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THE EXTENDED MEAN VALUES: DEFINITION, PROPERTIES,
MONOTONICITIES, COMPARISON, CONVEXITIES,

GENERALIZATIONS, AND APPLICATIONS

FENG QI

Abstract. The extended mean values E(r, s; x, y) play an important role in
theory of mean values and theory of inequalities, and even in the whole math-
ematics, since many norms in mathematics are always means. Its study is not

only interesting but important, both because most of the two-variable mean
values are special cases of E(r, s; x, y), and because it is challenging to study

a function whose formulation is so indeterminate.

In this expositive article, we summarize the recent main results about study
of E(r, s; x, y), including definition, basic properties, monotonicities, compar-
ison, logarithmic convexities, Schur-convexities, generalizations of concepts of
mean values, applications to quantum, to theory of special functions, to es-
tablishment of Steffensen pairs, and to generalization of Hermite-Hadamard’s
inequality.

1. Definition and expressions of the extended mean values

The histories of mean values and inequalities are long [9]. The mean values are
related to the Mean Value Theorems for derivative or for integral, which are the
bridge between the local and global properties of functions. The arithmetic-mean-
geometric-mean inequality is probably the most important inequality, and certainly
a keystone of the theory of inequalities [2]. Inequalities of mean values are one of
the main parts of theory of inequalities, they have explicit geometric meanings [14].
The theory of mean values plays an important role in the whole mathematics, since
many norms in mathematics are always means.

1.1. Definition of the extended mean values. In 1975, the extended mean
values E(r, s;x, y) were defined in [51] by K. B. Stolarsky as follows

E(r, s;x, y) =
[
r

s
· y

s − xs

yr − xr

]1/(s−r)

, rs(r − s)(x− y) 6= 0; (1.1)
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E(r, 0;x, y) =
[
1
r
· yr − xr

ln y − lnx

]1/r

, r(x− y) 6= 0; (1.2)

E(r, r;x, y) =
1
e1/r

[
xxr

yyr

]1/(xr−yr)

, r(x− y) 6= 0; (1.3)

E(0, 0;x, y) =
√
xy, x 6= y; (1.4)

E(r, s;x, x) = x, x = y;

where x, y > 0 and r, s ∈ R.
It is easy to see that the extended mean values E(r, s;x, y) are continuous on

the domain {(r, s;x, y)| r, s ∈ R;x, y > 0}.
They are of symmetry between r and s and between x and y.
Many basic properties had been researched by E. B. Leach and M. C. Sholander

in [19] in 1970’s.
Many mean values with two variables are special cases of E, for examples,

E(r, 2r;x, y) = Mr(x, y), (power means or Hölder means) (1.5)

E(1, p;x, y) = Sp(x, y), (extended logarithmic means) (1.6)

E(1, 1;x, y) = I(x, y), (identric or exponential mean) (1.7)

E(1, 2;x, y) = A(x, y), (arithmtic mean) (1.8)

E(0, 0;x, y) = G(x, y), (geometric mean) (1.9)

E(−2,−1;x, y) = H(x, y), (harmonic mean) (1.10)

E(0, 1;x, y) = L(x, y). (logarithmic mean) (1.11)

Study of E(r, s;x, y) is not only interesting but important, both because most
of the two-variable mean values are special cases of E(r, s;x, y), and because it is
challenging to study a function whose formulation is so indeterminate [26].

1.2. Integral expressions of the extended mean values. Let

g(t) , g(t;x, y) =


(yt − xt)

t
, t 6= 0;

ln y − lnx, t = 0.
(1.12)

Define a function Un(x; t) such that

U0(x; t) = tx,

Un+1(x; t) =
x∂Un(x; t)

∂x
− (n+ 1)Un(x; t)

(1.13)

for n being a nonnegative integer and t > 0.
The direct calculation of the n-th order derivative of g(t) for n ∈ N is compli-

cated. However, it is easy to see that

g(n)(t) =
∫ y

x

(lnu)nut−1du, y > x > 0, n ∈ N. (1.14)

Recently, a new expression for the i-th order derivative of g(t;x, y) with respect
to the variable t was obtained by the author as follows

(−1)ig(i)(t) =
Γ(i+ 1,−t ln y)− Γ(i+ 1,−t lnx)

ti+1
, (1.15)
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where i is a nonnegative integer, and Γ(z, x) denotes the incomplete gamma function
defined for Re z > 0 by

Γ(z, x) =
∫ ∞

x

tz−1e−tdt. (1.16)

The expressions (1.12), (1.14), and (1.15) of g(t;x, y) look like simple, but they
are important for us. The expression (1.14) can be used to rewrite the extended
mean values as

E(r, s;x, y) =
(
g(s;x, y)
g(r;x, y)

)1/(s−r)

, (r − s)(x− y) 6= 0; (1.17)

E(r, r;x, y) = exp
(
gr(r;x, y)
g(r;x, y)

)
, (x− y) 6= 0. (1.18)

Taking logarithm in (1.17) and (1.18) yields

lnE(r, s;x, y) =


1

s− r

∫ s

r

∂g(t;x, y)
∂t

· 1
g(t;x, y)

dt, (r − s)(x− y) 6= 0;

∂g(r;x, y)
∂r

· 1
g(r;x, y)

, r = s, x− y 6= 0.
(1.19)

Note that, the integral expressions (1.14), (1.17) and (1.18) of the function g and
the extended mean values E(r, s;x, y) play key roles in our sequent contents.

1.3. Inequalities and recurrence formulae for g(t;x, y). Using Chebysheff’s
integral inequality, Hermite-Hadamard’s inequality for convex functions and the
mathematical induction, some relationships between g(x) and Un(x, t) are deduced,
and some recurrence formulae and inequalities of them are given. For examples
Theorem 1.1 ([46]). The function g(x) satisfies

g(n)(x) =
Un(x; b)− Un(x; a)

xn+1
, (1.20)

∂Un(x, t)
∂t

= xn+1(ln t)ntx−1. (1.21)

Theorem 1.2 ([46]). The function g(x+γ)
g(x) is increasing (or decreasing) in x for

γ > 0 (or γ < 0). And
[

g(x+t)
g(x)

]1/t

, t 6= 0, is increasing with t.

Theorem 1.3 ([46]). The function g(x) is absolutely and regularly monotonic on
R for a > 1, or on (0,∞) for b > 1

a > 1, completely and regularly monotonic on R
for 0 < a < b < 1, or on (−∞, 0) for 1 < b < 1

a . Furthermore, g(x) is absolutely
convex on R.
Theorem 1.4 ([46]). For k, i, j ∈ N, we have

g(2(i+k)+1)g(2(j+k)+1) < g(2k)g(2(i+j+k+1)). (1.22)

The ratio g(2(j+k)+1)(x)
g(2k)(x)

is increasing in x.

For completeness, we list definition of absolutely (regularly, completely) mono-
tonic (convex) function as follows.
Definition 1.1. A function f(t) is said to be absolutely monotonic on (a, b) if it
has derivatives of all orders and f (k)(t) ≥ 0, t ∈ (a, b), k ∈ N.
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Definition 1.2. A function f(t) is said to be completely monotonic on (a, b) if it
has derivatives of all orders and (−1)kf (k)(t) ≥ 0, t ∈ (a, b), k ∈ N.
Definition 1.3. A function f(t) is said to be absolutely convex on (a, b) if it has
derivatives of all orders and f (2k)(t) ≥ 0, t ∈ (a, b), k ∈ N.
Definition 1.4. A function f(t) is said to be regularly monotonic if it and its
derivatives of all orders have constant sign (+ or −; not all the same) on (a, b).

The absolutely (completely, regularly) monotonic (convex) functions are useful
in Lapalce transform [52].

2. Monotonicities of the extended mean values

While studying a function, we always consider its monotonicity at first. The
extended mean values E(r, s;x, y) are increasing with respect to its all variables.
That is
Theorem 2.1. The extended mean values E(r, s;x, y) is increasing in both x and
y and in both r and s.

This theorem was verified by E. B. Leach and M. C. Sholander in [20].
Later, using expression (1.17) and (1.18), monotonicity of the arithmetic mean of

function, Chebysheff’s integral inequality, Cauchy-Schwarz-Buniakowski’s inequal-
ity and other analytic technique, some simple and new proofs for monotonicity of
the extended mean values are provided in [15, 42, 44, 47].

3. Comparison of the extended mean values

The comparison of the extended mean values E(r, s;x, y) is a difficult problem.
It was reseached in [20]. Five years later, a more general results were obtained by
Z. Páles in [26]. It is restated in [25, 29] as follows.
Theorem 3.1 ([20, 26]). Let r, s, u, v be real numbers with r 6= s and u 6= v, then
the inequality

E(r, s; a, b) ≤ E(u, v; a, b) (3.1)

is satisfied for all a, b > 0 if and only if

r + s ≤ u+ v and e(r, s) ≤ e(u, v), (3.2)

where

e(x, y) =


x− y

ln x
y

for xy > 0 and x 6= y,

0 for xy = 0
(3.3)

if either 0 ≤ min{r, s, u, v} or max{r, s, u, v} ≤ 0, or

e(x, y) =
|x| − |y|
x− y

for x, y ∈ R and x 6= y (3.4)

if min{r, s, u, v} < 0 < max{r, s, u, v}.

4. Convexities of the extended mean values

After considering the monotonicity and comparison, it is natural to investigate
the convexities of the extended mean values E(r, s;x, y).
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4.1. Definitions of convexities. The concepts of convexities of functions are
manifold, for instance, the logarithmically convex and the Schur-convex.

Definition 4.1 ([24]). A positive function f defined on an interval I is logarith-
mically convex (concave) if its logarithm ln f is convex (concave).

Definition 4.2 ([6, 28]). A function f with n arguments on In is Schur-convex on
In if f(x) ≤ f(y) for each two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) in In

such that x ≺ y holds, where I is an interval with nonempty interior.
The relationship of majorization x ≺ y means that

k∑
i=1

x[i] ≤
k∑

i=1

y[i],
n∑

i=1

x[i] =
n∑

i=1

y[i], (4.1)

where 1 ≤ k ≤ n− 1 and x[i] denotes the ith largest component in x.
A function f is Schur-concave if and only if −f is Schur-convex.

4.2. Convexity of the arithmetic mean of function. The convexities of the
(weighted) arithmetic mean of function (integral arithmetic mean) are important
to our proofs for convexities of the extended mean values E(r, s;x, y).

The following results can be verified easily.

Lemma 4.1 ([47]). If f(t) is an increasing integrable function on I, then the
arithmetic mean of function f(t),

φ(r, s) =


1

s− r

∫ s

r

f(t)dt, r 6= s,

f(r), r = s,
(4.2)

is also increasing with both r and s on I.
If f is a twice-differentiable convex function, then the function φ(r, s) is also

convex with both r and s on I.

In [6], N. Elezović and J. Pečarić proved the following

Lemma 4.2. Let f be a continuous function on I. Then the integral arithmetic
mean,

φ(u, v) =


1

v − u

∫ v

u

f(t)dt, u 6= v,

f(r), u = v,
(4.3)

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I.

The following necessary and sufficient condition is well-known.

Lemma 4.3 ([6] and [28, p. 333]). A continuously differentiable function f on I2

(where I being an open interval) is Schur-convex if and only if it is symmetric and
satisfies that (

∂f

∂y
− ∂f

∂x

)
(y − x) > 0 for all x, y ∈ I, x 6= y. (4.4)

Using Lemma 4.3, we can obtain the Schur-convexities of the weighted arithmtic
mean of function and the extended mean values E(r, s;x, y) with (x, y) for fixed
(r, s).
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Lemma 4.4 ([45]). Let f be a continuous function on I, let p be a positive con-
tinuous weight on I. Then the weighted arithmtic mean of function f with weight
p defined by

F (x, y) =


∫ y

x
p(t)f(t)dt∫ y

x
p(t)dt

, x 6= y,

f(x), x = y

(4.5)

is Schur-convex (Schur-concave) on I2 if and only if inequality∫ y

x
p(t)f(t)dt∫ y

x
p(t)dt

≤ p(x)f(x) + p(y)f(y)
p(x) + p(y)

(4.6)

holds (reverses) for all x, y ∈ I.

4.3. Logarithmic convexity of the extended mean values. By formula (1.19)
and Lemma 4.1, we can see that, in order to prove the logarithmic convexity of the
extended mean values E(r, s;x, y), it suffices to verify the convexity of function

g′(t)
g(t)

,
g′t(t;x, y)
g(t;x, y)

,
∂g(t;x, y)

∂t
· 1
g(t;x, y)

(4.7)

with respect to t.
Straightforward computation results in(

g′(t)
g(t)

)′
=
g′′(t)g(t)− [g′(t)]2

g2(t)
, (4.8)(

g′(t)
g(t)

)′′
=
g2(t)g′′′(t)− 3g(t)g′(t)g′′(t) + 2[g′(t)]3

g3(t)
. (4.9)

By a long intricate and standard argument, we obtain the following
Proposition 4.1 ([32]). If y > x = 1, then, for t ≥ 0, we have

g2(t; 1, y)g′′′t (t; 1, y) − 3g(t; 1, y)g′t(t; 1, y)g
′′
t (t; 1, y) + 2[g′t(t; 1, y)]

3 ≤ 0. (4.10)

The combination of Proposition 4.1 with equality (4.9) proves that g′t(t;1,y)
g(t;1,y) is

concave on [0,∞) with t for fixed y > x = 1. Thus, it follows that the extended
mean values E(r, s; 1, y) are logarithmically concave on [0,∞) with respect to either
r or s for y > x = 1.

By standard arguments, we obtain

E(r, s;x, y) = xE
(
r, s; 1,

y

x

)
, (4.11)

E(−r,−s;x, y) =
xy

E(r, s;x, y)
. (4.12)

Hence, E(r, s;x, y) are logarithmically concave on [0,∞) with either r or s and
logarithmically convex on (−∞, 0] in either r or s, respectively. That is
Theorem 4.1 ([32]). For all fixed x, y > 0 and s ∈ [0,∞) (or r ∈ [0,∞), respec-
tively), the extended mean values E(r, s;x, y) are logarithmically concave in r (or
in s, respectively) on [0,∞); For all fixed x, y > 0 and s ∈ (−∞, 0] (or r ∈ (−∞, 0],
respectively), the extended mean values E(r, s;x, y) are logarithmically convex in r
(or in s, respectively) on (−∞, 0].

4.4. Schur-convexity of the extended mean values. The Shur-convexities are
parted into two cases: convexities with respect to (r, s) and (x, y), respectively.
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4.4.1. By the same procedure as proof of the logarithmic convexity of E(r, s;x, y)
and using Lemma 4.2, we obtain the following

Theorem 4.2 ([35]). For fixed x, y > 0 and x 6= y, the extended mean values
E(r, s;x, y) are Schur-concave on R2

+ and Schur-convex on R2
− with (r, s), where R2

+

and R2
− denote [0,∞)× [0,∞) and (−∞, 0]× (−∞, 0], the first and third quadrants,

respectively.

Taking (r1, s1) = (0, 2r) and (r2, s2) = (r, r) for r 6= 0, as a direct consequence of
Theorem 4.2, we obtain an inequality between the generalized logarithmic mean val-
ues defined by (1.2) and the generalized identity (exponential) mean values defined
by (1.3) as follows

Corollary 4.2.1 ([35]). Let x, y > 0 and x 6= y. Then, for r > 0, we have[
1
2r
· y

2r − x2r

ln y − lnx

]1/(2r)

≤ 1
e1/r

(
xxr

yyr

)1/(xr−yr)

. (4.13)

For r < 0, inequality (4.13) reverses.

4.4.2. The convexities with respect to variables x and y are not much perfect. From
Lemma 4.4, using the following Theorem 4.4 about inequalities of the arithmetic
mean, harmonic mean and logarithmic mean, we have

Theorem 4.3 ([45]). For fixed point (r, s) such that r, s 6∈ (0, 3
2 ) (or r, s ∈ (0, 1],

resp.), the extended mean values E(r, s;x, y) is Schur-concave (or Schur-convex,
resp.) with (x, y) on the domain (0,∞)× (0,∞).

As by-products, some inequalities of mean values were established.

Theorem 4.4 ([45]). Let x > 0 and y > 0 be positive real numbers and r ∈ R.

(1) If r ≤ 0, then

L(xr, yr) ≥ [G(x, y)]r ≥ A(x, y)H(xr−1, yr−1), (4.14)

the equalities in (4.14) hold only if x = y or r = 0.
(2) If r ≥ 3

2 , we have

L(xr, yr) ≥ A(x, y)H(xr−1, yr−1), (4.15)

the equality in (4.15) holds only if x = y.
(3) If r ∈ (0, 1], inequality (4.15) reverses without equality unless x = y.
(4) Otherwise, the validity of inequality (4.15) may not be certain.

The results of Theorem 4.4 implies inequalities between the extended mean values
and the generalized weighted mean of positive sequence.

Theorem 4.5 ([45]). Let x, y > 0. Then

(1) if r, s ∈ (0, 1], we have

E(r, s;x, y) ≤M2((1, 1); (x, y); r − 1, s− 1), (4.16)

where M2((1, 1); (x, y); r − 1, s − 1) denotes the generalized weighted mean
of positive sequence (x, y) with two parameters r−1 and s−1 and constant
weight (1, 1) defined in Definition 5.2;

(2) if r, s 6∈ (0, 3
2 ), inequality (4.16) reverses;

(3) otherwise, the validity of inequality (4.16) may not be certain.
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5. Generalizations of mean values

From (1.14), it is clear that the extended mean values can be rewritten as

E(r, s;x, y) =

(∫ y

x
ts−1dt∫ y

x
tr−1dt

)1/(s−r)

. (5.1)

5.1. Generalized weighted mean values. One of generalizations of mean values,
the generalized weighted mean values Mp,f (r, s;x, y), are classified into two cases.

5.1.1. Continuous case. It is natural to generalize the concept of the extended mean
values E(r, s;x, y) through replacing the function t by a positive function f(t) and
considering a weight in the integrands in (5.1).
Definition 5.1 ([31, 34]). Let x, y, r, s ∈ R, and p(u) 6≡ 0 be a nonnegative and
integrable function, f(u) a positive and integrable function on the interval between
x and y. The generalized mean values, with weight p(u) and two parameters r and
s, is defined by

Mp,f (r, s;x, y) =

(∫ y

x
p(u)fs(u)du∫ y

x
p(u)fr(u)du

)1/(s−r)

, (r − s)(x− y) 6= 0; (5.2)

Mp,f (r, r;x, y) = exp

(∫ y

x
p(u)fr(u) ln f(u)du∫ y

x
p(u)fr(u)du

)
, r(x− y) 6= 0; (5.3)

Mp,f (r, 0;x, y) =

(∫ y

x
p(u)fr(u)du∫ y

x
p(u)du

)1/r

, r(x− y) 6= 0; (5.4)

Mp,f (0, 0;x, y) = exp

(∫ y

x
p(u) ln f(u)du∫ y

x
p(u)du

)
, x− y 6= 0; (5.5)

Mp,f (r, s;x, x) = f(x).

The following lemma is called the revised Cauchy’s mean values theorem in
integral form.
Lemma 5.1 ([31, 34, 47]). Suppose that f(t) and g(t) ≥ 0 are integrable on [a, b]
and the ratio f(t)

g(t) has finitely many removable discontinuity points. Then there
exists at least one point θ ∈ (a, b) such that∫ b

a
f(t)dt∫ b

a
g(t)dt

= lim
t→θ

f(t)
g(t)

. (5.6)

Using Lemma 5.1, the basic properties of the generalized weighted mean values
Mp,f (r, s;x, y) were yielded as follows.
Theorem 5.1 ([31]). Mp,f (r, s;x, y) have the following properties

m ≤Mp,f (r, s;x, y) ≤M, (5.7)

Mp,f (r, s;x, y) = Mp,f (r, s; y, x) = Mp,f (s, r;x, y), (5.8)

Ms−r
p,f (r, s) = Ms−t

p,f (t, s)M t−r
p,f (r, t), (5.9)

where m = inf f(u),M = sup f(u).
In [31] and [44], the monotonicity with x and y of Mp,f (r, s;x, y) was proved by

three approaches.
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Theorem 5.2. Let p(u) 6≡ 0 be a nonnegative and continuous function, f(u) a
positive, increasing (or decreasing, respectively) and continuous function. Then
Mp,f (r, s;x, y) increases (or decreases, respectively) with respect to either x or y.

Using Cauchy-Schwarz-Buniakowski’s inequality, we proved monotonicity of the
generalized weighted mean values Mp,f (r, s;x, y) with (r, s) as follows.
Theorem 5.3 ([48]). The generalized weighted mean values Mp,f (r, s;x, y) are
increasing with both r and s for any continuous nonnegative weight p and continuous
positive function f .

Using Tchebysheff’s integral inequality, we have the following two theorems.
Theorem 5.4 ([31]). Let p1(u) 6≡ 0 and p2(u) 6≡ 0 be nonnegative and integrable
functions on the interval between x and y, f(u) a positive and integrable function,
the ratio p1(u)

p2(u) an integrable function, p1(u)
p2(u) and f(u) both increasing or both de-

creasing. Then
Mp1,f (r, s;x, y) ≥Mp2,f (r, s;x, y) (5.10)

If one of the functions of f(u) or p1(u)
p2(u) is nonincreasing and the other nondecreasing,

then inequality (5.10) is reversed.
Theorem 5.5 ([31]). Let p(u) 6≡ 0 be a nonnegative and integrable function, and
f1(u) and f2(u) positive and integrable functions on the interval between x and y.
If the ratio f1(u)

f2(u) and f2(u) are integrable and both increasing or both decreasing,
then

Mp,f1(r, s;x, y) ≥Mp,f2(r, s;x, y) (5.11)

holds for r, s ≥ 0 or r ≥ 0 ≥ s, and f1(u)
f2(u) ≥ 1. The inequality (5.11) is reversed for

r, s ≤ 0 or s ≥ 0 ≥ r, and f1(u)
f2(u) ≤ 1.

If one of the functions of f2(u) or f1(u)
f2(u) is nonincreasing and the other nonde-

creasing, then inequality (5.11) is valid for r, s ≥ 0 or s ≥ 0 ≥ r, and f1(u)
f2(u) ≥ 1;

the inequality (5.11) reverses for r, s ≥ 0 or r ≥ 0 ≥ s, and f1(u)
f2(u) ≤ 1.

5.1.2. Discrete case. The discrete analogue of the generalized weighted mean val-
ues, the generalized weighted mean of positive sequence a = (a1, · · · , an), was
defined in [30] by
Definition 5.2. For a positive sequence a = (a1, · · · , an) with ai > 0 and a positive
weight p = (p1, · · · , pn) with pi > 0 for 1 ≤ i ≤ n, the generalized weighted mean
of positive sequence a with two parameters r and s is defined as

Mn(p; a; r, s) =


(∑n

i=1 pia
r
i∑n

i=1 pias
i

)1/(r−s)

, r − s 6= 0;

exp
(∑n

i=1 pia
r
i ln ai∑n

i=1 piar
i

)
, r − s = 0.

(5.12)

Remark 5.1. For s = 0 we obtain the weighted mean M [r]
n (a; p) of order r (see [24]);

for s = 0, r = −1, the weighted harmonic mean; for s = 0, r = 0, the weighted
geometric mean; and for s = 0, r = 1, the weighted arithmtic mean.

The meanMn(p; a; r, s) has some basic properties similar to those ofMp,f (r, s;x, y),
for instance
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Theorem 5.6 ([30]). The mean Mn(p; a; r, s) is a continuous function with respect
to (r, s) ∈ R2 and has the following properties

m ≤Mn(p; a; r, s) ≤M,

Mn(p; a; r, s) = Mn(p; a; s, r),

Ms−r
n (p; a; r, s) = Ms−t

n (p; a; t, s) ·M t−r
n (p; a; r, t),

(5.13)

where m = min1≤i≤n{ai}, M = max1≤i≤n{ai}.
The inequality property in (5.13) follows from the following elementary inequal-

ities in [24, p. 204] which are due to Cauchy.
For an arbitrary sequence b = (b1, . . . , bn) and a positive sequence c = (c1, . . . , cn),

we have

min
1≤i≤n

{
bi
ci

}
≤
∑n

i=1 bi∑n
i=1 ci

≤ max
1≤i≤n

{
bi
ci

}
. (5.14)

Equality holds in both above inequalities if and only if the sequences b and c are
proportional.

Uisng Lemma 4.1 and by standard arguments, we obtain the monotonicity of
Mn(p; a; r, s) with respect to variables r and s.
Theorem 5.7 ([30]). The mean Mn(p; a; r, s) of numbers a = (a1, . . . , an) with
weights p = (p1, . . . , pn) and two parameters r and s is increasing in both r and s.

By mathematical induction and inequalities in (5.14), we obtain an inequality
for different natural indices n of Mn(p; a; r, s).
Theorem 5.8 ([30]). For a monotonic sequence of positive numbers 0 < a1 ≤ a2 ≤
· · · and positive weights p = (p1, p2, . . . ), if m < n, then

Mm(p; a; r, s) ≤Mn(p; a; r, s). (5.15)

Equality holds if a1 = a2 = · · · .
Using the discrete Tchebysheff’s inequality, the following are obtained.

Theorem 5.9 ([30]). Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be positive weights,
a = (a1, . . . , an) a sequence of positive numbers. If the sequences

(
p1
q1
, . . . , pn

qn

)
and

a are both nonincreasing or both nondecreasing, then

Mn(p; a; r, s) ≥Mn(q; a; r, s). (5.16)

If one of the sequences of
(

p1
q1
, . . . , pn

qn

)
or a is nonincreasing and the other nonde-

creasing, the inequality (5.16) is reversed.
Theorem 5.10 ([30]). Let p = (p1, . . . , pn) be positive weights, a = (a1, . . . , an) and
b = (b1, . . . , bn) two sequences of positive numbers. If the sequences

(
a1
b1
, . . . , an

bn

)
and b are both increasing or both decreasing, then

Mn(p; a; r, s) ≥Mn(p; b; r, s) (5.17)

holds for ai

bi
≥ 1, n ≥ i ≥ 1, and r, s ≥ 0 or r ≥ 0 ≥ s. The inequality (5.17) is

reversed for ai

bi
≤ 1, n ≥ i ≥ 1, and r, s ≤ 0 or s ≥ 0 ≥ r.

If one of the sequences of
(

a1
b1
, . . . , an

bn

)
or b is nonincreasing and the other non-

decreasing, then inequality (5.17) is valid for ai

bi
≥ 1, n ≥ i ≥ 1 and r, s ≥ 0 or

s ≥ 0 ≥ r; the inequality (5.17) reverses for ai

bi
≤ 1, n ≥ i ≥ 1, and r, s ≥ 0 or

r ≥ 0 ≥ s,.
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5.2. Generalized abstracted mean values. The following definition is an inte-
gral analogue of the Definition 3 in [24, p. 75].

Definition 5.3. Let p be a defined, positive and integrable function on [x, y] for
x, y ∈ R, f a real-valued and monotonic function on [α, β]. If g is a function valued
on [α, β] and f ◦ g integrable on [x, y], the quasi-arithmtic non-symmetrical mean
of function g is defined by

Mf (g; p;x, y) = f−1

(∫ y

x
p(t)f(g(t))dt∫ y

x
p(t)dt

)
, (5.18)

where f−1 is the inverse function of f .

Remark 5.2. For g(t) = t, f(t) = tr−1, p(t) = 1, the mean Mf (g; p;x, y) reduces
to the extended logarithmic means Sr(x, y); for p(t) = tr−1, g(t) = f(t) = t, to
the one-parameter mean Jr(x, y); for p(t) = f ′(t), g(t) = t, to the abstracted mean
Mf (x, y); for g(t) = t, p(t) = tr−1, f(t) = ts−r, to the extended mean values
E(r, s;x, y); for f(t) = tr, to the weighted mean of order r of the function g with
weight p on [x, y]. If we replace p(t) by p(t)fr(t), f(t) by ts−r, g(t) by f(t) in
(5.18), then we get the generalized weighted mean values Mp,f (r, s;x, y). Hence,
from Mf (g; p;x, y) we can deduce a lot of the two variable means.

The following properties follow easily from Lemma 5.1 and standard arguments.

Theorem 5.11 ([30]). The mean Mf (g; p;x, y) has the following properties

α ≤Mf (g; p;x, y) ≤ β,

Mf (g; p;x, y) = Mf (g; p; y, x),
(5.19)

where α = inft∈[x,y] g(t) and β = supt∈[x,y] g(t).

The function 1
x is the inverse function of f(x) = x. Further, we have

Lemma 5.2 ([30]). Suppose the ratio f1
f2

is monotonic on a given interval. Then(
f1
f2

)−1

(x) =
(
f2
f1

)−1( 1
x

)
, (5.20)

where
(

f1
f2

)−1

is the inverse function of f1
f2

.

These hints remind us that, if replacing 1
s−r by

(
f1
f2

)−1

in Definition 5.2, then
we can obtain

Definition 5.4 ([30]). Let f1 and f2 be real-valued functions such that the ratio
f1
f2

is monotone on the closed interval [α, β]. If a = (a1, . . . , an) is a sequence of
real numbers from [α, β] and p = (p1, . . . , pn) a sequence of positive numbers, the
generalized abstracted mean values of numbers a with respect to functions f1 and
f2, with weights p, is defined by

Mn(p; a; f1, f2) =
(
f1
f2

)−1(∑n
i=1 pif1(ai)∑n
i=1 pif2(ai)

)
, (5.21)

where
(

f1
f2

)−1

is the inverse function of f1
f2

.

The integral analogue of Definition 5.4 is given by
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Definition 5.5 ([30]). Let p be a positive integrable function defined on [x, y],
x, y ∈ R, f1 and f2 real-valued functions and the ratio f1

f2
monotone on the interval

[α, β]. In addition, let g be defined on [x, y] and valued on [α, β], and fi◦g integrable
on [x, y] for i = 1, 2. The generalized abstracted mean values of function g with
respect to functions f1 and f2 and with weight p is defined as

M(p; g; f1, f2;x, y) =
(
f1
f2

)−1
(∫ y

x
p(t)f1(g(t))dt∫ y

x
p(t)f2(g(t))dt

)
, (5.22)

where
(

f1
f2

)−1

is the inverse function of f1
f2

.

Remark 5.3. Set f2 ≡ 1 in Definition 5.5, then we can obtain Definition 5.3 easily.
Replacing f by f1

f2
, p(t) by p(t)f2(g(t)) in Definition 5.3, we arrive at Definition 5.5

directly. Analogously, formula (5.21) is equivalent to Mf (a; p). Definition 5.3 and
Definition 5.5 are equivalent to each other. Similarly, so are Definition 5.4 and the
quasi-arithmtic non-symmetrical mean Mf (a; p) of numbers a = (a1, . . . , an) with
weights p = (p1, . . . , pn).

From inequality (5.14), Lemma 5.1, Lemma 5.2 and standard arguments, we
have
Theorem 5.12 ([30]). The means Mn(p; a; f1, f2) and M(p; g; f1, f2;x, y) have the
following properties

(1) Under the conditions of Definition 5.4, we have

m ≤Mn(p; a; f1, f2) ≤M,

Mn(p; a; f1, f2) = Mn(p; a; f2, f1),
(5.23)

where m = min1≤i≤n{ai}, M = max1≤i≤n{ai};
(2) Under the conditions of Definition 5.5, we have

α ≤M(p; g; f1, f2;x, y) ≤ β,

M(p; g; f1, f2;x, y) = M(p; g; f1, f2; y, x),

M(p; g; f1, f2;x, y) = M(p; g; f2, f1;x, y),
(5.24)

where α = inft∈[x,y] g(t) and β = supt∈[x,y] g(t).

By Lemma 5.1 and standard argument, it follows that
Theorem 5.13 ([30]). Suppose p and g are defined on R. If f1◦g has constant sign
and if

(
f1
f2

)
◦ g is increasing (or decreasing, respectively), then M(p; g; f1, f2;x, y)

have the inverse (or same) monotonicities as f1
f2

with both x and y.

The Tchebysheff’s integral inequality produces the following two theorems.
Theorem 5.14 ([30]). Suppose f2 ◦ g has constant sign on [x, y]. When g(t) in-
creases on [x, y], if p1

p2
is increasing, we have

M(p1; g; f1, f2;x, y) ≥M(p2; g; f1, f2;x, y); (5.25)

if p1
p2

is decreasing, inequality (5.25) reverses.
When g(t) decreases on [x, y], if p1

p2
is increasing, then inequality (5.25) is re-

versed; if p1
p2

is decreasing, inequality (5.25) holds.

Theorem 5.15 ([30]). Suppose f2 ◦ g2 does not change its sign on [x, y].
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(1) When f2 ◦
(

g1
g2

)
and

(
f1
f2

)
◦ g2 are both increasing or both decreasing, in-

equality
M(p; g1; f1, f2;x, y) ≥M(p; g2; f1, f2;x, y) (5.26)

holds for f1
f2

being increasing, or reverses for f1
f2

being decreasing.

(2) When one of the functions f2◦
(

g1
g2

)
or
(

f1
f2

)
◦g2 is decreasing and the other

increasing, inequality (5.26) holds for f1
f2

being decreasing, or reverses for
f1
f2

being increasing.

5.3. More absolutely monotonic (convex) functions. In [30] and [31], some
more general absolutely (regularly, completely) monotonic (convex) functions were
established, which generalize the related results in [46] restated in Theorem 1.3 of
Section 1.3.
Theorem 5.16 ([31]). Suppose that f(u) is positive and has derivatives of all
orders on the interval [a, b]. Define ψ(t) by

ψ(t) =


f t(b)− f t(a)

t
, t 6= 0;

ln f(b)− ln f(a) t = 0.
(5.27)

Then

ψ(n)(t) =
Un(t, f(b))− Un(t, f(a))

tn+1
, (5.28)

∂Un(t, s)
∂s

= tn+1(ln s)nst−1, (5.29)

where Un is defined in (1.13).
Theorem 5.17 ([31]). If f(u) ≥ 1 and f ′(u) ≥ 0, then the function ψ(t) defined
by (5.27) is absolutely and regularly monotonic on the interval R. If 0 < f(u) ≤ 1
and f ′(u) ≥ 0, then ψ(t) is completely and regularly monotonic on R. Moreover,
ψ(t) is absolutely convex on R.

Theorem 5.18 ([30]). Suppose F (t) =
∫ b

a
p(u)f t(u)du, where t ∈ R, p(u) 6≡ 0

is a nonnegative and continuous function, and f(u) is a positive and continuous
function on a given interval [a, b]. Then

F (n)(t) =
∫ b

a

p(u)f t(u)
[
ln f(u)

]ndu. (5.30)

If f(u) ≥ 1, then F (t) is absolutely monotone on R; if 0 < f(u) < 1, then F (t) is
completely monotone on R. Moreover, F (t) is absolutely convex on R.

6. Applications and related results

The extended mean values and their generalizations have been applied not only
to establish inequalities of the gamma function and the incomplete gamma func-
tion, to construct new Steffensen pairs, and to generalize the Hermite-Hadamard’s
inequality, but also to study quatum and to generalize the Bernoulli’s numbers and
polynomials.

6.1. Application to quatum. The concepts of the generalized weighted mean
values Mp,f (r, s;x, y) have been applied to study of quantum in [49, 50].
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6.2. Generalizations of Bernoulli’s numbers and polynomials. The function
g(t;x, y) defined by (1.12) has been applied to generalize the concepts of Bernoulli’s
numbers and polynomials. For details, please refer to [12, 22, 38].

6.3. Generalization of Hermite-Hadamard’s inequality. Using Tchebycheff’s
integral inequality, the suitable properties of double integral and the revised Cauchy’s
mean value theorem in integral form in Lemma 5.1, the following result is proved.
Theorem 6.1 ([13]). Suppose f(x) is a positive differentiable function and w(x) 6≡
0 an integrable nonnegative weight on the interval [a, b], if f ′(x) and f ′(x)

w(x) are
integrable and both increasing or both decreasing, then, for all real numbers r and
s, we have

Mw,f (r, s; a, b) < E
(
r + 1, s+ 1; f(a), f(b)

)
; (6.1)

if one of the functions f ′(x) or f ′(x)
w(x) is nondecreasing and the other nonincreasing,

then inequality (6.1) reverses.
This inequality (6.1) generalizes Hermite-Hadamard’s inequality. See [3, 13].
In [27], Hermite-Hadamard’s inequality was generalized to the case of r-convex

functions with help of the extended mean values. In [21], the results obtained in
[27] were further generalized to the case of so-called g-convex functions.

6.4. Monotonicity results and inequalities involving gamma functions. It
is well-known that the incomplete gamma function Γ(z, x) is defined for Re z > 0
by (1.16) and

γ(z, x) =
∫ x

0

tz−1e−tdt, (6.2)

and Γ(z, 0) = Γ(z) is called the gamma function, Γ(0, x) = E1(x) the exponential
integral.

In [33], using inequality (6.1) and some results on the monotonicities of the
generalized weighted mean values Mp,f (r, s;x, y), it was verified that functions[

Γ(s)
Γ(r)

]1/(s−r)

,
[

Γ(s,x)
Γ(r,x)

]1/(s−r)

and
[

γ(s,x)
γ(r,x)

]1/(s−r)

are increasing in r > 0, s > 0
and x > 0. From this, some monotonicity results and inequalities for the gamma or
the incomplete gamma functions are deduced or extended, a unified proof of some
known results for the gamma function is given.

If taking p(t) = e−t and f(t) = t for t ∈ (0, x) in Theorem 6.1, then we have

Theorem 6.2 ([33]). For fixed x > 0, the function sγ(s,x)
xs is decreasing in s > 0.

From the monotonicity with the two parameters r and s of Mp,f (r, s;x, y) in
Theorem 5.3, it follows that

Theorem 6.3 ([33]). The function
[

Γ(s)
Γ(r)

]1/(s−r)

is increasing with r > 0 and s > 0.

Corollary 6.3.1 ([33]). The functions [Γ(r)]1/(r−1) and the digamma function
ψ(r) = Γ′(r)

Γ(r) , the logarithmic derivative of the gamma function Γ(r), are increasing
in r > 0. Hence Γ(r) is a logarithmically convex function in the interval (0,∞).
Remark 6.1. In [18] and [23], among other things, the following monotonicity results
were obtained

[Γ(1 + k)]1/k
< [Γ(2 + k)]1/(k+1)

, k ∈ N;
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Γ
(

1 +
1
x

)]x

decreases with x > 0.

Clearly, our Theorem 6.3 and Corollary 6.3.1 generalize and extend these results
for the range of the argument.
Corollary 6.3.2. The following inequalities hold for s > r > 0

exp [(s− r)ψ(s)] >
Γ(s)
Γ(r)

> exp [(s− r)ψ(r)] , (6.3)

ecr < Γ(r + 1) < exp [rψ(r + 1)] , (6.4)

where c = 0.5772 · · · is the Euler’s constant.
Remark 6.2. The ratio Γ(s)

Γ(r) has been researched by many mathematicians. W. Gautschi
showed for 0 < s < 1 and n ∈ N in [11] that

n1−s <
Γ(n+ 1)
Γ(n+ s)

< exp [(1− s)ψ(n+ 1)] . (6.5)

A strenghened upper bound was given by T. Erber in [7] as follows

Γ(n+ 1)
Γ(n+ s)

<
4(n+ s)(n+ 1)1−s

4n+ (s+ 1)2
, 0 < s < 1, n ∈ N. (6.6)

J. D. Kečkić and P. M. Vasić gave in [16] the inequalities below

bb−1

aa−1
· ea−b <

Γ(b)
Γ(a)

<
bb−1/2

aa−1/2
· ea−b, 0 < a < b. (6.7)

The following closer bounds were proved for 0 < s < 1 and x ≥ 1 by D. Kershaw
in [17].

exp
[
(1− s)ψ(x+ s1/2)

]
<

Γ(x+ 1)
Γ(x+ s)

< exp
[
(1− s)ψ

(
x+

s+ 1
2

)]
, (6.8)

(
x+

s

2

)1−s

<
Γ(x+ 1)
Γ(x+ s)

<

[
x− 1

2
+
(
s− 1

4

)1/2
]1−s

. (6.9)

It is easy to see that inequalities in (6.3) of Corollary 6.3.2 extend the range of
arguments of above inequalities (6.5)–(6.9) but (6.7).

As consequences of Theorem 5.2 and Theorem 5.3, we have

Theorem 6.4 ([33]). For s > r > 0 and x > 0, the functions
[

γ(s,x)
γ(r,x)

]1/(s−r)

and[
Γ(s,x)
Γ(r,x)

]1/(s−r)

increase with either x or r and s. Therefore, γ(s,x)
xs−1 decreases and

Γ(s,x)
xs−1 increases with s > 0, respectively.
Corollary 6.4.1. The incomplete gamma functions γ(r, x) and Γ(r, x) are loga-

rithmically convex with respect to r > 0 for fixed x > 0. The function
[

Γ(r,x)
E1(x)

]1/r

is increasing in r > 0 and x > 0. Therefore, the functions Γ(s+θ)
Γ(r+θ) ,

Γ(s+θ,x)
Γ(r+θ,x) and

γ(s+θ,x)
γ(r+θ,x) are increasing with θ for fixed s > r > 0 and x > 0.

Remark 6.3. In the last week of November 2001, N. Elezović reminded me of his
joint paper [5] with C. Giordana and J. Pecarić. In their paper [5], among others, the

convexity with respect to variable x of the function
[

Γ(x+t)
Γ(x+s)

]1/(t−s)

for |t− s| < 1
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is verified, the best lower bound for (6.8) and the best upper bound for (6.9) are
obtained, some different approach from Gautschi’s in [11] is given, several new
simple inequalities for digamma function are also proved.

The gamma and incomplete gamma functions and related functions have been
investigated using different approaches, for examples, see [1, 4, 37, 40, 41, 43].

6.5. Establishment of Steffensen pairs. Let f and g be integrable functions on
[a, b] such that f is decreasing and 0 ≤ g(x) ≤ 1 for x ∈ [a, b]. Then∫ b

b−λ

f(x)dx ≤
∫ b

a

f(x)g(x)dx ≤
∫ a+λ

a

f(x)dx, (6.10)

where λ =
∫ b

a
g(x)dx.

The inequality (6.10) is called Steffensen’s inequality.
In [8], a discrete analogue of the inequality (6.10) was proved: Let {xi}n

i=1 be a
decreasing finite sequence of nonnegative real numbers, {yi}n

i=1 be a finite sequence
of real numbers such that 0 ≤ yi ≤ 1 for 1 ≤ i ≤ n. Let k1, k2 ∈ {1, 2, · · · , n} be
such that k2 ≤

∑n
i=1 yi ≤ k1. Then

n∑
i=n−k2+1

xi ≤
n∑

i=1

xiyi ≤
k1∑

i=1

xi. (6.11)

As a direct consequence of inequality (6.11), we have: Let {xi}n
i=1 be nonnegative

real numbers such that
∑n

i=1 xi ≤ A and
∑n

i=1 x
2
i ≥ B2, where A and B are positive

real numbers. Let k ∈ {1, 2, · · · , n} be such that k ≥ A
B . Then there are k numbers

among x1, x2, . . . , xn whose sum is bigger than or equals to B.
The so-called Steffensen pair was defined by H. Gauchman in [10] as follows.

Definition 6.1. Let ϕ : [c,∞) → [0,∞) and τ : (0,∞) → (0,∞) be two strictly
increasing functions, c ≥ 0, let {xi}n

i=1 be a finite sequence of real numbers such
that xi ≥ c for 1 ≤ i ≤ n, A and B be positive real numbers, and

∑n
i=1 xi ≤ A,∑n

i=1 ϕ(xi) ≥ ϕ(B). If, for any k ∈ {1, 2, · · · , n} such that k ≥ τ
(

A
B

)
, there are

k numbers among x1, . . . , xn whose sum is not less than B, then we call (ϕ, τ) a
Steffensen pair on [c,∞).

The following Steffensen pairs were found by H. Gauchman in [10].(
xα, x1/(α−1)

)
, α ≥ 2, x ∈ [0,∞); (6.12)(

x exp(xα − 1), (1 + lnx)1/α
)
, α ≥ 1, x ∈ [1,∞). (6.13)

Let a and b be real numbers satisfying b > a > 1 and
√
ab ≥ e. Define

ϕ(x) =


x1+ln b − x1+ln a

lnx
if x > 1,

ln b− ln a if x = 1,
(6.14)

τ(x) = x1/ ln
√

ab. (6.15)

Then it was verified by H. Gauchman in [10] that (ϕ, τ) is a Steffensen pair on
[1,∞) using some results and techniques in [46].

With help of properties of the extended mean values E(r, s;x, y) and the gener-
alized weighted mean values Mp,f (r, s;x, y), some new Steffensen pairs were estab-
lished in [36, 39].
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Using the integral expression (1.14) of function bx−ax

x , mathematical induction
and analytic techniques, we have
Theorem 6.5 ([36]). If a and b are real numbers satisfying b > a > 1 or b > 1

a > 1,
and

√
ab ≥ e, then (

x

∫ b

a

tln x−1dt, x2/ ln (ab)

)
(6.16)

is a Steffensen pair on [1,∞). If a and b are real numbers satisfying b > a > 1 and√
ab ≥ e, then (

x

∫ b

a

(ln t)ntln x−1dt, x
n+2
n+1 ·

(ln b)n+1−(ln a)n+1

(ln b)n+2−(ln a)n+2

)
(6.17)

are Steffensen pairs on [1,∞) for any positive integer n.

In [39], considering the function
∫ b

a
p(u)f t(u)du and its properties, we further

obtain much general Steffensen pairs as follows.
Theorem 6.6 ([39]). Let a, b ∈ R, let p 6≡ 0 be a nonnegative and integrable
function and f a positive and integrable function on the interval [a, b].

(1) If inequality ∫ b

a

p(u)du ≤
∫ b

a

p(u) ln f(u)du (6.18)

holds, then (
x

∫ b

a

p(u)[f(u)]ln xdu, x
∫ b
a p(u)du∫ b

a p(u) ln f(u)du

)
(6.19)

is a Steffensen pair on [1,∞).
(2) If f(u) ≥ 1 and inequality (6.18) holds, then(

x

∫ b

a

p(u)[f(u)]ln x[ln f(u)]ndu, x
∫ b
a p(u)[ln f(u)]ndu∫ b

a p(u)[ln f(u)]n+1du

)
(6.20)

are Steffensen pairs on [1,∞) for any positive integer n.
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