

Inequalities involving the sequence $3\sqrt{(a + 3\sqrt{(a + \cdots + 3\sqrt{(a))})}}$

This is the Published version of the following publication

Luo, Qiu-Ming, Qi, Feng, Barnett, Neil S and Dragomir, Sever S (2001) Inequalities involving the sequence $3\sqrt{(a + 3\sqrt{(a + \cdots + 3\sqrt{(a))})}$. RGMIA research report collection, 4 (4).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17662/

INEQUALITIES INVOLVING THE SEQUENCE $\sqrt[3]{a + \sqrt[3]{a + \cdots + \sqrt[3]{a}}}$

QIU-MING LUO, FENG QI, NEIL S. BARNETT, AND SEVER S. DRAGOMIR

ABSTRACT. In this article, the convergence of the sequence

$$\underbrace{\sqrt[3]{a+\sqrt[3]{a+\cdots+\sqrt[3]{a}}}}_{n}$$

is proved, and some inequalities involving this sequence are established for a>0. As by-product, two identities involving irrational numbers are obtained. Two open problems are proposed.

1. Introduction

Let a > 0 and N be the set of natural numbers. Denote

$$S_n(a) = \underbrace{\sqrt{a + \sqrt{a + \dots + \sqrt{a}}}}_{n}, \tag{1}$$

$$f_n(a) = \frac{a - S_{n+1}(a)}{a - S_n(a)}. (2)$$

In 1993, J.-Ch. Kuang sought the lower and upper bounds of $f_n(a)$, and conjectured that

$$f_n(a) > \frac{1}{a^2} \tag{3}$$

for all $n \in \mathbb{N}$. See [2, pp. 505–506 and p. 778].

1

²⁰⁰⁰ Mathematics Subject Classification. Primary 26D15; Secondary 40A05.

Key words and phrases. Inequality, sequence, ratio, convergence, identity, irrational number. The first and second authors were supported in part by NSF (#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), SF for Pure Research of Natural Science of the Education Department of Henan Province (#1999110004), Doctor Fund of Jiaozuo Institute of Technology, China.

This paper was typeset using $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -IATEX.

In 1999, as a reading note in [2], the second author raised the issue of the convergence of $S_{n,t}(a)$ and the bounds of $f_{n,t}(a)$, where, for a > 0 and $t \neq 0$,

$$S_{n,t}(a) = \underbrace{\sqrt[t]{a + \sqrt[t]{a + \dots + \sqrt[t]{a}}}}_{n}, \tag{4}$$

$$f_{n,t}(a) = \frac{a - S_{n+1,t}(a)}{a - S_{n,t}(a)}. (5)$$

Recently, the conjecture made by J.-Ch. Kuang was considered in [3], and the following result obtained.

Theorem A. Let a > 0 and $n \in \mathbb{N}$.

(1) For $a \geq 2$, we have

$$\frac{1}{a^2} < \frac{2(a+\sqrt{a}-a^2)}{(\sqrt{a}-a)(\sqrt{1+4a}+2a+1)} < f_n(a) < 1;$$
 (6)

(2) For $1 \le a < 2$, there is a number $n_0 \in \mathbb{N}$ such that

$$f_n(a) > 1 \ge \frac{1}{a^2} \tag{7}$$

holds for $n > n_0$;

(3) For 0 < a < 1, we have

$$1 < f_n(a) \le \frac{\sqrt{a + \sqrt{a} - a}}{\sqrt{a} - a}.$$
 (8)

In this article, motivated by the reading note in [2] and the paper [3], we give an explicit solution to the problem involving the convergence of $S_{n,t}(a)$ and the bounds of $f_{n,t}(a)$ defined by (4) and (5) in the case of t=3.

2. Convergence and Inequalities for $S_{n,t}(a)$

In this section, we first discuss the convergence of the sequence $S_{n,t}(a)$, and then obtain several inequalities for it.

Theorem 1. Let a > 0 and $n \in \mathbb{N}$. The sequence $\{S_{n,3}(a)\}_{n=1}^{\infty}$ is strictly increasing.

(1) If $0 < a \le \frac{2}{3\sqrt{3}}$, we have

$$\lim_{n \to \infty} S_{n,3}(a) = \frac{2}{\sqrt{3}} \cos\left(\frac{1}{3}\arccos\frac{3a\sqrt{3}}{2}\right); \tag{9}$$

(2) If $a > \frac{2}{3\sqrt{3}}$, we have

$$\lim_{n \to \infty} S_{n,3}(a) = \sqrt[3]{\frac{a}{2} + \sqrt{\frac{a^2}{4} - \frac{1}{27}}} + \sqrt[3]{\frac{a}{2} - \sqrt{\frac{a^2}{4} - \frac{1}{27}}}.$$
 (10)

Proof. By induction, it is easy to prove that the sequence $\{S_{n,3}(a)\}_{n=1}^{\infty}$ is strictly increasing for a > 0 and $\sqrt[3]{a} \le S_{n,3}(a) < \sqrt[3]{a} + 1$, therefore, the sequence $\{S_{n,3}(a)\}_{n=1}^{\infty}$ converges.

Suppose $\lim_{n\to\infty} S_{n,3}(a) = x$, then, from $S_{n,3}^3(a) = a + S_{n-1,3}(a)$, it can be deduced that $x^3 - x - a = 0$.

From Cardano's formula [1] for the solution of a cubic equation of a single variable, the proof of Theorem 1 follows. \Box

Using monotonicity of the sequence $\{S_{n,3}(a)\}_{n=1}^{\infty}$ and Theorem 1, the following inequalities are obtained.

Theorem 2. Let a > 0 and $n \in \mathbb{N}$.

(1) If $0 < a \le \frac{2}{3\sqrt{3}}$, then

$$a < \sqrt[3]{a} \le S_{n,3}(a) \le \frac{2}{\sqrt{3}} \cos\left(\frac{1}{3}\arccos\frac{3a\sqrt{3}}{2}\right);$$
 (11)

(2) If $\frac{2}{3\sqrt{3}} < a < 1$, we have

$$a < \sqrt[3]{a} \le S_{n,3}(a) < \sqrt[3]{\frac{a}{2} + \sqrt{\frac{a^2}{4} - \frac{1}{27}}} + \sqrt[3]{\frac{a}{2} - \sqrt{\frac{a^2}{4} - \frac{1}{27}}};$$
 (12)

(3) If $1 \le a < \sqrt{2}$, there exists a number $n_0 \in \mathbb{N}$ such that

$$\sqrt[3]{a} \le S_{n_0,3}(a) \le a < S_{n,3}(a) < \sqrt[3]{\frac{a}{2} + \sqrt{\frac{a^2}{4} - \frac{1}{27}}} + \sqrt[3]{\frac{a}{2} - \sqrt{\frac{a^2}{4} - \frac{1}{27}}}$$
(13)

holds for $n > n_0$;

(4) If $a \ge \sqrt{2}$, then

$$\sqrt[3]{a} \le S_{n,3}(a) < \sqrt[3]{\frac{a}{2} + \sqrt{\frac{a^2}{4} - \frac{1}{27}}} + \sqrt[3]{\frac{a}{2} - \sqrt{\frac{a^2}{4} - \frac{1}{27}}} \le a.$$
 (14)

Proof. We verify the inequalities (13) and (14), the rest follow similarly.

For $x \ge \frac{2}{3\sqrt{3}}$, we introduce a function $\psi(x)$ defined by

$$\psi(x) \triangleq g(x) - x \triangleq \sqrt[3]{\frac{x}{2} + \sqrt{\frac{x^2}{4} - \frac{1}{27}}} + \sqrt[3]{\frac{x}{2} - \sqrt{\frac{x^2}{4} - \frac{1}{27}}} - x.$$
 (15)

We also claim that $\psi(x) \leq 0$ if and only if $x \geq \sqrt{2}$.

Direct calculation reveals that

$$g^{3}(x) = g(x) + x. (16)$$

We have, then

$$g'(x) = \frac{1}{3g^2(x) - 1}, \quad g''(x) = -\frac{6g(x)}{[3g^2(x) - 1]^3}.$$
 (17)

It is clear that both the terms of g(x) are positive for $x \geq \frac{2}{3\sqrt{3}}$. Using the arithmetic-geometric mean inequality yields that $g(x) > \frac{2\sqrt{3}}{3}$ for $x \geq \frac{2}{3\sqrt{3}}$. This leads to $3g^2(x) - 1 > 3$ for $x \geq \frac{2}{3\sqrt{3}}$. Therefore, the first derivative of g(x) satisfies g'(x) > 0 and the second derivative g''(x) < 0 for $x \geq \frac{2}{3\sqrt{3}}$. This means that the function g(x) is increasing and concave on $\left[\frac{2}{3\sqrt{3}}, \infty\right)$.

Straightforward computation yields

$$\psi\left(\frac{2}{3\sqrt{3}}\right) = \frac{4}{3\sqrt{3}}, \quad \lim_{x \to \infty} \psi(x) = -\infty. \tag{18}$$

This implies that the curve y = g(x) and the straight line y = x intersect at a unique point on $\left[\frac{2}{3\sqrt{3}},\infty\right)$. Thus, there exists a unique point $x_0 \in \left(\frac{2}{3\sqrt{3}},\infty\right)$ such that $\psi(x) > 0$ for $x \in \left(\frac{2}{3\sqrt{3}},x_0\right)$ and $\psi(x) < 0$ for (x_0,∞) .

Since
$$\psi(\sqrt{2}) = 0$$
, consequently $x_0 = \sqrt{2}$. The proof is complete.

Remark 1. Now we provide another proof for the claim that $\psi(x) \leq 0$ if and only if $x \geq \sqrt{2}$.

Firstly, we prove that g(x) = x holds if and only if $x = \sqrt{2}$. Letting $x = \sqrt{2}$ in (16), we have $g^3(\sqrt{2}) - g(\sqrt{2}) - \sqrt{2} = 0$, which is equivalent to $[g(\sqrt{2}) - \sqrt{2}][g^2(\sqrt{2}) + \sqrt{2}g(\sqrt{2}) + 1] = 0$, thus $g(\sqrt{2}) = \sqrt{2}$. Conversely, letting $g(x) = x \ge \frac{2}{3\sqrt{3}}$, then equation (16) reduces to $x^3 - 2x = 0$, and so $x = \sqrt{2}$.

Secondly, we verify that g(x) < x is valid if and only if $x > \sqrt{2}$. If g(x) < x, then equation (16) can be rewritten as $x - g(x) = g^3(x) - 2g(x) = g(x)[g^2(x) - 2] > 0$, then $x > g(x) > \sqrt{2}$. Conversely, if $x > \sqrt{2}$, then $g^3(x) - g(x) - \sqrt{2} > g^3(x) - g(x) - x = 0$, which is equivalent to $[g(x) - \sqrt{2}][g^2(x) + \sqrt{2}g(x) + 1] > 0$, and so $g(x) > \sqrt{2}$. Therefore, $g(x) - x = 2g(x) - g^3(x) = g(x)[2 - g^2(x)] < 0$, which means that g(x) < x.

The proof is complete.

Corollary 1. The irrational number $\sqrt{2}$ can be expressed as

$$\sqrt{2} = \sqrt[3]{\frac{1}{\sqrt{2}} - \frac{5}{3\sqrt{6}}} + \sqrt[3]{\frac{1}{\sqrt{2}} + \frac{5}{3\sqrt{6}}},\tag{19}$$

which is equivalent to

$$\sqrt[3]{3\sqrt{3} - 5} + \sqrt[3]{3\sqrt{3} + 5} = \sqrt{3} \cdot \sqrt[3]{4}. \tag{20}$$

Proof. Identity (20) follows from simplifying (19) directly.

Raising both sides of $A = \sqrt[3]{3\sqrt{3} - 5} + \sqrt[3]{3\sqrt{3} + 5}$ to the power of 3 shows that A satisfies the cubic equation $x^3 - 3\sqrt[3]{2}x - 6\sqrt{3} = 0$. By Cardano's formula in [1], it follows that $A = \sqrt{3} \cdot \sqrt[3]{4}$. The proof is complete.

3. Inequalities for the Sequence $f_{n,3}(a)$

From the monotonicity and inequalities for the sequence $\{S_{n,3}(a)\}_{n=1}^{\infty}$, we will derive some inequalities for the sequence $\{f_{n,3}(a)\}_{n=1}^{\infty}$.

Theorem 3. Let a > 0 and $n \in \mathbb{N}$.

(1) When 0 < a < 1, we have

$$1 < f_{n,3}(a) \le \frac{\sqrt[3]{a + \sqrt[3]{a} - a}}{\sqrt[3]{a - a}}; \tag{21}$$

(2) When $1 \le a < \sqrt{2}$, there exists a number $n_0 \in \mathbb{N}$ such that

$$f_{n,3}(a) > 1 > \frac{1}{a} > \frac{1}{a^2}$$
 (22)

holds for all $n > n_0$;

(3) When $a \ge \sqrt{2}$, we have

$$1 > f_{n,3}(a) > \frac{1}{a^2 + a\alpha + \alpha^2} \left(1 + \frac{a^3 - 2a}{a - \sqrt[3]{a}} \right), \tag{23}$$

where

$$\alpha = \sqrt[3]{\frac{a}{2} + \sqrt{\frac{a^2}{4} - \frac{1}{27}}} + \sqrt[3]{\frac{a}{2} - \sqrt{\frac{a^2}{4} - \frac{1}{27}}}.$$
 (24)

Proof. For 0 < a < 1, since the sequence $\{S_{n,3}(a)\}_{n=1}^{\infty}$ is strictly increasing with $S_{n,3}(a) > a$, then $a - S_{n+1,3}(a) < a - S_{n,3}(a) < 0$, and $f_{n,3}(a) = \frac{a - S_{n+1,3}(a)}{a - S_{n,3}(a)} > 1$.

By standard argument, it follows that

$$f_{n+1,3}(a) = \frac{a - S_{n+2,3}(a)}{a - S_{n+1,3}(a)}$$

$$= \frac{1}{a^2 + aS_{n+2,3}(a) + S_{n+2,3}^2(a)} \frac{a^3 - S_{n+2,3}^3(a)}{a - S_{n+1,3}(a)}$$

$$= \frac{1}{a^2 + aS_{n+2,3}(a) + S_{n+2,3}^2(a)} \left[1 + \frac{2a - a^3}{S_{n+1,3}(a) - a} \right]$$

$$< \frac{1}{a^2 + aS_{n+1,3}(a) + S_{n+1,3}^2(a)} \left[1 + \frac{2a - a^3}{S_{n,3}(a) - a} \right]$$

$$= \frac{a - S_{n+1,3}(a)}{a - S_{n,3}(a)}$$

$$= f_{n,3}(a).$$
(25)

This implies that the sequence $\{f_{n,3}(a)\}_{n=1}^{\infty}$ is strictly decreasing, therefore

$$f_{n,3}(a) \le f_{1,3}(a) = \frac{\sqrt[3]{a + \sqrt[3]{a} - a}}{\sqrt[3]{a - a}}.$$
 (26)

For $1 \le a < \sqrt{2}$, and (13), there exists a number $n_0 \in \mathbb{N}$ such that $a - S_{n+1,3}(a) < a - S_{n,3}(a) < 0$ holds for $n > n_0$. Hence

$$f_{n,3}(a) = \frac{a - S_{n+1,3}(a)}{a - S_{n,3}(a)} > 1 > \frac{1}{a} > \frac{1}{a^2}, \quad n > n_0.$$

For $n > n_0$, the formula (25) is also valid. Thus, the sequence $\{f_{n,3}(a)\}_{n=n_0+1}^{\infty}$ is strictly decreasing, and

$$\frac{1}{a^2} < \frac{1}{a} < 1 < f_{n,3}(a) < \frac{a - S_{n_0 + 2,3}(a)}{a - S_{n_0 + 1,3}(a)}, \quad n > n_0.$$
 (27)

For $a \ge \sqrt{2}$, and (14), we have $0 < a - S_{n+1,3}(a) < a - S_{n,3}(a)$ for $n \in \mathbb{N}$. Then $f_{n,3}(a) = \frac{a - S_{n+1,3}(a)}{a - S_{n,3}(a)} < 1$. From a combination of the following formula (28),

$$f_{n,3}(a) = \frac{a - S_{n+1,3}(a)}{a - S_{n,3}(a)} = \frac{1}{a^2 + aS_{n+1,3}(a) + S_{n+1,3}^2(a)} \left[1 + \frac{2a - a^3}{S_{n,3}(a) - a} \right], \quad (28)$$

and the inequalities in (14), then (23) follows.

The proof is complete.

4. Open Problems

It is natural to pose the following questions.

(1) Can we prove or disprove the convergence of the sequence $\{S_{n,t}(a)\}_{n=1}^{\infty}$ for a positive real number a and nonzero real number $t \neq 0$?

7

(2) Can we establish sharp lower and upper sharp bounds for the sequence $\{f_{n,t}(a)\}_{n=1}^{\infty}$ for a positive real number a and nonzero real number $t \neq 0$?

Acknowledgements. This paper was finalized during the second author visited RGMIA between November 1, 2001 and January 31, 2002, as a Visiting Professor with grants from the Victoria University of Technology and Jiaozuo Institute of Technology.

References

- C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGram-Hill, 1978. Chinese edition, translated by J.-Ch. Li, F.-Q. Zhuang, and B.-Y. Wang, Science Press, 1992, p. 280.
- [2] J.-Ch. Kuang, Chángyòng Bùdĕngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
- [3] B.-Y. Xi, Discussion on a conjecture about an inequality, Shùxué Tōngbào (Bulletin of Mathematics) (2000), no. 11, 21–22. (Chinese)
- (Luo) Department of Broadcast-Television-Teaching, Jiaozuo University, Jiaozuo City, Henan 454002, China

E-mail address: luoqm236@sohu.com

(Qi) Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China

 $E ext{-}mail\ address: qifeng@jzit.edu.cn}$ or qifeng618@hotmail.com

 URL : http://rgmia.vu.edu.au/qi.html

(Barnett) School of Communications and Informatics, Victoria University of Technology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

 $E ext{-}mail\ address: neil@matilda.vu.edu.au}$

URL: http://sci.vu.edu.au/staff/neilb.html

(Dragomir) School of Communications and Informatics, Victoria University of Technology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.vu.edu.au/SSDragomirWeb.html