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LOWER AND UPPER BOUNDS OF ζ(3)

QIU-MING LUO, ZONG-LI WEI, AND FENG QI

Abstract. In this short note, using refinements of Jordan’s inequality and an

integral expression of ζ(3), the lower and upper bounds of ζ(3) are obtained,

and some related results are improved.

1. Introduction

The Riemann zeta function can be defined by the integral

ζ(x) =
1

Γ(x)

∫ ∞

0

ux−1

eu − 1
du, (1)

where x > 1. If x is an integer n, we obtain the most common form of the function

ζ(n), which is given by

ζ(n) =
∞∑

k=1

1
kn

. (2)

For n = 1, the zeta function reduces to the harmonic series, which is divergent.

The Riemann zeta function can also be defined in terms of multiple integrals by

ζ(n) =
∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
n

∏n
i=1 dxi

1−
∏n

i=1 xi
. (3)

An additional identity is

lim
s→1

ζ(s)− 1
s− 1

= γ, (4)

where γ is the Euler-Mascheroni constant.
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The Euler product formula can also be written as

ζ(x) =

[ ∞∏
i=2

(1− i−x)

]−1

. (5)

The function ζ(n) was proved to be transcendental for all even n. For n = 2k

we have:

ζ(n) =
2n−1 |Bn|πn

n!
, (6)

where Bn is the Bernoulli number. Another intimate connection with the Bernoulli

numbers is provided by

Bn = (−1)n+1nζ(1− n). (7)

The Riemann zeta function is related to the gamma function and it has important

applications in mathematics, especially in the Analytic Number Theory.

The Riemann zeta function may be computed analytically for even n using either

Contour integration or Parseval’s theorem with the appropriate Fourier series.

No analytic form for ζ(n) is known for odd n = 2k + 1, but ζ(2k + 1) can be

expressed as the sum limit

ζ(2k + 1) =
(π

2

)2k+1

lim
t→∞

1
t2k+1

∞∑
i=1

[
cot

( i

2t + 1

)]2k+1

. (8)

The values for the first few integral arguments are

ζ(0) = −1
2
, ζ(1) = ∞, ζ(2) =

π2

6
,

ζ(3) = 1.2020569032 · · · , ζ(4) =
π4

90
, ζ(5) = 1.0369277551 · · · .

In [9, p. 81], using the Jordan inequality 1 < x
sin x ≤ π

2 for x ∈ (0, π
2 ] and two

integral expressions
∞∑

i=0

1
(2i + 1)3

=
1
4

∫ π/2

0

x(π − x)
sinx

dx, (9)

∞∑
i=1

1
i3

=
1
6π

∫ π

0

(
x(π − x)

sinx

)2

dx, (10)

the following estimates were given

3π2

32
≤
∞∑

i=0

1
(2i + 1)3

≤ 3π3

64
,

∞∑
i=1

1
i3

<
29
24

. (11)

There is much literature devoted to evaluations and proofs of ζ(2) = π2

6 . Please

refer to the related references in this paper.
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In this short note, using an integral expression of ζ(3) and refinements of the

Jordan inequality, we obtain the following

Theorem 1. The value of ζ(3) can be evaluated by the following

1.201 · · · = 1
14
√

5

{
π

√
30

(√
30− 5

)
ln

[
π2 + 4π

√
5 +

√
30 + 8

√
30

]
− π

√
30

(√
30− 5

)
ln

[
π2 − 4π

√
5 +

√
30 + 8

√
30

]
+ 2π

√
30

(
5 +

√
30

)
arctan

[
π + 2

√√
30 + 5

2
√√

30− 5

]

+ 2π

√
30

(
5 +

√
30

)
arctan

[
π − 2

√√
30 + 5

2
√√

30− 5

]

+ 120 arctan

[
π + 2

√√
30 + 5

2
√√

30− 5

]

− 120 arctan

[
π − 2

√√
30 + 5

2
√√

30− 5

]
− 240 arctan

√√
30 + 5√
30− 5

}

< ζ(3) =
∞∑

i=0

1
i3

=
8
7

∞∑
i=0

1
(2i + 1)3

<
2
7

{
3 ln(24− π2)− 9 ln 2− 3 ln 3 + π

√
6 arctanh

π
√

6
12

}
= 7

{
6 ln

24− π2

4
− 6 ln 6− π

√
6 ln

12− π
√

6
2

+ π
√

6 ln
12 + π

√
6

2

}
= 1.217 · · · .

(12)

It is obvious that inequality (12) improves inequality (11).

2. Lower and upper bounds of ζ(3)

It is well-known that, for x ∈ [0, π
2 ], we have

x− 1
6
x3 ≤ sinx ≤ x− 1

6
x3 +

1
120

x5. (13)

The inequalities in (13) can be found in [7, 10, 11] and [9, p. 309]. The inequalities

in (13) are a refinement of the well-known Jordan inequality 2
π x ≤ sinx ≤ x for

x ∈ [0, π
2 ].

It is easy to see that
∞∑

i=0

1
(2i + 1)3

=
7
8
ζ(3). (14)
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From formula (9) and inequality (13), it follows by direct calculation that

1.051 · · · = 1
16
√

5

{
π

√
30

(√
30− 5

)
ln

[
π2 + 4π

√
5 +

√
30 + 8

√
30

]
− π

√
30

(√
30− 5

)
ln

[
π2 − 4π

√
5 +

√
30 + 8

√
30

]
+ 2π

√
30

(
5 +

√
30

)
arctan

[
π + 2

√√
30 + 5

2
√√

30− 5

]

+ 2π

√
30

(
5 +

√
30

)
arctan

[
π − 2

√√
30 + 5

2
√√

30− 5

]

+ 120 arctan

[
π + 2

√√
30 + 5

2
√√

30− 5

]

− 120 arctan

[
π − 2

√√
30 + 5

2
√√

30− 5

]
− 240 arctan

√√
30 + 5√
30− 5

}

=
1
4

∫ π/2

0

π − x

1− 1
6x2 + 1

120x4
dx

<
∞∑

i=0

1
(2i + 1)3

<
1
4

∫ π/2

0

π − x

1− 1
6x2

dx

=
3 ln(24− π2)− 9 ln 2− 3 ln 3 + π

√
6 arctanh π

√
6

12

4

=
6 ln 24−π2

4 − 6 ln 6− π
√

6 ln 12−π
√

6
2 + π

√
6 ln 12+π

√
6

2

8

= 1.0654 · · · .

(15)

The proof of Theorem 1 follows from a combination of (14) with (15).
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