̄, ȳ). We have established the following result:
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Theorem 3.1. Let D ⊂ IR2
+ be a closed domain and f be a continuous ICAR

function. Assume that the set Q(D) is nonempty. Then :

(3.4) max
(x̄,ȳ)∈Qm(D)

f(x̄, ȳ) ≤ 1
A(D)

∫
D

f(x, y)dxdy.

Remark 3.1. For each (x̄, ȳ) ∈ Q(D) we have also the following inequality, which
is weaker than (3.2):

(3.5) f(x̄, ȳ) ≤ 1
A(D)

∫
D

f(x, y)dxdy.

However even this inequality (3.5) is sharp. Indeed if f(x, y) = min
(

x

x̄
,
y

ȳ

)
then

(3.5) holds as the equality. It easily follows from (3.1).

4. Description of the set Q(D)

The following analysis is motivated by the example in Section 6.5.5 of [8]. Let
D ∈ IR2

+ be a closed domain of IR2
+. We begin with points (x̄, ȳ) ∈ Q(D), which do

not belong to the interior of D. Let t > 0 be a number such that

(4.1) D ⊂ {(x, y) : y ≤ tx},

that is, D is a subset of IR2
+, which is contained in a half-plane defined by the line

{(x, y) : y = tx}. Let Rt = {(x, y) ∈ IR2
+ : y = tx} be a ray corresponding to the

number t. We assume that the intersection Rt∩D is nonempty, this means that Rt

is a support ray to D. We are looking for a point (x̄, ȳ) ∈ Rt \ {0, 0} that belongs
to Q(D), that is

(4.2)
1

A(D)

∫
D

min
(

x

x̄
,
y

ȳ

)
dxdy = 1,

where A(D) is the area of D. Since
ȳ

x̄
= t and y ≤ tx for (x, y) ∈ D, we have for

(x, y) ∈ D:

min
(

x

x̄
,
y

ȳ

)
=

1
ȳ

min(tx, y) =
1
ȳ
y.

Denote

(4.3) YD =
1

A(D)

∫
D

ydxdy.

Then
1

A(D)

∫
D

min
(

x

x̄
,
y

ȳ

)
dxdy =

1
A(D)

∫
D

1
ȳ

ydxdy =
1
ȳ
YD.

Thus (4.2) holds if ȳ = YD. Since (x̄, ȳ) ∈ Rt we have x̄ = YD

t . We have proved the
following result.
Proposition 4.1. Led D ⊂ IR2

+ be a closed domain and t > 0 be a number such

that (4.1) holds. Assume that
(

YD

t
, YD

)
∈ D. Then

(
YD

t
, YD

)
∈ Q(D).

The similar result we can obtain with the rays R̃u such that

(4.4) D ⊂ {(x, y) : x ≤ uy}.
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Proposition 4.2. Let D ⊂ IR2 be a closed domain and u > 0 be a number such
that (4.4) holds. Let

(4.5) XD =
1

A(D)

∫
D

xdxdy

Assume that (XD,
XD

u
) ∈ D. Then (XD,

XD

u
) ∈ Q(D).

We now describe points from (x̄, ȳ) ∈ intD∩Q(D). First we need some notations.
Let (x̄, ȳ) ∈ intD and t = ȳ/x̄. Consider the ray Rt. This ray intersects D and
divided D into two parts D1 ≡ D1(t) and d2 ≡ D2(t) that are located in different
half planes, which appeared, when we consider a line, containing Rt. We have
D = D1 ∪D2, where int Di, i = 1, 2 is nonempty and intD1 ∩ int D2 = ∅. Let YD1

be the number defined by (4.3) for the domain D1 and XD2 be the number defined

by (4.5) for the domain D2. Denote also α ≡ α(t) =
A(D1)
A(D)

. Then 0 < α < 1 and

1− α =
A(D2)
A(D)

.

Proposition 4.3. Let (x̄, ȳ) ∈ intD and t = ȳ/x̄. Then (x̄, ȳ) ∈ Q(D) if and only
if

(4.6) x̄ =
α

t
YD1 + (1− α)XD2 , ȳ = tx̄.

Proof: We have

min
(

x

x̄
,
y

ȳ

)
=

1
ȳ
y, (x, y) ∈ D1,

min
(

x

x̄
,
y

ȳ

)
=

1
x̄

x, (x, y) ∈ D2,

so
1

A(D)

∫
D

min
(

x

x̄
,
y

ȳ

)
dxdy

=
1

A(D)

(
A(D1)

1
A(D1)ȳ

∫
D1

ydxdy + A(D2)
1

A(D2)x̄

∫
D2

xdxdy

)

=
A(D1)
A(D)

YD1

ȳ
+

A(D2)
A(D)

XD2

x̄
= α

YD1

ȳ
+ (1− α)

XD2

x̄
=

1
x̄

(α

t
YD1 + (1− α)XD2

)
.

Assume that (x̄, ȳ) ∈ Q(D). Then

1 =
1
x̄

(α

t
YD1 + (1− α)XD2

)
,

hence (4.6) holds. On the other side, if (4.6) holds then

1
A(D)

∫
D

min
(

x

x̄
,
y

ȳ

)
dxdy = 1,

so (x̄, ȳ) ∈ Q(D).
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5. Examples

We now present some examples.
Example 5.1. (see [8], Subsection 6.5.5) Consider the triangle D as follows

D = {(x, y) ∈ IR2
+ : 0 ≤ x ≤ a, 0 ≤ y

x
≤ v}(5.1)

where a > 0 and v > 0. Let A = (0, 0) and B = (a, va) be vertices of the triangle D.
We are looking for a point (x̄, ȳ) ∈ Q(D) that lies on the side of D with endpoints
A and B. According to the analysis above we need to calculate YD. Observe that
in this case A(D) = va2

2 . Observe that YD is given as

YD =
1

A(D)

∫
D

ydxdy =
va

3
.

Thus we have ȳ = YD = va
3 and x̄ = YD

v = a
3 . It follows from Remark 3.1 that the

following inequality holds for each ICAR function f :

(5.2) f
(a

3
,
va

3

)
≤ 1

A(D)

∫
D

f(x, y)dxdy.

This inequality is sharp.
Example 5.2. Consider the triangle D defined as

(5.3) D = {(x, y) ∈ IR2
+ : 0 ≤ x ≤ a, 0 ≤ y ≤ vx}

We are now looking for points (x̄, ȳ) ∈ Q(D)∩ int D. Assume the Rt is a ray defined
by the equation y = tx such that t > 0 and t < v. Hence Rt intersects the set D
and passes through its interior and divides the set into two parts D1 and D2 given
as

D1 = {(x, y) ∈ IR2
+ : 0 ≤ x ≤ a, 0 ≤ y ≤ tx}

and

D2 = {(x, y) ∈ IR2
+ : 0 ≤ x ≤ a, tx < y ≤ vx}.

It is clear that D1 ∪D2 = D and int D1 ∩ intD2 = ∅. Observe that A(D1) =
ta2

2

and A(D2) =
(v − t)a2

2
. Observe that for a point (x̄, ȳ) to be in intD and on Rt

we need to have the following satisfied

(5.4) ȳ = tx̄, 0 < x < a, 0 < y < ta

Observe that

YD1 =
1

A(D1)

∫
D1

ydxdy =
ta

3

and

XD2 =
1

A(D2)

∫
D2

xdxdy =
2a

3
.

The point (x̄, ȳ) ∈ Q(D) in this particular case is given by

x̄ =
ta

3v
+ (1− t

v
)
2a

3
and

ȳ = tx̄
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It is clear that 0 < x̄ < a and 0 < ȳ < ta. Observe further that when t → v then
x̄ → a

3
and ȳ → va

3
. Hence these interior points tend to the boundary point that

was found in the previous example as the ray Rt converges towards the line passing
through the side AB of the triangle.

Eliminating t from the above expressions of x̄ and ȳ observe that the points (x̄, ȳ)
lie on a parabola of the form

y = 2vx− 3
v

a
x2

Observe that this parabola intersects the boundary of D precisely at three points

(0, 0),
(va

3
,
a

3

)
and

(
2a

3
, 0

)
. Observe further that f(x) = 2vx− 3 v

ax2 with v > 0

and a > 0 is a strictly convex function with a unique global maximum that is
achieved at the point

(va

3
,
a

3

)
which is the point on the boundary of D at which

the Hermite-Hadamard-type inequality holds for an ICAR function as shown in the
previous example. It is clear further that parabola enters the interior of the region

D at the point
(va

3
,
a

3

)
and leaves it at the point

(
2a

3
, 0

)
. The points of the curve

that lie in the interior of the triangle D are in fact the points for which a Hadamard
type inequality is true for ICAR functions. It is interesting to note that since the
point on the boundary at which the parabola enters the interior of D is the unique
global maximum of the function defining the parabola the points of the parabola
lying in the interior of the region D are actually incomparable since the function is
decreasing here.

Let P = {(x, y) ∈ IR2
+ : y = 2vx − 3(v/a)x2}, that is P is the intersection of

the graph of the parabola with IR2
+. The set of maximal points Qm(D) consists

of the part of the curve that lies in the interior of the triangle D , which is Q(D)

along with two boundary points
(va

3
,
a

3

)
and

(
2a

3
, 0

)
by which the curve enters

and leaves the interior of D. Thus we have

Qm(D) = (P ∩D) \ {(0, 0)}.

Hence the following inequality holds for an arbitrary ICAR function f :

(5.5) max
(x̄,ȳ)∈Qm(D)

f(x̄, ȳ) ≤
∫

D

f(x, y)dxdy.

This inequality is sharp and moreover describes the case for the interior of the set
and of the boundary in an unified way.

Example 5.3. We will now consider another example to study the analysis in this
section. In this case we will now consider the square in IR2

+ formed by the points
(0, 0), (1, 0), (1, 1) and (0, 1) as vertices. We will, as before, consider a ray Rt orig-
inating at (0, 0) and passing through the interior of the square which we denote
as D. As before the square is divided into two parts by the ray Rt (t > 0). The
part below Rt is denoted by D1 and the part above Rt is denoted as D2. Now as
t actually denotes the slope of the ray Rt , in this particular case we need to deal
with three different cases that is t > 1 , t < 1 and t = 1. We deal each case below
separately.
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Case 1 ( t > 1 )
This is the case where the line Rt given as y = tx intersects the boundary of the
square formed by the line joining the points (0, 1) and (1, 1). It intersects the

line at the point
(

1,
1
t

)
. It is clear that A(D) = 1 and A(D1) =

(
1− 1

2t

)
and

A(D2) =
1
2t

. Now we calculate YD1 and XD2 .

YD1 =
1

A(D1)

∫
D1

ydxdy

This leads to the following expression

YD1 =
1

A(D1)

[∫ 1
t

0

dx

∫ tx

0

ydy +
∫ 1

1
t

dx

∫ 1

0

ydy

]
.

This will lead to the following expression

YD1 =
1(

1− 1
2t

) (
1
2
− 1

3t

)
.

We can also calculate XD2 as follows

XD2 =
1

A(D2)

∫
D2

xdxdy =
1

A(D2)

∫ 1

tx

dy

∫ 1
t

0

xdx

This shows that

XD2 =
1
3t

Then we have (x̄, ȳ) as follows

x̄ =
1
2t

(
1− 1

3t

)
and

ȳ =
1
2

(
1− 1

3t

)
.

Observe further that x̄ <
1
t

since t > 1 and y < 1. This shows that (x̄, ȳ) ∈ intD.

Case 2(t < 1 )
In this case the line Rt intersects the boundary of the square formed by the line
segment joining the points (1, 1) and (1, 0). Thus the line Rt intersects the boundary
of the square at the point (1, t). Proceeding as above we can show that

x̄ = 1− 2
3
t

and

ȳ = t

(
1− 2

3
t

)
.

Observe further that as t < 1 we have x̄ < 1 and ȳ < t and thus showing that
(x̄, ȳ) ∈ intD.

Case 3(t = 0 )
In this case the ray Rt passes through the point (1, 1). It is easy to show that in
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this case x̄ =
1
3

and ȳ =
1
3
.

Also it is interesting to note that in both the cases t > 1 and t < 1 we see that

both x̄ → 1
3

and ȳ → 1
3

when t → 1.

We can describe the set Qm(D) as the union of two parabolas here. Then we
shall have the corresponding inequality.

Example 5.4. We shall now consider the case where the set D is the part of the
unit disc is in the first quadrant ( i.e., IR2

+). Let Rt define the ray given by the line
y = tx , t > 0. This ray obviously passes through the interior of the unit circle.
This ray intersects the boundary of the unit disc at a point (x0, y0) given as

x0 =
1√

1 + t2

and

y0 =
t√

1 + t2
.

Let D1 be the part of the unit disc below the line y = tx and D2 be the part
above it.
We shall first calculate A(D1) and A(D2). Observe that A(D1) is the sum of the
triangle with vertex (0, 0), (x0, 0) and (x0, y0) and the area under the circular arc,
i.e.

A(D1) =
1
2

t√
1 + t2

+
∫ 1

1√
1+t2

√
1− x2dx.

This reduces to

A(D1) =
π

4
− 1

2
arcsin

(
1√

1 + t2

)
.

Thus we have

A(D2) =
1
2

arcsin
(

1√
1 + t2

)
.

Thus we can calculate α and β as

(5.6) α =
π
4 −

1
2 arcsin

(
1√

1+t2

)
π
4

and

(5.7) β =
2
π

arcsin
(

1√
1 + t2

)
.

We shall now calculate YD1 and XD2 as follows. Observe that

YD1 =
1

A(D1)

∫
D1

ydxdy

This can be reduced to the following

YD1 =
1

A(D1)

∫ 1√
1+t2

0

dx

∫ tx

0

ydy +
∫ 1

1√
1+t2

dx

∫ √
1−x2

0

ydy

 .
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Thus we have

(5.8) YD1 =
1

π
4 −

1
2 arcsin

(
1√

1+t2

) (
1
3
− 1

3
t√

1 + t2

)
.

We now calculate XD2 as follows

XD2 =
1

A(D2)

∫
D2

xdxdy

This can be written as

XD2 =
1

A(D2)

[∫ 1√
1+t2

0

xdx

∫ √
1−x2

tx

dy

]
.

This shows that

(5.9) XD2 =
1

arcsin
(

1√
1+t2

) (
1
3
− 1

3
t√

1 + t2

)
.

Now noting the values of α, β, YD1 and XD2 from (5.6), (5.7), (5.8) and (5.9)
respectively we have

(5.10) x̄ =
4

3πt

(
(t + 1)−

√
t2 + 1

)
and

(5.11) ȳ =
4
3π

(
(t + 1)−

√
t2 + 1

)
.

Now observe that, since t > 0, we have

0 < (t + 1)−
√

t2 + 1 < 1.

This clearly shows that x̄ > 0 and ȳ > 0 and further x̄2+ȳ2 < 1. Thus (x̄, ȳ) ∈ intD.
Let us consider the case t = 1 and thus we have

x̄ = ȳ =
8
3π

(
1− 1√

2

)
Eliminating t from (6.6) and (6.7) we have that the points (x̄, ȳ) lie on a curve
which can be implicitly expressed by the equation

(5.12)
9
16

πy4 − 3
2
πy3 − 3

2
πxy2 + 2xy = 0.

Observe that (x, y) = (0, 0) satisfies the above equation and hence the curve can
be thought of entering the region D at the point (0, 0).
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